File: topo.py

package info (click to toggle)
python-mne 0.17%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 95,104 kB
  • sloc: python: 110,639; makefile: 222; sh: 15
file content (874 lines) | stat: -rw-r--r-- 35,647 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
"""Functions to plot M/EEG data on topo (one axes per channel)."""
from __future__ import print_function

# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
#          Denis Engemann <denis.engemann@gmail.com>
#          Martin Luessi <mluessi@nmr.mgh.harvard.edu>
#          Eric Larson <larson.eric.d@gmail.com>
#
# License: Simplified BSD

from copy import deepcopy
from functools import partial
from itertools import cycle

import numpy as np

from ..io.constants import Bunch
from ..io.pick import channel_type, pick_types
from ..utils import _clean_names, warn
from ..channels.layout import _merge_grad_data, _pair_grad_sensors, find_layout
from ..defaults import _handle_default
from .utils import (_check_delayed_ssp, _get_color_list, _draw_proj_checkbox,
                    add_background_image, plt_show, _setup_vmin_vmax,
                    DraggableColorbar, _set_ax_facecolor, _setup_ax_spines,
                    _check_cov, _plot_masked_image)


def iter_topography(info, layout=None, on_pick=None, fig=None,
                    fig_facecolor='k', axis_facecolor='k',
                    axis_spinecolor='k', layout_scale=None):
    """Create iterator over channel positions.

    This function returns a generator that unpacks into
    a series of matplotlib axis objects and data / channel
    indices, both corresponding to the sensor positions
    of the related layout passed or inferred from the channel info.
    `iter_topography`, hence, allows to conveniently realize custom
    topography plots.

    Parameters
    ----------
    info : instance of Info
        The measurement info.
    layout : instance of mne.layout.Layout | None
        The layout to use. If None, layout will be guessed
    on_pick : callable | None
        The callback function to be invoked on clicking one
        of the axes. Is supposed to instantiate the following
        API: `function(axis, channel_index)`
    fig : matplotlib.figure.Figure | None
        The figure object to be considered. If None, a new
        figure will be created.
    fig_facecolor : str | obj
        The figure face color. Defaults to black.
    axis_facecolor : str | obj
        The axis face color. Defaults to black.
    axis_spinecolor : str | obj
        The axis spine color. Defaults to black. In other words,
        the color of the axis' edge lines.
    layout_scale: float | None
        Scaling factor for adjusting the relative size of the layout
        on the canvas. If None, nothing will be scaled.

    Returns
    -------
    A generator that can be unpacked into:

        ax : matplotlib.axis.Axis
            The current axis of the topo plot.
        ch_dx : int
            The related channel index.

    """
    return _iter_topography(info, layout, on_pick, fig, fig_facecolor,
                            axis_facecolor, axis_spinecolor, layout_scale)


def _iter_topography(info, layout, on_pick, fig, fig_facecolor='k',
                     axis_facecolor='k', axis_spinecolor='k',
                     layout_scale=None, unified=False, img=False, axes=None):
    """Iterate over topography.

    Has the same parameters as iter_topography, plus:

    unified : bool
        If False (default), multiple matplotlib axes will be used.
        If True, a single axis will be constructed. The former is
        useful for custom plotting, the latter for speed.
    """
    from matplotlib import pyplot as plt, collections

    if fig is None:
        fig = plt.figure()

    def format_coord_unified(x, y, pos=None, ch_names=None):
        """Update status bar with channel name under cursor."""
        # find candidate channels (ones that are down and left from cursor)
        pdist = np.array([x, y]) - pos[:, :2]
        pind = np.where((pdist >= 0).all(axis=1))[0]
        if len(pind) > 0:
            # find the closest channel
            closest = pind[np.sum(pdist[pind, :]**2, axis=1).argmin()]
            # check whether we are inside its box
            in_box = (pdist[closest, :] < pos[closest, 2:]).all()
        else:
            in_box = False
        return (('%s (click to magnify)' % ch_names[closest]) if
                in_box else 'No channel here')

    def format_coord_multiaxis(x, y, ch_name=None):
        """Update status bar with channel name under cursor."""
        return '%s (click to magnify)' % ch_name

    fig.set_facecolor(fig_facecolor)
    if layout is None:
        layout = find_layout(info)

    if on_pick is not None:
        callback = partial(_plot_topo_onpick, show_func=on_pick)
        fig.canvas.mpl_connect('button_press_event', callback)

