1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
|
# -*- coding: utf-8 -*-
"""
====================================
Brainstorm auditory tutorial dataset
====================================
Here we compute the evoked from raw for the auditory Brainstorm
tutorial dataset. For comparison, see [1]_ and the associated
`brainstorm site <http://neuroimage.usc.edu/brainstorm/Tutorials/Auditory>`_.
Experiment:
- One subject, 2 acquisition runs 6 minutes each.
- Each run contains 200 regular beeps and 40 easy deviant beeps.
- Random ISI: between 0.7s and 1.7s seconds, uniformly distributed.
- Button pressed when detecting a deviant with the right index finger.
The specifications of this dataset were discussed initially on the
`FieldTrip bug tracker <http://bugzilla.fcdonders.nl/show_bug.cgi?id=2300>`_.
References
----------
.. [1] Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM.
Brainstorm: A User-Friendly Application for MEG/EEG Analysis.
Computational Intelligence and Neuroscience, vol. 2011, Article ID
879716, 13 pages, 2011. doi:10.1155/2011/879716
"""
# Authors: Mainak Jas <mainak.jas@telecom-paristech.fr>
# Eric Larson <larson.eric.d@gmail.com>
# Jaakko Leppakangas <jaeilepp@student.jyu.fi>
#
# License: BSD (3-clause)
import os.path as op
import pandas as pd
import numpy as np
import mne
from mne import combine_evoked
from mne.minimum_norm import apply_inverse
from mne.datasets.brainstorm import bst_auditory
from mne.io import read_raw_ctf
print(__doc__)
###############################################################################
# To reduce memory consumption and running time, some of the steps are
# precomputed. To run everything from scratch change this to False. With
# ``use_precomputed = False`` running time of this script can be several
# minutes even on a fast computer.
use_precomputed = True
###############################################################################
# The data was collected with a CTF 275 system at 2400 Hz and low-pass
# filtered at 600 Hz. Here the data and empty room data files are read to
# construct instances of :class:`mne.io.Raw`.
data_path = bst_auditory.data_path()
subject = 'bst_auditory'
subjects_dir = op.join(data_path, 'subjects')
raw_fname1 = op.join(data_path, 'MEG', 'bst_auditory',
'S01_AEF_20131218_01.ds')
raw_fname2 = op.join(data_path, 'MEG', 'bst_auditory',
'S01_AEF_20131218_02.ds')
erm_fname = op.join(data_path, 'MEG', 'bst_auditory',
'S01_Noise_20131218_01.ds')
###############################################################################
# In the memory saving mode we use ``preload=False`` and use the memory
# efficient IO which loads the data on demand. However, filtering and some
# other functions require the data to be preloaded in the memory.
preload = not use_precomputed
raw = read_raw_ctf(raw_fname1, preload=preload)
n_times_run1 = raw.n_times
mne.io.concatenate_raws([raw, read_raw_ctf(raw_fname2, preload=preload)])
raw_erm = read_raw_ctf(erm_fname, preload=preload)
###############################################################################
# Data channel array consisted of 274 MEG axial gradiometers, 26 MEG reference
# sensors and 2 EEG electrodes (Cz and Pz).
# In addition:
#
# - 1 stim channel for marking presentation times for the stimuli
# - 1 audio channel for the sent signal
# - 1 response channel for recording the button presses
# - 1 ECG bipolar
# - 2 EOG bipolar (vertical and horizontal)
# - 12 head tracking channels
# - 20 unused channels
#
# The head tracking channels and the unused channels are marked as misc
# channels. Here we define the EOG and ECG channels.
raw.set_channel_types({'HEOG': 'eog', 'VEOG': 'eog', 'ECG': 'ecg'})
if not use_precomputed:
# Leave out the two EEG channels for easier computation of forward.
raw.pick_types(meg=True, eeg=False, stim=True, misc=True, eog=True,
ecg=True)
###############################################################################
# For noise reduction, a set of bad segments have been identified and stored
# in csv files. The bad segments are later used to reject epochs that overlap
# with them.
# The file for the second run also contains some saccades. The saccades are
# removed by using SSP. We use pandas to read the data from the csv files. You
# can also view the files with your favorite text editor.
annotations_df = pd.DataFrame()
offset = n_times_run1
for idx in [1, 2]:
csv_fname = op.join(data_path, 'MEG', 'bst_auditory',
'events_bad_0%s.csv' % idx)
df = pd.read_csv(csv_fname, header=None,
names=['onset', 'duration', 'id', 'label'])
print('Events from run {0}:'.format(idx))
print(df)
df['onset'] += offset * (idx - 1)
annotations_df = pd.concat([annotations_df, df], axis=0)
saccades_events = df[df['label'] == 'saccade'].values[:, :3].astype(int)
# Conversion from samples to times:
onsets = annotations_df['onset'].values / raw.info['sfreq']
durations = annotations_df['duration'].values / raw.info['sfreq']
descriptions = annotations_df['label'].values
annotations = mne.Annotations(onsets, durations, descriptions)
raw.set_annotations(annotations)
