File: test_topomap.py

package info (click to toggle)
python-mne 0.17%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 95,104 kB
  • sloc: python: 110,639; makefile: 222; sh: 15
file content (471 lines) | stat: -rw-r--r-- 18,890 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
#          Denis Engemann <denis.engemann@gmail.com>
#          Martin Luessi <mluessi@nmr.mgh.harvard.edu>
#          Eric Larson <larson.eric.d@gmail.com>
#
# License: Simplified BSD

import os.path as op
from functools import partial

import numpy as np
from numpy.testing import assert_array_equal, assert_equal
import pytest

from mne import (read_evokeds, read_proj, make_fixed_length_events, Epochs,
                 compute_proj_evoked, find_layout)
from mne.io.proj import make_eeg_average_ref_proj
from mne.io import read_raw_fif, read_info
from mne.io.constants import FIFF
from mne.io.pick import pick_info, channel_indices_by_type
from mne.io.compensator import get_current_comp
from mne.io.proj import Projection
from mne.channels import read_layout, make_eeg_layout
from mne.datasets import testing
from mne.time_frequency.tfr import AverageTFR
from mne.utils import run_tests_if_main

from mne.viz import plot_evoked_topomap, plot_projs_topomap
from mne.viz.topomap import (_check_outlines, _onselect, plot_topomap,
                             plot_arrowmap, plot_psds_topomap)
from mne.viz.utils import _find_peaks, _fake_click


# Set our plotters to test mode
import matplotlib
matplotlib.use('Agg')  # for testing don't use X server

data_dir = testing.data_path(download=False)
subjects_dir = op.join(data_dir, 'subjects')
ecg_fname = op.join(data_dir, 'MEG', 'sample', 'sample_audvis_ecg-proj.fif')
triux_fname = op.join(data_dir, 'SSS', 'TRIUX', 'triux_bmlhus_erm_raw.fif')

base_dir = op.join(op.dirname(__file__), '..', '..', 'io', 'tests', 'data')
evoked_fname = op.join(base_dir, 'test-ave.fif')
raw_fname = op.join(base_dir, 'test_raw.fif')
event_name = op.join(base_dir, 'test-eve.fif')
ctf_fname = op.join(base_dir, 'test_ctf_comp_raw.fif')
layout = read_layout('Vectorview-all')


def test_plot_topomap_interactive():
    """Test interactive topomap projection plotting."""
    import matplotlib.pyplot as plt
    from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
    from matplotlib.figure import Figure
    evoked = read_evokeds(evoked_fname, baseline=(None, 0))[0]
    evoked.pick_types(meg='mag')
    evoked.info['projs'] = []
    assert not evoked.proj
    evoked.add_proj(compute_proj_evoked(evoked, n_mag=1))

    plt.close('all')
    fig = Figure()
    canvas = FigureCanvas(fig)
    ax = fig.gca()

    kwargs = dict(vmin=-240, vmax=240, times=[0.1], colorbar=False, axes=ax,
                  res=8, time_unit='s')
    evoked.copy().plot_topomap(proj=False, **kwargs)
    canvas.draw()
    image_noproj = np.frombuffer(canvas.tostring_rgb(), dtype='uint8')
    assert len(plt.get_fignums()) == 1

    ax.clear()
    evoked.copy().plot_topomap(proj=True, **kwargs)
    canvas.draw()
    image_proj = np.frombuffer(canvas.tostring_rgb(), dtype='uint8')
    assert not np.array_equal(image_noproj, image_proj)
    assert len(plt.get_fignums()) == 1

    ax.clear()
    evoked.copy().plot_topomap(proj='interactive', **kwargs)
    canvas.draw()
    image_interactive = np.frombuffer(canvas.tostring_rgb(), dtype='uint8')
    assert_array_equal(image_noproj, image_interactive)
    assert not np.array_equal(image_proj, image_interactive)
    assert len(plt.get_fignums()) == 2

    proj_fig = plt.figure(plt.get_fignums()[-1])
    _fake_click(proj_fig, proj_fig.axes[0], [0.5, 0.5], xform='data')
    canvas.draw()
    image_interactive_click = np.frombuffer(
        canvas.tostring_rgb(), dtype='uint8')
    assert_array_equal(image_proj, image_interactive_click)
    assert not np.array_equal(image_noproj, image_interactive_click)

