1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
|
"""
.. _tut_forward:
Head model and forward computation
==================================
The aim of this tutorial is to be a getting started for forward
computation.
For more extensive details and presentation of the general
concepts for forward modeling. See :ref:`ch_forward`.
"""
import mne
from mne.datasets import sample
data_path = sample.data_path()
# the raw file containing the channel location + types
raw_fname = data_path + '/MEG/sample/sample_audvis_raw.fif'
# The paths to Freesurfer reconstructions
subjects_dir = data_path + '/subjects'
subject = 'sample'
###############################################################################
# Computing the forward operator
# ------------------------------
#
# To compute a forward operator we need:
#
# - a ``-trans.fif`` file that contains the coregistration info.
# - a source space
# - the BEM surfaces
###############################################################################
# Compute and visualize BEM surfaces
# ----------------------------------
#
# The BEM surfaces are the triangulations of the interfaces between different
# tissues needed for forward computation. These surfaces are for example
# the inner skull surface, the outer skull surface and the outer skill
# surface.
#
# Computing the BEM surfaces requires FreeSurfer and makes use of either of
# the two following command line tools:
#
# - :ref:`gen_mne_watershed_bem`
# - :ref:`gen_mne_flash_bem`
#
# Here we'll assume it's already computed. It takes a few minutes per subject.
#
# For EEG we use 3 layers (inner skull, outer skull, and skin) while for
# MEG 1 layer (inner skull) is enough.
#
# Let's look at these surfaces. The function :func:`mne.viz.plot_bem`
# assumes that you have the the *bem* folder of your subject FreeSurfer
# reconstruction the necessary files.
mne.viz.plot_bem(subject=subject, subjects_dir=subjects_dir,
brain_surfaces='white', orientation='coronal')
###############################################################################
# Visualization the coregistration
# --------------------------------
#
# The coregistration is operation that allows to position the head and the
# sensors in a common coordinate system. In the MNE software the transformation
# to align the head and the sensors in stored in a so-called **trans file**.
# It is a FIF file that ends with -trans.fif. It can be obtained with
# mne_analyze (Unix tools), mne.gui.coregistration (in Python) or mrilab
# if you're using a Neuromag system.
#
# For the Python version see :func:`mne.gui.coregistration`
#
# Here we assume the coregistration is done, so we just visually check the
# alignment with the following code.
# The transformation file obtained by coregistration
trans = data_path + '/MEG/sample/sample_audvis_raw-trans.fif'
info = mne.io.read_info(raw_fname)
# Here we look at the dense head, which isn't used for BEM computations but
# is useful for coregistration.
mne.viz.plot_alignment(info, trans, subject=subject, dig=True,
meg=['helmet', 'sensors'], subjects_dir=subjects_dir,
surfaces='head-dense')
###############################################################################
# Compute Source Space
# --------------------
#
# The source space defines the position of the candidate source locations.
# The following code compute such a cortical source space with
# an OCT-6 resolution.
#
# See :ref:`setting_up_source_space` for details on source space definition
# and spacing parameter.
src = mne.setup_source_space(subject, spacing='oct6',
subjects_dir=subjects_dir, add_dist=False)
print(src)
###############################################################################
# ``src`` contains two parts, one for the left hemisphere (4098 locations) and
# one for the right hemisphere (4098 locations). Sources can be visualized on
# top of the BEM surfaces.
mne.viz.plot_bem(subject=subject, subjects_dir=subjects_dir,
brain_surfaces='white', src=src, orientation='coronal')
###############################################################################
# However, only sources that lie in the plotted MRI slices are shown.
# Let's write a few lines of mayavi to see all sources.
import numpy as np # noqa
from mayavi import mlab # noqa
from surfer import Brain # noqa
brain = Brain('sample', 'lh', 'inflated', subjects_dir=subjects_dir)
surf = brain.geo['lh']
vertidx = np.where(src[0]['inuse'])[0]
mlab.points3d(surf.x[vertidx], surf.y[vertidx],
surf.z[vertidx], color=(1, 1, 0), scale_factor=1.5)
###############################################################################
# Compute forward solution
# ------------------------
#
# We can now compute the forward solution.
# To reduce computation we'll just compute a single layer BEM (just inner
# skull) that can then be used for MEG (not EEG).
#
# We specify if we want a one-layer or a three-layer BEM using the
# conductivity parameter.
#
# The BEM solution requires a BEM model which describes the geometry
# of the head the conductivities of the different tissues.
conductivity = (0.3,) # for single layer
# conductivity = (0.3, 0.006, 0.3) # for three layers
model = mne.make_bem_model(subject='sample', ico=4,
conductivity=conductivity,
subjects_dir=subjects_dir)
bem = mne.make_bem_solution(model)
###############################################################################
# Note that the BEM does not involve any use of the trans file. The BEM
# only depends on the head geometry and conductivities.
# It is therefore independent from the MEG data and the head position.
#
# Let's now compute the forward operator, commonly referred to as the
# gain or leadfield matrix.
#
# See :func:`mne.make_forward_solution` for details on parameters meaning.
fwd = mne.make_forward_solution(raw_fname, trans=trans, src=src, bem=bem,
meg=True, eeg=False, mindist=5.0, n_jobs=2)
print(fwd)
###############################################################################
# We can explore the content of fwd to access the numpy array that contains
# the gain matrix.
leadfield = fwd['sol']['data']
print("Leadfield size : %d sensors x %d dipoles" % leadfield.shape)
###############################################################################
# To extract the numpy array containing the forward operator corresponding to
# the source space `fwd['src']` with cortical orientation constraint
# we can use the following:
fwd_fixed = mne.convert_forward_solution(fwd, surf_ori=True, force_fixed=True,
use_cps=True)
leadfield = fwd_fixed['sol']['data']
print("Leadfield size : %d sensors x %d dipoles" % leadfield.shape)
###############################################################################
# This is equivalent to the following code that explicitly applies the
# forward operator to a source estimate composed of the identity operator:
n_dipoles = leadfield.shape[1]
vertices = [src_hemi['vertno'] for src_hemi in fwd_fixed['src']]
stc = mne.SourceEstimate(1e-9 * np.eye(n_dipoles), vertices, tmin=0., tstep=1)
leadfield = mne.apply_forward(fwd_fixed, stc, info).data / 1e-9
###############################################################################
# To save to disk a forward solution you can use
# :func:`mne.write_forward_solution` and to read it back from disk
# :func:`mne.read_forward_solution`. Don't forget that FIF files containing
# forward solution should end with *-fwd.fif*.
#
# To get a fixed-orientation forward solution, use
# :func:`mne.convert_forward_solution` to convert the free-orientation
# solution to (surface-oriented) fixed orientation.
###############################################################################
# Exercise
# --------
#
# By looking at
# :ref:`sphx_glr_auto_examples_forward_plot_forward_sensitivity_maps.py`
# plot the sensitivity maps for EEG and compare it with the MEG, can you
# justify the claims that:
#
# - MEG is not sensitive to radial sources
# - EEG is more sensitive to deep sources
#
# How will the MEG sensitivity maps and histograms change if you use a free
# instead if a fixed/surface oriented orientation?
#
# Try this changing the mode parameter in :func:`mne.sensitivity_map`
# accordingly. Why don't we see any dipoles on the gyri?
|