del onsets, durations, descriptions
###############################################################################
# Here we compute the saccade and EOG projectors for magnetometers and add
# them to the raw data. The projectors are added to both runs.
saccade_epochs = mne.Epochs(raw, saccades_events, 1, 0., 0.5, preload=True,
reject_by_annotation=False)
projs_saccade = mne.compute_proj_epochs(saccade_epochs, n_mag=1, n_eeg=0,
desc_prefix='saccade')
if use_precomputed:
proj_fname = op.join(data_path, 'MEG', 'bst_auditory',
'bst_auditory-eog-proj.fif')
projs_eog = mne.read_proj(proj_fname)[0]
else:
projs_eog, _ = mne.preprocessing.compute_proj_eog(raw.load_data(),
n_mag=1, n_eeg=0)
raw.add_proj(projs_saccade)
raw.add_proj(projs_eog)
del saccade_epochs, saccades_events, projs_eog, projs_saccade # To save memory
###############################################################################
# Visually inspect the effects of projections. Click on 'proj' button at the
# bottom right corner to toggle the projectors on/off. EOG events can be
# plotted by adding the event list as a keyword argument. As the bad segments
# and saccades were added as annotations to the raw data, they are plotted as
# well.
raw.plot(block=True)
###############################################################################
# Typical preprocessing step is the removal of power line artifact (50 Hz or
# 60 Hz). Here we notch filter the data at 60, 120 and 180 to remove the
# original 60 Hz artifact and the harmonics. The power spectra are plotted
# before and after the filtering to show the effect. The drop after 600 Hz
# appears because the data was filtered during the acquisition. In memory
# saving mode we do the filtering at evoked stage, which is not something you
# usually would do.
if not use_precomputed:
meg_picks = mne.pick_types(raw.info, meg=True, eeg=False)
raw.plot_psd(tmax=np.inf, picks=meg_picks)
notches = np.arange(60, 181, 60)
raw.notch_filter(notches, phase='zero-double', fir_design='firwin2')
raw.plot_psd(tmax=np.inf, picks=meg_picks)
###############################################################################
# We also lowpass filter the data at 100 Hz to remove the hf components.
if not use_precomputed:
raw.filter(None, 100., h_trans_bandwidth=0.5, filter_length='10s',
phase='zero-double', fir_design='firwin2')
###############################################################################
# Epoching and averaging.
# First some parameters are defined and events extracted from the stimulus
# channel (UPPT001). The rejection thresholds are defined as peak-to-peak
# values and are in T / m for gradiometers, T for magnetometers and
# V for EOG and EEG channels.
tmin, tmax = -0.1, 0.5
event_id = dict(standard=1, deviant=2)
reject = dict(mag=4e-12, eog=250e-6)
# find events
events = mne.find_events(raw, stim_channel='UPPT001')
###############################################################################
# The event timing is adjusted by comparing the trigger times on detected
# sound onsets on channel UADC001-4408.
sound_data = raw[raw.ch_names.index('UADC001-4408')][0][0]
onsets = np.where(np.abs(sound_data) > 2. * np.std(sound_data))[0]
min_diff = int(0.5 * raw.info['sfreq'])
diffs = np.concatenate([[min_diff + 1], np.diff(onsets)])
onsets = onsets[diffs > min_diff]
assert len(onsets) == len(events)
diffs = 1000. * (events[:, 0] - onsets) / raw.info['sfreq']
print('Trigger delay removed (μ ± σ): %0.1f ± %0.1f ms'
% (np.mean(diffs), np.std(diffs)))
events[:, 0] = onsets
del sound_data, diffs
###############################################################################
# We mark a set of bad channels that seem noisier than others. This can also
# be done interactively with ``raw.plot`` by clicking the channel name
# (or the line). The marked channels are added as bad when the browser window
# is closed.
raw.info['bads'] = ['MLO52-4408', 'MRT51-4408', 'MLO42-4408', 'MLO43-4408']
###############################################################################
# The epochs (trials) are created for MEG channels. First we find the picks
# for MEG and EOG channels. Then the epochs are constructed using these picks.
# The epochs overlapping with annotated bad segments are also rejected by
# default. To turn off rejection by bad segments (as was done earlier with
# saccades) you can use keyword ``reject_by_annotation=False``.
picks = mne.pick_types(raw.info, meg=True, eeg=False, stim=False, eog=True,
exclude='bads')
epochs = mne.Epochs(raw, events, event_id, tmin, tmax, picks=picks,
baseline=(None, 0), reject=reject, preload=False,
proj=True)
###############################################################################
# We only use first 40 good epochs from each run. Since we first drop the bad
# epochs, the indices of the epochs are no longer same as in the original
# epochs collection. Investigation of the event timings reveals that first
# epoch from the second run corresponds to index 182.
epochs.drop_bad()
epochs_standard = mne.concatenate_epochs([epochs['standard'][range(40)],
epochs['standard'][182:222]])
epochs_standard.load_data() # Resampling to save memory.