    pos = layout.pos.copy()
    if layout_scale:
        pos[:, :2] *= layout_scale

    ch_names = _clean_names(info['ch_names'])
    iter_ch = [(x, y) for x, y in enumerate(layout.names) if y in ch_names]
    if unified:
        if axes is None:
            under_ax = plt.axes([0, 0, 1, 1])
            under_ax.axis('off')
        else:
            under_ax = axes
        under_ax.format_coord = partial(format_coord_unified, pos=pos,
                                        ch_names=layout.names)
        under_ax.set(xlim=[0, 1], ylim=[0, 1])

        axs = list()
    for idx, name in iter_ch:
        ch_idx = ch_names.index(name)
        if not unified:  # old, slow way
            ax = plt.axes(pos[idx])
            ax.patch.set_facecolor(axis_facecolor)
            plt.setp(list(ax.spines.values()), color=axis_spinecolor)
            ax.set(xticklabels=[], yticklabels=[])
            plt.setp(ax.get_xticklines(), visible=False)
            plt.setp(ax.get_yticklines(), visible=False)
            ax._mne_ch_name = name
            ax._mne_ch_idx = ch_idx
            ax._mne_ax_face_color = axis_facecolor
            ax.format_coord = partial(format_coord_multiaxis, ch_name=name)
            yield ax, ch_idx
        else:
            ax = Bunch(ax=under_ax, pos=pos[idx], data_lines=list(),
                       _mne_ch_name=name, _mne_ch_idx=ch_idx,
                       _mne_ax_face_color=axis_facecolor)
            axs.append(ax)
    if unified:
        under_ax._mne_axs = axs
        # Create a PolyCollection for the axis backgrounds
        verts = np.transpose([pos[:, :2],
                              pos[:, :2] + pos[:, 2:] * [1, 0],
                              pos[:, :2] + pos[:, 2:],
                              pos[:, :2] + pos[:, 2:] * [0, 1],
                              ], [1, 0, 2])
        if not img:
            under_ax.add_collection(collections.PolyCollection(
                verts, facecolor=axis_facecolor, edgecolor=axis_spinecolor,
                linewidth=1.))  # Not needed for image plots.
        for ax in axs:
            yield ax, ax._mne_ch_idx


def _plot_topo(info, times, show_func, click_func=None, layout=None,
               vmin=None, vmax=None, ylim=None, colorbar=None, border='none',
               axis_facecolor='k', fig_facecolor='k', cmap='RdBu_r',
               layout_scale=None, title=None, x_label=None, y_label=None,
               font_color='w', unified=False, img=False, axes=None):
    """Plot on sensor layout."""
    import matplotlib.pyplot as plt

    if layout.kind == 'custom':
        layout = deepcopy(layout)
        layout.pos[:, :2] -= layout.pos[:, :2].min(0)
        layout.pos[:, :2] /= layout.pos[:, :2].max(0)

    # prepare callbacks
    tmin, tmax = times[[0, -1]]
    click_func = show_func if click_func is None else click_func
    on_pick = partial(click_func, tmin=tmin, tmax=tmax, vmin=vmin,
                      vmax=vmax, ylim=ylim, x_label=x_label,
                      y_label=y_label, colorbar=colorbar)

    if axes is None:
        fig = plt.figure()
        axes = plt.axes([0.015, 0.025, 0.97, 0.95])
        _set_ax_facecolor(axes, fig_facecolor)
    else:
        fig = axes.figure
    if colorbar:
        sm = plt.cm.ScalarMappable(cmap=cmap, norm=plt.Normalize(vmin, vmax))
        sm.set_array(np.linspace(vmin, vmax))
        cb = fig.colorbar(sm, ax=axes, pad=0.025, fraction=0.075, shrink=0.5,
                          anchor=(-1, 0.5))
        cb_yticks = plt.getp(cb.ax.axes, 'yticklabels')
        plt.setp(cb_yticks, color=font_color)
    axes.axis('off')

    my_topo_plot = _iter_topography(info, layout=layout, on_pick=on_pick,
                                    fig=fig, layout_scale=layout_scale,
                                    axis_spinecolor=border,
                                    axis_facecolor=axis_facecolor,
                                    fig_facecolor=fig_facecolor,
                                    unified=unified, img=img, axes=axes)

    for ax, ch_idx in my_topo_plot:
        if layout.kind == 'Vectorview-all' and ylim is not None:
            this_type = {'mag': 0, 'grad': 1}[channel_type(info, ch_idx)]
            ylim_ = [v[this_type] if _check_vlim(v) else v for v in ylim]
        else:
            ylim_ = ylim