    _fake_click(proj_fig, proj_fig.axes[0], [0.5, 0.5], xform='data')
    canvas.draw()
    image_interactive_click = np.frombuffer(
        canvas.tostring_rgb(), dtype='uint8')
    assert_array_equal(image_noproj, image_interactive_click)
    assert not np.array_equal(image_proj, image_interactive_click)


@testing.requires_testing_data
def test_plot_projs_topomap():
    """Test plot_projs_topomap."""
    import matplotlib.pyplot as plt
    projs = read_proj(ecg_fname)
    info = read_info(raw_fname)
    fast_test = {"res": 8, "contours": 0, "sensors": False}
    plot_projs_topomap(projs, info=info, colorbar=True, **fast_test)
    plt.close('all')
    ax = plt.subplot(111)
    projs[3].plot_topomap()
    plot_projs_topomap(projs[:1], axes=ax, **fast_test)  # test axes param
    plt.close('all')
    plot_projs_topomap(read_info(triux_fname)['projs'][-1:], **fast_test)
    plt.close('all')
    plot_projs_topomap(read_info(triux_fname)['projs'][:1], ** fast_test)
    plt.close('all')
    eeg_avg = make_eeg_average_ref_proj(info)
    pytest.raises(RuntimeError, eeg_avg.plot_topomap)  # no layout
    eeg_avg.plot_topomap(info=info, **fast_test)
    plt.close('all')


@pytest.mark.slowtest
@testing.requires_testing_data
def test_plot_topomap():
    """Test topomap plotting."""
    import matplotlib.pyplot as plt
    from matplotlib.patches import Circle
    # evoked
    res = 8
    fast_test = dict(res=res, contours=0, sensors=False, time_unit='s')
    fast_test_noscale = dict(res=res, contours=0, sensors=False)
    evoked = read_evokeds(evoked_fname, 'Left Auditory',
                          baseline=(None, 0))

    # Test animation
    _, anim = evoked.animate_topomap(ch_type='grad', times=[0, 0.1],
                                     butterfly=False, time_unit='s')
    anim._func(1)  # _animate has to be tested separately on 'Agg' backend.
    plt.close('all')

    ev_bad = evoked.copy().pick_types(meg=False, eeg=True)
    ev_bad.pick_channels(ev_bad.ch_names[:2])
    plt_topomap = partial(ev_bad.plot_topomap, **fast_test)
    plt_topomap(times=ev_bad.times[:2] - 1e-6)  # auto, plots EEG
    pytest.raises(ValueError, plt_topomap, ch_type='mag')
    pytest.raises(TypeError, plt_topomap, head_pos='foo')
    pytest.raises(KeyError, plt_topomap, head_pos=dict(foo='bar'))
    pytest.raises(ValueError, plt_topomap, head_pos=dict(center=0))
    pytest.raises(ValueError, plt_topomap, times=[-100])  # bad time
    pytest.raises(ValueError, plt_topomap, times=[[0]])  # bad time

    evoked.plot_topomap([0.1], ch_type='eeg', scalings=1, res=res,
                        contours=[-100, 0, 100], time_unit='ms')
    plt_topomap = partial(evoked.plot_topomap, **fast_test)
    plt_topomap(0.1, layout=layout, scalings=dict(mag=0.1))
    plt.close('all')
    axes = [plt.subplot(221), plt.subplot(222)]
    plt_topomap(axes=axes, colorbar=False)
    plt.close('all')
    plt_topomap(times=[-0.1, 0.2])
    plt.close('all')
    evoked_grad = evoked.copy().crop(0, 0).pick_types(meg='grad')
    mask = np.zeros((204, 1), bool)
    mask[[0, 3, 5, 6]] = True
    names = []

    def proc_names(x):
        names.append(x)
        return x[4:]

    evoked_grad.plot_topomap(ch_type='grad', times=[0], mask=mask,
                             show_names=proc_names, **fast_test)
    assert_equal(sorted(names),
                 ['MEG 011x', 'MEG 012x', 'MEG 013x', 'MEG 014x'])
    mask = np.zeros_like(evoked.data, dtype=bool)
    mask[[1, 5], :] = True
    plt_topomap(ch_type='mag', outlines=None)
    times = [0.1]
    plt_topomap(times, ch_type='grad', mask=mask)
    plt_topomap(times, ch_type='planar1')
    plt_topomap(times, ch_type='planar2')
    plt_topomap(times, ch_type='grad', mask=mask, show_names=True,
                mask_params={'marker': 'x'})
    plt.close('all')
    pytest.raises(ValueError, plt_topomap, times, ch_type='eeg', average=-1e3)
    pytest.raises(ValueError, plt_topomap, times, ch_type='eeg', average='x')

    p = plt_topomap(times, ch_type='grad', image_interp='bilinear',
                    show_names=lambda x: x.replace('MEG', ''))
    subplot = [x for x in p.get_children() if 'Subplot' in str(type(x))]
    assert len(subplot) >= 1, [type(x) for x in p.get_children()]
    subplot = subplot[0]
    assert (all('MEG' not in x.get_text()
                for x in subplot.get_children()
                if isinstance(x, matplotlib.text.Text)))

