1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
|
# -*- coding: utf-8 -*-
"""
=====================================================================
Spectro-temporal receptive field (STRF) estimation on continuous data
=====================================================================
This demonstrates how an encoding model can be fit with multiple continuous
inputs. In this case, we simulate the model behind a spectro-temporal receptive
field (or STRF). First, we create a linear filter that maps patterns in
spectro-temporal space onto an output, representing neural activity. We fit
a receptive field model that attempts to recover the original linear filter
that was used to create this data.
References
----------
Estimation of spectro-temporal and spatio-temporal receptive fields using
modeling with continuous inputs is described in:
.. [1] Theunissen, F. E. et al. Estimating spatio-temporal receptive
fields of auditory and visual neurons from their responses to
natural stimuli. Network 12, 289-316 (2001).
.. [2] Willmore, B. & Smyth, D. Methods for first-order kernel
estimation: simple-cell receptive fields from responses to
natural scenes. Network 14, 553-77 (2003).
.. [3] Crosse, M. J., Di Liberto, G. M., Bednar, A. & Lalor, E. C. (2016).
The Multivariate Temporal Response Function (mTRF) Toolbox:
A MATLAB Toolbox for Relating Neural Signals to Continuous Stimuli.
Frontiers in Human Neuroscience 10, 604.
doi:10.3389/fnhum.2016.00604
.. [4] Holdgraf, C. R. et al. Rapid tuning shifts in human auditory cortex
enhance speech intelligibility. Nature Communications, 7, 13654 (2016).
doi:10.1038/ncomms13654
.. [5] Crosse, M. J., Di Liberto, G. M., Bednar, A. & Lalor, E. C. (2016).
The Multivariate Temporal Response Function (mTRF) Toolbox:
A MATLAB Toolbox for Relating Neural Signals to Continuous Stimuli.
Frontiers in Human Neuroscience 10, 604. doi:10.3389/fnhum.2016.00604
"""
# Authors: Chris Holdgraf <choldgraf@gmail.com>
# Eric Larson <larson.eric.d@gmail.com>
#
# License: BSD (3-clause)
# sphinx_gallery_thumbnail_number = 7
import numpy as np
import matplotlib.pyplot as plt
import mne
from mne.decoding import ReceptiveField, TimeDelayingRidge
from scipy.stats import multivariate_normal
from scipy.io import loadmat
from sklearn.preprocessing import scale
rng = np.random.RandomState(1337) # To make this example reproducible
###############################################################################
# Load audio data
# ---------------
#
# We'll read in the audio data from [3]_ in order to simulate a response.
#
# In addition, we'll downsample the data along the time dimension in order to
# speed up computation. Note that depending on the input values, this may
# not be desired. For example if your input stimulus varies more quickly than
# 1/2 the sampling rate to which we are downsampling.
# Read in audio that's been recorded in epochs.
path_audio = mne.datasets.mtrf.data_path()
data = loadmat(path_audio + '/speech_data.mat')
audio = data['spectrogram'].T
sfreq = float(data['Fs'][0, 0])
n_decim = 2
audio = mne.filter.resample(audio, down=n_decim, npad='auto')
sfreq /= n_decim
###############################################################################
# Create a receptive field
# ------------------------
#
# We'll simulate a linear receptive field for a theoretical neural signal. This
# defines how the signal will respond to power in this receptive field space.
n_freqs = 20
tmin, tmax = -0.1, 0.4
# To simulate the data we'll create explicit delays here
delays_samp = np.arange(np.round(tmin * sfreq),
np.round(tmax * sfreq) + 1).astype(int)
delays_sec = delays_samp / sfreq
freqs = np.linspace(50, 5000, n_freqs)
grid = np.array(np.meshgrid(delays_sec, freqs))
# We need data to be shaped as n_epochs, n_features, n_times, so swap axes here
grid = grid.swapaxes(0, -1).swapaxes(0, 1)
# Simulate a temporal receptive field with a Gabor filter
means_high = [.1, 500]
means_low = [.2, 2500]
cov = [[.001, 0], [0, 500000]]
gauss_high = multivariate_normal.pdf(grid, means_high, cov)
gauss_low = -1 * multivariate_normal.pdf(grid, means_low, cov)
weights = gauss_high + gauss_low # Combine to create the "true" STRF
kwargs = dict(vmax=np.abs(weights).max(), vmin=-np.abs(weights).max(),
cmap='RdBu_r', shading='gouraud')
fig, ax = plt.subplots()
ax.pcolormesh(delays_sec, freqs, weights, **kwargs)
ax.set(title='Simulated STRF', xlabel='Time Lags (s)', ylabel='Frequency (Hz)')
plt.setp(ax.get_xticklabels(), rotation=45)
plt.autoscale(tight=True)
mne.viz.tight_layout()