        show_func(ax, ch_idx, tmin=tmin, tmax=tmax, vmin=vmin,
                  vmax=vmax, ylim=ylim_)

    if title is not None:
        plt.figtext(0.03, 0.95, title, color=font_color, fontsize=15, va='top')

    return fig


def _plot_topo_onpick(event, show_func):
    """Onpick callback that shows a single channel in a new figure."""
    # make sure that the swipe gesture in OS-X doesn't open many figures
    orig_ax = event.inaxes
    import matplotlib.pyplot as plt
    try:
        if hasattr(orig_ax, '_mne_axs'):  # in unified, single-axes mode
            x, y = event.xdata, event.ydata
            for ax in orig_ax._mne_axs:
                if x >= ax.pos[0] and y >= ax.pos[1] and \
                        x <= ax.pos[0] + ax.pos[2] and \
                        y <= ax.pos[1] + ax.pos[3]:
                    orig_ax = ax
                    break
            else:
                # no axis found
                return
        elif not hasattr(orig_ax, '_mne_ch_idx'):
            # neither old nor new mode
            return
        ch_idx = orig_ax._mne_ch_idx
        face_color = orig_ax._mne_ax_face_color
        fig, ax = plt.subplots(1)

        plt.title(orig_ax._mne_ch_name)
        _set_ax_facecolor(ax, face_color)

        # allow custom function to override parameters
        show_func(ax, ch_idx)

    except Exception as err:
        # matplotlib silently ignores exceptions in event handlers,
        # so we print
        # it here to know what went wrong
        print(err)
        raise


def _compute_scalings(bn, xlim, ylim):
    """Compute scale factors for a unified plot."""
    if isinstance(ylim[0], (tuple, list, np.ndarray)):
        ylim = (ylim[0][0], ylim[1][0])
    pos = bn.pos
    bn.x_s = pos[2] / (xlim[1] - xlim[0])
    bn.x_t = pos[0] - bn.x_s * xlim[0]
    bn.y_s = pos[3] / (ylim[1] - ylim[0])
    bn.y_t = pos[1] - bn.y_s * ylim[0]


def _check_vlim(vlim):
    """Check the vlim."""
    return not np.isscalar(vlim) and vlim is not None


def _imshow_tfr(ax, ch_idx, tmin, tmax, vmin, vmax, onselect, ylim=None,
                tfr=None, freq=None, x_label=None, y_label=None,
                colorbar=False, cmap=('RdBu_r', True), yscale='auto',
                mask=None, mask_style="both", mask_cmap="Greys",
                mask_alpha=0.1, is_jointplot=False):
    """Show time-frequency map as two-dimensional image."""
    from matplotlib import pyplot as plt
    from matplotlib.widgets import RectangleSelector

    if yscale not in ['auto', 'linear', 'log']:
        raise ValueError("yscale should be either 'auto', 'linear', or 'log'"
                         ", got {}".format(yscale))

    cmap, interactive_cmap = cmap
    times = np.linspace(tmin, tmax, num=tfr[ch_idx].shape[1])

    img, t_end = _plot_masked_image(
        ax, tfr[ch_idx], times, mask, picks=None, yvals=freq, cmap=cmap,
        vmin=vmin, vmax=vmax, mask_style=mask_style, mask_alpha=mask_alpha,
        mask_cmap=mask_cmap, yscale=yscale)

    if x_label is not None:
        ax.set_xlabel(x_label)
    if y_label is not None:
        ax.set_ylabel(y_label)
    if colorbar:
        if isinstance(colorbar, DraggableColorbar):
            cbar = colorbar.cbar  # this happens with multiaxes case
        else:
            cbar = plt.colorbar(mappable=img)
        if interactive_cmap:
            ax.CB = DraggableColorbar(cbar, img)
    ax.RS = RectangleSelector(ax, onselect=onselect)  # reference must be kept