    # Plot array
    for ch_type in ('mag', 'grad'):
        evoked_ = evoked.copy().pick_types(eeg=False, meg=ch_type)
        plot_topomap(evoked_.data[:, 0], evoked_.info, **fast_test_noscale)
    # fail with multiple channel types
    pytest.raises(ValueError, plot_topomap, evoked.data[0, :], evoked.info)

    # Test title
    def get_texts(p):
        return [x.get_text() for x in p.get_children() if
                isinstance(x, matplotlib.text.Text)]

    p = plt_topomap(times, ch_type='eeg', average=0.01)
    assert_equal(len(get_texts(p)), 0)
    p = plt_topomap(times, ch_type='eeg', title='Custom')
    texts = get_texts(p)
    assert_equal(len(texts), 1)
    assert_equal(texts[0], 'Custom')
    plt.close('all')

    # delaunay triangulation warning
    plt_topomap(times, ch_type='mag', layout=None)
    # projs have already been applied
    pytest.raises(RuntimeError, plot_evoked_topomap, evoked, 0.1, 'mag',
                  proj='interactive', time_unit='s')

    # change to no-proj mode
    evoked = read_evokeds(evoked_fname, 'Left Auditory',
                          baseline=(None, 0), proj=False)
    fig1 = evoked.plot_topomap('interactive', 'mag', proj='interactive',
                               **fast_test)
    _fake_click(fig1, fig1.axes[1], (0.5, 0.5))  # click slider
    data_max = np.max(fig1.axes[0].images[0]._A)
    fig2 = plt.gcf()
    _fake_click(fig2, fig2.axes[0], (0.075, 0.775))  # toggle projector
    # make sure projector gets toggled
    assert (np.max(fig1.axes[0].images[0]._A) != data_max)

    pytest.raises(RuntimeError, plot_evoked_topomap, evoked,
                  np.repeat(.1, 50), time_unit='s')
    pytest.raises(ValueError, plot_evoked_topomap, evoked, [-3e12, 15e6],
                  time_unit='s')

    for ch in evoked.info['chs']:
        if ch['coil_type'] == FIFF.FIFFV_COIL_EEG:
            ch['loc'].fill(0)

    # Remove extra digitization point, so EEG digitization points
    # correspond with the EEG electrodes
    del evoked.info['dig'][85]

    pos = make_eeg_layout(evoked.info).pos[:, :2]
    pos, outlines = _check_outlines(pos, 'head')
    assert ('head' in outlines.keys())
    assert ('nose' in outlines.keys())
    assert ('ear_left' in outlines.keys())
    assert ('ear_right' in outlines.keys())
    assert ('autoshrink' in outlines.keys())
    assert (outlines['autoshrink'])
    assert ('clip_radius' in outlines.keys())
    assert_array_equal(outlines['clip_radius'], 0.5)

    pos, outlines = _check_outlines(pos, 'skirt')
    assert ('head' in outlines.keys())
    assert ('nose' in outlines.keys())
    assert ('ear_left' in outlines.keys())
    assert ('ear_right' in outlines.keys())
    assert ('autoshrink' in outlines.keys())
    assert (not outlines['autoshrink'])
    assert ('clip_radius' in outlines.keys())
    assert_array_equal(outlines['clip_radius'], 0.625)

    pos, outlines = _check_outlines(pos, 'skirt',
                                    head_pos={'scale': [1.2, 1.2]})
    assert_array_equal(outlines['clip_radius'], 0.75)

    # Plot skirt
    evoked.plot_topomap(times, ch_type='eeg', outlines='skirt', **fast_test)

    # Pass custom outlines without patch
    evoked.plot_topomap(times, ch_type='eeg', outlines=outlines, **fast_test)
    plt.close('all')