epochs_standard.resample(600, npad='auto')
epochs_deviant = epochs['deviant'].load_data()
epochs_deviant.resample(600, npad='auto')
del epochs, picks
###############################################################################
# The averages for each conditions are computed.
evoked_std = epochs_standard.average()
evoked_dev = epochs_deviant.average()
del epochs_standard, epochs_deviant
###############################################################################
# Typical preprocessing step is the removal of power line artifact (50 Hz or
# 60 Hz). Here we lowpass filter the data at 40 Hz, which will remove all
# line artifacts (and high frequency information). Normally this would be done
# to raw data (with :func:`mne.io.Raw.filter`), but to reduce memory
# consumption of this tutorial, we do it at evoked stage. (At the raw stage,
# you could alternatively notch filter with :func:`mne.io.Raw.notch_filter`.)
for evoked in (evoked_std, evoked_dev):
evoked.filter(l_freq=None, h_freq=40., fir_design='firwin')
###############################################################################
# Here we plot the ERF of standard and deviant conditions. In both conditions
# we can see the P50 and N100 responses. The mismatch negativity is visible
# only in the deviant condition around 100-200 ms. P200 is also visible around
# 170 ms in both conditions but much stronger in the standard condition. P300
# is visible in deviant condition only (decision making in preparation of the
# button press). You can view the topographies from a certain time span by
# painting an area with clicking and holding the left mouse button.
evoked_std.plot(window_title='Standard', gfp=True, time_unit='s')
evoked_dev.plot(window_title='Deviant', gfp=True, time_unit='s')
###############################################################################
# Show activations as topography figures.
times = np.arange(0.05, 0.301, 0.025)
evoked_std.plot_topomap(times=times, title='Standard', time_unit='s')
evoked_dev.plot_topomap(times=times, title='Deviant', time_unit='s')
###############################################################################
# We can see the MMN effect more clearly by looking at the difference between
# the two conditions. P50 and N100 are no longer visible, but MMN/P200 and
# P300 are emphasised.
evoked_difference = combine_evoked([evoked_dev, -evoked_std], weights='equal')
evoked_difference.plot(window_title='Difference', gfp=True, time_unit='s')
###############################################################################
# Source estimation.
# We compute the noise covariance matrix from the empty room measurement
# and use it for the other runs.
reject = dict(mag=4e-12)
cov = mne.compute_raw_covariance(raw_erm, reject=reject)
cov.plot(raw_erm.info)
del raw_erm
###############################################################################
# The transformation is read from a file. More information about coregistering
# the data, see :ref:`ch_interactive_analysis` or
# :func:`mne.gui.coregistration`.
trans_fname = op.join(data_path, 'MEG', 'bst_auditory',
'bst_auditory-trans.fif')
trans = mne.read_trans(trans_fname)
###############################################################################
# To save time and memory, the forward solution is read from a file. Set
# ``use_precomputed=False`` in the beginning of this script to build the
# forward solution from scratch. The head surfaces for constructing a BEM
# solution are read from a file. Since the data only contains MEG channels, we
# only need the inner skull surface for making the forward solution. For more
# information: :ref:`CHDBBCEJ`, :func:`mne.setup_source_space`,
# :ref:`create_bem_model`, :func:`mne.bem.make_watershed_bem`.
if use_precomputed:
fwd_fname = op.join(data_path, 'MEG', 'bst_auditory',
'bst_auditory-meg-oct-6-fwd.fif')
fwd = mne.read_forward_solution(fwd_fname)
else:
src = mne.setup_source_space(subject, spacing='ico4',
subjects_dir=subjects_dir, overwrite=True)
model = mne.make_bem_model(subject=subject, ico=4, conductivity=[0.3],
subjects_dir=subjects_dir)
bem = mne.make_bem_solution(model)
fwd = mne.make_forward_solution(evoked_std.info, trans=trans, src=src,
bem=bem)
inv = mne.minimum_norm.make_inverse_operator(evoked_std.info, fwd, cov)
snr = 3.0
lambda2 = 1.0 / snr ** 2
del fwd
###############################################################################
# The sources are computed using dSPM method and plotted on an inflated brain
# surface. For interactive controls over the image, use keyword
# ``time_viewer=True``.
# Standard condition.
stc_standard = mne.minimum_norm.apply_inverse(evoked_std, inv, lambda2, 'dSPM')
brain = stc_standard.plot(subjects_dir=subjects_dir, subject=subject,
surface='inflated', time_viewer=False, hemi='lh',
initial_time=0.1, time_unit='s')
del stc_standard, brain
###############################################################################
# Deviant condition.
stc_deviant = mne.minimum_norm.apply_inverse(evoked_dev, inv, lambda2, 'dSPM')
brain = stc_deviant.plot(subjects_dir=subjects_dir, subject=subject,
surface='inflated', time_viewer=False, hemi='lh',
initial_time=0.1, time_unit='s')
del stc_deviant, brain
###############################################################################
# Difference.
stc_difference = apply_inverse(evoked_difference, inv, lambda2, 'dSPM')
brain = stc_difference.plot(subjects_dir=subjects_dir, subject=subject,
surface='inflated', time_viewer=False, hemi='lh',
initial_time=0.15, time_unit='s')
|