    return t_end


def _imshow_tfr_unified(bn, ch_idx, tmin, tmax, vmin, vmax, onselect,
                        ylim=None, tfr=None, freq=None, vline=None,
                        x_label=None, y_label=None, colorbar=False,
                        picker=True, cmap='RdBu_r', title=None, hline=None):
    """Show multiple tfrs on topo using a single axes."""
    _compute_scalings(bn, (tmin, tmax), (freq[0], freq[-1]))
    ax = bn.ax
    data_lines = bn.data_lines
    extent = (bn.x_t + bn.x_s * tmin, bn.x_t + bn.x_s * tmax,
              bn.y_t + bn.y_s * freq[0], bn.y_t + bn.y_s * freq[-1])
    data_lines.append(ax.imshow(tfr[ch_idx], clip_on=True, clip_box=bn.pos,
                                extent=extent, aspect="auto", origin="lower",
                                vmin=vmin, vmax=vmax, cmap=cmap))


def _plot_timeseries(ax, ch_idx, tmin, tmax, vmin, vmax, ylim, data, color,
                     times, vline=None, x_label=None, y_label=None,
                     colorbar=False, hline=None, hvline_color='w',
                     labels=None):
    """Show time series on topo split across multiple axes."""
    import matplotlib.pyplot as plt
    from matplotlib.colors import colorConverter
    picker_flag = False
    for data_, color_ in zip(data, color):
        if not picker_flag:
            # use large tol for picker so we can click anywhere in the axes
            ax.plot(times, data_[ch_idx], color=color_, picker=1e9)
            picker_flag = True
        else:
            ax.plot(times, data_[ch_idx], color=color_)

    if x_label is not None:
        ax.set(xlabel=x_label)

    if y_label is not None:
        if isinstance(y_label, list):
            ax.set_ylabel(y_label[ch_idx])
        else:
            ax.set_ylabel(y_label)

    def _format_coord(x, y, labels, ax):
        """Create status string based on cursor coordinates."""
        idx = np.abs(times - x).argmin()
        ylabel = ax.get_ylabel()
        unit = (ylabel[ylabel.find('(') + 1:ylabel.find(')')]
                if '(' in ylabel and ')' in ylabel else '')
        labels = [''] * len(data) if labels is None else labels
        # try to estimate whether to truncate condition labels
        slen = 10 + sum([12 + len(unit) + len(label) for label in labels])
        bar_width = (ax.figure.get_size_inches() * ax.figure.dpi)[0] / 5.5
        trunc_labels = bar_width < slen
        s = '%6.3f s: ' % times[idx]
        for data_, label in zip(data, labels):
            s += '%7.2f %s' % (data_[ch_idx, idx], unit)
            if trunc_labels:
                label = (label if len(label) <= 10 else
                         '%s..%s' % (label[:6], label[-2:]))
            s += ' [%s] ' % label if label else ' '
        return s

    ax.format_coord = lambda x, y: _format_coord(x, y, labels=labels, ax=ax)

    def _cursor_vline(event):
        """Draw cursor (vertical line)."""
        ax = event.inaxes
        if not ax:
            return
        if ax._cursorline is not None:
            ax._cursorline.remove()
        ax._cursorline = ax.axvline(event.xdata, color=ax._cursorcolor)
        ax.figure.canvas.draw()

    def _rm_cursor(event):
        ax = event.inaxes
        if ax._cursorline is not None:
            ax._cursorline.remove()
            ax._cursorline = None
        ax.figure.canvas.draw()

    ax._cursorline = None
    # choose cursor color based on perceived brightness of background
    try:
        facecol = colorConverter.to_rgb(ax.get_facecolor())
    except AttributeError:  # older MPL
        facecol = colorConverter.to_rgb(ax.get_axis_bgcolor())
    face_brightness = np.dot(facecol, np.array([299, 587, 114]))
    ax._cursorcolor = 'white' if face_brightness < 150 else 'black'

    plt.connect('motion_notify_event', _cursor_vline)
    plt.connect('axes_leave_event', _rm_cursor)

    _setup_ax_spines(ax, vline, tmin, tmax)
    ax.figure.set_facecolor('k' if hvline_color is 'w' else 'w')
    ax.spines['bottom'].set_color(hvline_color)
    ax.spines['left'].set_color(hvline_color)
    ax.tick_params(axis='x', colors=hvline_color, which='both')
    ax.tick_params(axis='y', colors=hvline_color, which='both')
    ax.title.set_color(hvline_color)
    ax.xaxis.label.set_color(hvline_color)
    ax.yaxis.label.set_color(hvline_color)

    if vline:
        plt.axvline(vline, color=hvline_color, linewidth=1.0,
                    linestyle='--')
    if hline:
        plt.axhline(hline, color=hvline_color, linewidth=1.0, zorder=10)

    if colorbar:
        plt.colorbar()