    # Test interactive cmap
    fig = plot_evoked_topomap(evoked, times=[0., 0.1], ch_type='eeg',
                              cmap=('Reds', True), title='title', **fast_test)
    fig.canvas.key_press_event('up')
    fig.canvas.key_press_event(' ')
    fig.canvas.key_press_event('down')
    cbar = fig.get_axes()[0].CB  # Fake dragging with mouse.
    ax = cbar.cbar.ax
    _fake_click(fig, ax, (0.1, 0.1))
    _fake_click(fig, ax, (0.1, 0.2), kind='motion')
    _fake_click(fig, ax, (0.1, 0.3), kind='release')

    _fake_click(fig, ax, (0.1, 0.1), button=3)
    _fake_click(fig, ax, (0.1, 0.2), button=3, kind='motion')
    _fake_click(fig, ax, (0.1, 0.3), kind='release')

    fig.canvas.scroll_event(0.5, 0.5, -0.5)  # scroll down
    fig.canvas.scroll_event(0.5, 0.5, 0.5)  # scroll up

    plt.close('all')

    # Pass custom outlines with patch callable
    def patch():
        return Circle((0.5, 0.4687), radius=.46,
                      clip_on=True, transform=plt.gca().transAxes)
    outlines['patch'] = patch
    plot_evoked_topomap(evoked, times, ch_type='eeg', outlines=outlines,
                        **fast_test)

    # Remove digitization points. Now topomap should fail
    evoked.info['dig'] = None
    pytest.raises(RuntimeError, plot_evoked_topomap, evoked,
                  times, ch_type='eeg', time_unit='s')
    plt.close('all')

    # Error for missing names
    n_channels = len(pos)
    data = np.ones(n_channels)
    pytest.raises(ValueError, plot_topomap, data, pos, show_names=True)

    # Test error messages for invalid pos parameter
    pos_1d = np.zeros(n_channels)
    pos_3d = np.zeros((n_channels, 2, 2))
    pytest.raises(ValueError, plot_topomap, data, pos_1d)
    pytest.raises(ValueError, plot_topomap, data, pos_3d)
    pytest.raises(ValueError, plot_topomap, data, pos[:3, :])

    pos_x = pos[:, :1]
    pos_xyz = np.c_[pos, np.zeros(n_channels)[:, np.newaxis]]
    pytest.raises(ValueError, plot_topomap, data, pos_x)
    pytest.raises(ValueError, plot_topomap, data, pos_xyz)

    # An #channels x 4 matrix should work though. In this case (x, y, width,
    # height) is assumed.
    pos_xywh = np.c_[pos, np.zeros((n_channels, 2))]
    plot_topomap(data, pos_xywh)
    plt.close('all')

    # Test peak finder
    axes = [plt.subplot(131), plt.subplot(132)]
    evoked.plot_topomap(times='peaks', axes=axes, **fast_test)
    plt.close('all')
    evoked.data = np.zeros(evoked.data.shape)
    evoked.data[50][1] = 1
    assert_array_equal(_find_peaks(evoked, 10), evoked.times[1])
    evoked.data[80][100] = 1
    assert_array_equal(_find_peaks(evoked, 10), evoked.times[[1, 100]])
    evoked.data[2][95] = 2
    assert_array_equal(_find_peaks(evoked, 10), evoked.times[[1, 95]])
    assert_array_equal(_find_peaks(evoked, 1), evoked.times[95])

    # Test excluding bads channels
    evoked_grad.info['bads'] += [evoked_grad.info['ch_names'][0]]
    orig_bads = evoked_grad.info['bads']
    evoked_grad.plot_topomap(ch_type='grad', times=[0], time_unit='ms')
    assert_array_equal(evoked_grad.info['bads'], orig_bads)
    plt.close('all')


def test_plot_tfr_topomap():
    """Test plotting of TFR data."""
    import matplotlib as mpl
    import matplotlib.pyplot as plt
    raw = read_raw_fif(raw_fname)
    times = np.linspace(-0.1, 0.1, 200)
    res = 8
    n_freqs = 3
    nave = 1
    rng = np.random.RandomState(42)
    picks = [93, 94, 96, 97, 21, 22, 24, 25, 129, 130, 315, 316, 2, 5, 8, 11]
    info = pick_info(raw.info, picks)
    data = rng.randn(len(picks), n_freqs, len(times))
    tfr = AverageTFR(info, data, times, np.arange(n_freqs), nave)
    tfr.plot_topomap(ch_type='mag', tmin=0.05, tmax=0.150, fmin=0, fmax=10,
                     res=res, contours=0)