def _plot_timeseries_unified(bn, ch_idx, tmin, tmax, vmin, vmax, ylim, data,
                             color, times, vline=None, x_label=None,
                             y_label=None, colorbar=False, hline=None,
                             hvline_color='w'):
    """Show multiple time series on topo using a single axes."""
    import matplotlib.pyplot as plt
    if not (ylim and not any(v is None for v in ylim)):
        ylim = np.array([np.min(data), np.max(data)])
    # Translation and scale parameters to take data->under_ax normalized coords
    _compute_scalings(bn, (tmin, tmax), ylim)
    pos = bn.pos
    data_lines = bn.data_lines
    ax = bn.ax
    # XXX These calls could probably be made faster by using collections
    for data_, color_ in zip(data, color):
        data_lines.append(ax.plot(
            bn.x_t + bn.x_s * times, bn.y_t + bn.y_s * data_[ch_idx],
            linewidth=0.5, color=color_, clip_on=True, clip_box=pos)[0])
    if vline:
        vline = np.array(vline) * bn.x_s + bn.x_t
        ax.vlines(vline, pos[1], pos[1] + pos[3], color=hvline_color,
                  linewidth=0.5, linestyle='--')
    if hline:
        hline = np.array(hline) * bn.y_s + bn.y_t
        ax.hlines(hline, pos[0], pos[0] + pos[2], color=hvline_color,
                  linewidth=0.5)
    if x_label is not None:
        ax.text(pos[0] + pos[2] / 2., pos[1], x_label,
                horizontalalignment='center', verticalalignment='top')
    if y_label is not None:
        y_label = y_label[ch_idx] if isinstance(y_label, list) else y_label
        ax.text(pos[0], pos[1] + pos[3] / 2., y_label,
                horizontalignment='right', verticalalignment='middle',
                rotation=90)
    if colorbar:
        plt.colorbar()


def _erfimage_imshow(ax, ch_idx, tmin, tmax, vmin, vmax, ylim=None, data=None,
                     epochs=None, sigma=None, order=None, scalings=None,
                     vline=None, x_label=None, y_label=None, colorbar=False,
                     cmap='RdBu_r'):
    """Plot erfimage on sensor topography."""
    from scipy import ndimage
    import matplotlib.pyplot as plt
    this_data = data[:, ch_idx, :].copy() * scalings[ch_idx]

    if callable(order):
        order = order(epochs.times, this_data)

    if order is not None:
        this_data = this_data[order]

    if sigma > 0.:
        this_data = ndimage.gaussian_filter1d(this_data, sigma=sigma, axis=0)

    img = ax.imshow(this_data, extent=[tmin, tmax, 0, len(data)],
                    aspect='auto', origin='lower', vmin=vmin, vmax=vmax,
                    picker=True, cmap=cmap, interpolation='nearest')

    ax = plt.gca()
    if x_label is not None:
        ax.set_xlabel(x_label)
    if y_label is not None:
        ax.set_ylabel(y_label)
    if colorbar:
        plt.colorbar(mappable=img)


def _erfimage_imshow_unified(bn, ch_idx, tmin, tmax, vmin, vmax, ylim=None,
                             data=None, epochs=None, sigma=None, order=None,
                             scalings=None, vline=None, x_label=None,
                             y_label=None, colorbar=False, cmap='RdBu_r'):
    """Plot erfimage topography using a single axis."""
    from scipy import ndimage
    _compute_scalings(bn, (tmin, tmax), (0, len(epochs.events)))
    ax = bn.ax
    data_lines = bn.data_lines
    extent = (bn.x_t + bn.x_s * tmin, bn.x_t + bn.x_s * tmax, bn.y_t,
              bn.y_t + bn.y_s * len(epochs.events))
    this_data = data[:, ch_idx, :].copy() * scalings[ch_idx]

    if callable(order):
        order = order(epochs.times, this_data)

    if order is not None:
        this_data = this_data[order]

    if sigma > 0.:
        this_data = ndimage.gaussian_filter1d(this_data, sigma=sigma, axis=0)

    data_lines.append(ax.imshow(this_data, extent=extent, aspect='auto',
                                origin='lower', vmin=vmin, vmax=vmax,
                                picker=True, cmap=cmap,
                                interpolation='nearest'))


def _plot_evoked_topo(evoked, layout=None, layout_scale=0.945, color=None,
                      border='none', ylim=None, scalings=None, title=None,
                      proj=False, vline=(0.,), hline=(0.,), fig_facecolor='k',
                      fig_background=None, axis_facecolor='k', font_color='w',
                      merge_grads=False, legend=True, axes=None, show=True,
                      noise_cov=None):
    """Plot 2D topography of evoked responses.

    Clicking on the plot of an individual sensor opens a new figure showing
    the evoked response for the selected sensor.

    Parameters
    ----------
    evoked : list of Evoked | Evoked
        The evoked response to plot.
    layout : instance of Layout | None
        Layout instance specifying sensor positions (does not need to
        be specified for Neuromag data). If possible, the correct layout is
        inferred from the data.
    layout_scale: float
        Scaling factor for adjusting the relative size of the layout
        on the canvas
    color : list of color objects | color object | None
        Everything matplotlib accepts to specify colors. If not list-like,
        the color specified will be repeated. If None, colors are
        automatically drawn.
    border : str
        matplotlib borders style to be used for each sensor plot.
    ylim : dict | None
        ylim for plots (after scaling has been applied). The value
        determines the upper and lower subplot limits. e.g.
        ylim = dict(eeg=[-20, 20]). Valid keys are eeg, mag, grad. If None,
        the ylim parameter for each channel is determined by the maximum
        absolute peak.
    scalings : dict | None
        The scalings of the channel types to be applied for plotting. If None,`
        defaults to `dict(eeg=1e6, grad=1e13, mag=1e15)`.
    title : str
        Title of the figure.
    proj : bool | 'interactive'
        If true SSP projections are applied before display. If 'interactive',
        a check box for reversible selection of SSP projection vectors will
        be shown.
    vline : list of floats | None
        The values at which to show a vertical line.
    hline : list of floats | None
        The values at which to show a horizontal line.
    fig_facecolor : str | obj
        The figure face color. Defaults to black.
    fig_background : None | array
        A background image for the figure. This must be a valid input to
        `matplotlib.pyplot.imshow`. Defaults to None.
    axis_facecolor : str | obj
        The face color to be used for each sensor plot. Defaults to black.
    font_color : str | obj
        The color of text in the colorbar and title. Defaults to white.
    merge_grads : bool
        Whether to use RMS value of gradiometer pairs. Only works for Neuromag
        data. Defaults to False.
    legend : bool | int | string | tuple
        If True, create a legend based on evoked.comment. If False, disable the
        legend. Otherwise, the legend is created and the parameter value is
        passed as the location parameter to the matplotlib legend call. It can
        be an integer (e.g. 0 corresponds to upper right corner of the plot),
        a string (e.g. 'upper right'), or a tuple (x, y coordinates of the
        lower left corner of the legend in the axes coordinate system).
        See matplotlib documentation for more details.
    axes : instance of matplotlib Axes | None
        Axes to plot into. If None, axes will be created.
    show : bool
        Show figure if True.
    noise_cov : instance of Covariance | str | None
        Noise covariance used to whiten the data while plotting.
        Whitened data channels names are shown in italic.
        Can be a string to load a covariance from disk.

        .. versionadded:: 0.16.0

    Returns
    -------
    fig : Instance of matplotlib.figure.Figure
        Images of evoked responses at sensor locations
    """
    import matplotlib.pyplot as plt
    from ..cov import whiten_evoked

    if not type(evoked) in (tuple, list):
        evoked = [evoked]

    if type(color) in (tuple, list):
        if len(color) != len(evoked):
            raise ValueError('Lists of evoked objects and colors'
                             ' must have the same length')
    elif color is None:
        colors = ['w'] + _get_color_list
        stop = (slice(len(evoked)) if len(evoked) < len(colors)
                else slice(len(colors)))
        color = cycle(colors[stop])
        if len(evoked) > len(colors):
            warn('More evoked objects than colors available. You should pass '
                 'a list of unique colors.')
    else:
        color = cycle([color])

    times = evoked[0].times
    if not all((e.times == times).all() for e in evoked):
        raise ValueError('All evoked.times must be the same')