    eclick = mpl.backend_bases.MouseEvent('button_press_event',
                                          plt.gcf().canvas, 0, 0, 1)
    eclick.xdata = eclick.ydata = 0.1
    eclick.inaxes = plt.gca()
    erelease = mpl.backend_bases.MouseEvent('button_release_event',
                                            plt.gcf().canvas, 0.9, 0.9, 1)
    erelease.xdata = 0.3
    erelease.ydata = 0.2
    pos = [[0.11, 0.11], [0.25, 0.5], [0.0, 0.2], [0.2, 0.39]]
    _onselect(eclick, erelease, tfr, pos, 'grad', 1, 3, 1, 3, 'RdBu_r', list())
    _onselect(eclick, erelease, tfr, pos, 'mag', 1, 3, 1, 3, 'RdBu_r', list())
    eclick.xdata = eclick.ydata = 0.
    erelease.xdata = erelease.ydata = 0.9
    tfr._onselect(eclick, erelease, None, 'mean', None)
    plt.close('all')

    # test plot_psds_topomap
    info = raw.info.copy()
    chan_inds = channel_indices_by_type(info)
    info = pick_info(info, chan_inds['grad'][:4])

    fig, axes = plt.subplots()
    freqs = np.arange(3., 9.5)
    bands = [(4, 8, 'Theta')]
    psd = np.random.rand(len(info['ch_names']), freqs.shape[0])
    plot_psds_topomap(psd, freqs, info, bands=bands, axes=[axes])


def test_ctf_plotting():
    """Test CTF topomap plotting."""
    raw = read_raw_fif(ctf_fname, preload=True)
    assert raw.compensation_grade == 3
    events = make_fixed_length_events(raw, duration=0.01)
    assert len(events) > 10
    evoked = Epochs(raw, events, tmin=0, tmax=0.01, baseline=None).average()
    assert get_current_comp(evoked.info) == 3
    # smoke test that compensation does not matter
    evoked.plot_topomap(time_unit='s')
    # better test that topomaps can still be used without plotting ref
    evoked.pick_types(meg=True, ref_meg=False)
    evoked.plot_topomap()


@testing.requires_testing_data
def test_plot_arrowmap():
    """Test arrowmap plotting."""
    evoked = read_evokeds(evoked_fname, 'Left Auditory',
                          baseline=(None, 0))
    with pytest.raises(ValueError, match='Multiple channel types'):
        plot_arrowmap(evoked.data[:, 0], evoked.info)
    evoked_eeg = evoked.copy().pick_types(meg=False, eeg=True)
    with pytest.raises(ValueError, match='Multiple channel types'):
        plot_arrowmap(evoked_eeg.data[:, 0], evoked.info)
    evoked_mag = evoked.copy().pick_types(meg='mag')
    evoked_grad = evoked.copy().pick_types(meg='grad')
    plot_arrowmap(evoked_mag.data[:, 0], evoked_mag.info)
    plot_arrowmap(evoked_grad.data[:, 0], evoked_grad.info,
                  info_to=evoked_mag.info)


@testing.requires_testing_data
def test_plot_topomap_neuromag122():
    """Test topomap plotting."""
    res = 8
    fast_test = dict(res=res, contours=0, sensors=False)
    evoked = read_evokeds(evoked_fname, 'Left Auditory',
                          baseline=(None, 0))
    evoked.pick_types(meg='grad')
    evoked.pick_channels(evoked.ch_names[:122])
    ch_names = ['MEG %03d' % k for k in range(1, 123)]
    for c in evoked.info['chs']:
        c['coil_type'] = FIFF.FIFFV_COIL_NM_122
    evoked.rename_channels({c_old: c_new for (c_old, c_new) in
                            zip(evoked.ch_names, ch_names)})
    layout = find_layout(evoked.info)
    assert layout.kind.startswith('Neuromag_122')
    evoked.plot_topomap(times=[0.1], **fast_test)

    proj = Projection(active=False,
                      desc="test", kind=1,
                      data=dict(nrow=1, ncol=122,
                                row_names=None,
                                col_names=evoked.ch_names, data=np.ones(122)),
                      explained_var=0.5)

    plot_projs_topomap([proj], info=evoked.info, **fast_test)
    plot_projs_topomap([proj], layout=layout, **fast_test)
    pytest.raises(RuntimeError, plot_projs_topomap, [proj], **fast_test)

run_tests_if_main()