    noise_cov = _check_cov(noise_cov, evoked[0].info)
    if noise_cov is not None:
        evoked = [whiten_evoked(e, noise_cov) for e in evoked]
    else:
        evoked = [e.copy() for e in evoked]
    info = evoked[0].info
    ch_names = evoked[0].ch_names
    scalings = _handle_default('scalings', scalings)
    if not all(e.ch_names == ch_names for e in evoked):
        raise ValueError('All evoked.picks must be the same')
    ch_names = _clean_names(ch_names)
    if merge_grads:
        picks = _pair_grad_sensors(info, topomap_coords=False)
        chs = list()
        for pick in picks[::2]:
            ch = info['chs'][pick]
            ch['ch_name'] = ch['ch_name'][:-1] + 'X'
            chs.append(ch)
        info['chs'] = chs
        info['bads'] = list()  # bads dropped on pair_grad_sensors
        info._update_redundant()
        info._check_consistency()
        new_picks = list()
        for e in evoked:
            data = _merge_grad_data(e.data[picks])
            if noise_cov is None:
                data *= scalings['grad']
            e.data = data
            new_picks.append(range(len(data)))
        picks = new_picks
        types_used = ['grad']
        unit = _handle_default('units')['grad'] if noise_cov is None else 'NA'
        y_label = 'RMS amplitude (%s)' % unit

    if layout is None:
        layout = find_layout(info)

    if not merge_grads:
        # XXX. at the moment we are committed to 1- / 2-sensor-types layouts
        chs_in_layout = set(layout.names) & set(ch_names)
        types_used = set(channel_type(info, ch_names.index(ch))
                         for ch in chs_in_layout)
        # remove possible reference meg channels
        types_used = set.difference(types_used, set('ref_meg'))
        # one check for all vendors
        meg_types = set(('mag', 'grad'))
        is_meg = len(set.intersection(types_used, meg_types)) > 0
        if is_meg:
            types_used = list(types_used)[::-1]  # -> restore kwarg order
            picks = [pick_types(info, meg=kk, ref_meg=False, exclude=[])
                     for kk in types_used]
        else:
            types_used_kwargs = dict((t, True) for t in types_used)
            picks = [pick_types(info, meg=False, exclude=[],
                                **types_used_kwargs)]
        assert isinstance(picks, list) and len(types_used) == len(picks)

        if noise_cov is None:
            for e in evoked:
                for pick, ch_type in zip(picks, types_used):
                    e.data[pick] *= scalings[ch_type]

        if proj is True and all(e.proj is not True for e in evoked):
            evoked = [e.apply_proj() for e in evoked]
        elif proj == 'interactive':  # let it fail early.
            for e in evoked:
                _check_delayed_ssp(e)
        # Y labels for picked plots must be reconstructed
        y_label = list()
        for ch_idx in range(len(chs_in_layout)):
            if noise_cov is None:
                unit = _handle_default('units')[channel_type(info, ch_idx)]
            else:
                unit = 'NA'
            y_label.append('Amplitude (%s)' % unit)

    if ylim is None:
        def set_ylim(x):
            return np.abs(x).max()
        ylim_ = [set_ylim([e.data[t] for e in evoked]) for t in picks]
        ymax = np.array(ylim_)
        ylim_ = (-ymax, ymax)
    elif isinstance(ylim, dict):
        ylim_ = _handle_default('ylim', ylim)
        ylim_ = [ylim_[kk] for kk in types_used]
        # extra unpack to avoid bug #1700
        if len(ylim_) == 1:
            ylim_ = ylim_[0]
        else:
            ylim_ = zip(*[np.array(yl) for yl in ylim_])
    else:
        raise TypeError('ylim must be None or a dict. Got %s.' % type(ylim))

    data = [e.data for e in evoked]
    comments = [e.comment for e in evoked]
    show_func = partial(_plot_timeseries_unified, data=data, color=color,
                        times=times, vline=vline, hline=hline,
                        hvline_color=font_color)
    click_func = partial(_plot_timeseries, data=data, color=color, times=times,
                         vline=vline, hline=hline, hvline_color=font_color,
                         labels=comments)

    fig = _plot_topo(info=info, times=times, show_func=show_func,
                     click_func=click_func, layout=layout, colorbar=False,
                     ylim=ylim_, cmap=None, layout_scale=layout_scale,
                     border=border, fig_facecolor=fig_facecolor,
                     font_color=font_color, axis_facecolor=axis_facecolor,
                     title=title, x_label='Time (s)', y_label=y_label,
                     unified=True, axes=axes)

    add_background_image(fig, fig_background)

    if legend is not False:
        legend_loc = 0 if legend is True else legend
        labels = [e.comment if e.comment else 'Unknown' for e in evoked]
        legend = plt.legend(labels, loc=legend_loc,
                            prop={'size': 10})
        legend.get_frame().set_facecolor(axis_facecolor)
        txts = legend.get_texts()
        for txt, col in zip(txts, color):
            txt.set_color(col)

    if proj == 'interactive':
        for e in evoked:
            _check_delayed_ssp(e)
        params = dict(evokeds=evoked, times=times,
                      plot_update_proj_callback=_plot_update_evoked_topo_proj,
                      projs=evoked[0].info['projs'], fig=fig)
        _draw_proj_checkbox(None, params)

    plt_show(show)
    return fig


def _plot_update_evoked_topo_proj(params, bools):
    """Update topo sensor plots."""
    evokeds = [e.copy() for e in params['evokeds']]
    fig = params['fig']
    projs = [proj for proj, b in zip(params['projs'], bools) if b]
    params['proj_bools'] = bools
    for e in evokeds:
        e.add_proj(projs, remove_existing=True)
        e.apply_proj()

    # make sure to only modify the time courses, not the ticks
    for ax in fig.axes[0]._mne_axs:
        for line, evoked in zip(ax.data_lines, evokeds):
            line.set_ydata(ax.y_t + ax.y_s * evoked.data[ax._mne_ch_idx])

    fig.canvas.draw()


def plot_topo_image_epochs(epochs, layout=None, sigma=0., vmin=None,
                           vmax=None, colorbar=True, order=None, cmap='RdBu_r',
                           layout_scale=.95, title=None, scalings=None,
                           border='none', fig_facecolor='k',
                           fig_background=None, font_color='w', show=True):
    """Plot Event Related Potential / Fields image on topographies.

    Parameters
    ----------
    epochs : instance of Epochs
        The epochs.
    layout: instance of Layout
        System specific sensor positions.
    sigma : float
        The standard deviation of the Gaussian smoothing to apply along
        the epoch axis to apply in the image. If 0., no smoothing is applied.
    vmin : float
        The min value in the image. The unit is uV for EEG channels,
        fT for magnetometers and fT/cm for gradiometers.
    vmax : float
        The max value in the image. The unit is uV for EEG channels,
        fT for magnetometers and fT/cm for gradiometers.
    colorbar : bool
        Display or not a colorbar.
    order : None | array of int | callable
        If not None, order is used to reorder the epochs on the y-axis
        of the image. If it's an array of int it should be of length
        the number of good epochs. If it's a callable the arguments
        passed are the times vector and the data as 2d array
        (data.shape[1] == len(times)).
    cmap : instance of matplotlib.pyplot.colormap
        Colors to be mapped to the values.
    layout_scale: float
        scaling factor for adjusting the relative size of the layout
        on the canvas.
    title : str
        Title of the figure.
    scalings : dict | None
        The scalings of the channel types to be applied for plotting. If
        None, defaults to `dict(eeg=1e6, grad=1e13, mag=1e15)`.
    border : str
        matplotlib borders style to be used for each sensor plot.
    fig_facecolor : str | obj
        The figure face color. Defaults to black.
    fig_background : None | array
        A background image for the figure. This must be a valid input to
        `matplotlib.pyplot.imshow`. Defaults to None.
    font_color : str | obj
        The color of tick labels in the colorbar. Defaults to white.
    show : bool
        Show figure if True.

    Returns
    -------
    fig : instance of matplotlib figure
        Figure distributing one image per channel across sensor topography.
    """
    scalings = _handle_default('scalings', scalings)
    data = epochs.get_data()
    scale_coeffs = list()
    for idx in range(epochs.info['nchan']):
        ch_type = channel_type(epochs.info, idx)
        scale_coeffs.append(scalings.get(ch_type, 1))
    vmin, vmax = _setup_vmin_vmax(data, vmin, vmax)

    if layout is None:
        layout = find_layout(epochs.info)

    show_func = partial(_erfimage_imshow_unified, scalings=scale_coeffs,
                        order=order, data=data, epochs=epochs, sigma=sigma,
                        cmap=cmap)
    erf_imshow = partial(_erfimage_imshow, scalings=scale_coeffs, order=order,
                         data=data, epochs=epochs, sigma=sigma, cmap=cmap)

    fig = _plot_topo(info=epochs.info, times=epochs.times,
                     click_func=erf_imshow, show_func=show_func, layout=layout,
                     colorbar=colorbar, vmin=vmin, vmax=vmax, cmap=cmap,
                     layout_scale=layout_scale, title=title,
                     fig_facecolor=fig_facecolor, font_color=font_color,
                     border=border, x_label='Time (s)', y_label='Epoch',
                     unified=True, img=True)
    add_background_image(fig, fig_background)
    plt_show(show)
    return fig