###############################################################################
# Simulate a neural response
# --------------------------
#
# Using this receptive field, we'll create an artificial neural response to
# a stimulus.
#
# To do this, we'll create a time-delayed version of the receptive field, and
# then calculate the dot product between this and the stimulus. Note that this
# is effectively doing a convolution between the stimulus and the receptive
# field. See `here <https://en.wikipedia.org/wiki/Convolution>`_ for more
# information.
# Reshape audio to split into epochs, then make epochs the first dimension.
n_epochs, n_seconds = 16, 5
audio = audio[:, :int(n_seconds * sfreq * n_epochs)]
X = audio.reshape([n_freqs, n_epochs, -1]).swapaxes(0, 1)
n_times = X.shape[-1]
# Delay the spectrogram according to delays so it can be combined w/ the STRF
# Lags will now be in axis 1, then we reshape to vectorize
delays = np.arange(np.round(tmin * sfreq),
np.round(tmax * sfreq) + 1).astype(int)
# Iterate through indices and append
X_del = np.zeros((len(delays),) + X.shape)
for ii, ix_delay in enumerate(delays):
# These arrays will take/put particular indices in the data
take = [slice(None)] * X.ndim
put = [slice(None)] * X.ndim
if ix_delay > 0:
take[-1] = slice(None, -ix_delay)
put[-1] = slice(ix_delay, None)
elif ix_delay < 0:
take[-1] = slice(-ix_delay, None)
put[-1] = slice(None, ix_delay)
X_del[ii][tuple(put)] = X[tuple(take)]
# Now set the delayed axis to the 2nd dimension
X_del = np.rollaxis(X_del, 0, 3)
X_del = X_del.reshape([n_epochs, -1, n_times])
n_features = X_del.shape[1]
weights_sim = weights.ravel()
# Simulate a neural response to the sound, given this STRF
y = np.zeros((n_epochs, n_times))
for ii, iep in enumerate(X_del):
# Simulate this epoch and add random noise
noise_amp = .002
y[ii] = np.dot(weights_sim, iep) + noise_amp * rng.randn(n_times)
# Plot the first 2 trials of audio and the simulated electrode activity
X_plt = scale(np.hstack(X[:2]).T).T
y_plt = scale(np.hstack(y[:2]))
time = np.arange(X_plt.shape[-1]) / sfreq
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(6, 6), sharex=True)
ax1.pcolormesh(time, freqs, X_plt, vmin=0, vmax=4, cmap='Reds')
ax1.set_title('Input auditory features')
ax1.set(ylim=[freqs.min(), freqs.max()], ylabel='Frequency (Hz)')
ax2.plot(time, y_plt)
ax2.set(xlim=[time.min(), time.max()], title='Simulated response',
xlabel='Time (s)', ylabel='Activity (a.u.)')
mne.viz.tight_layout()
###############################################################################
# Fit a model to recover this receptive field
# -------------------------------------------
#
# Finally, we'll use the :class:`mne.decoding.ReceptiveField` class to recover
# the linear receptive field of this signal. Note that properties of the
# receptive field (e.g. smoothness) will depend on the autocorrelation in the
# inputs and outputs.
# Create training and testing data
train, test = np.arange(n_epochs - 1), n_epochs - 1
X_train, X_test, y_train, y_test = X[train], X[test], y[train], y[test]
X_train, X_test, y_train, y_test = [np.rollaxis(ii, -1, 0) for ii in
(X_train, X_test, y_train, y_test)]
# Model the simulated data as a function of the spectrogram input
alphas = np.logspace(-3, 3, 7)
scores = np.zeros_like(alphas)
models = []
for ii, alpha in enumerate(alphas):
rf = ReceptiveField(tmin, tmax, sfreq, freqs, estimator=alpha)
rf.fit(X_train, y_train)
# Now make predictions about the model output, given input stimuli.
scores[ii] = rf.score(X_test, y_test)
models.append(rf)
times = rf.delays_ / float(rf.sfreq)
# Choose the model that performed best on the held out data
ix_best_alpha = np.argmax(scores)
best_mod = models[ix_best_alpha]
coefs = best_mod.coef_[0]
best_pred = best_mod.predict(X_test)[:, 0]
# Plot the original STRF, and the one that we recovered with modeling.
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(6, 3), sharey=True, sharex=True)
ax1.pcolormesh(delays_sec, freqs, weights, **kwargs)
ax2.pcolormesh(times, rf.feature_names, coefs, **kwargs)
ax1.set_title('Original STRF')
ax2.set_title('Best Reconstructed STRF')
plt.setp([iax.get_xticklabels() for iax in [ax1, ax2]], rotation=45)
plt.autoscale(tight=True)
mne.viz.tight_layout()
# Plot the actual response and the predicted response on a held out stimulus
time_pred = np.arange(best_pred.shape[0]) / sfreq
fig, ax = plt.subplots()
ax.plot(time_pred, y_test, color='k', alpha=.2, lw=4)
ax.plot(time_pred, best_pred, color='r', lw=1)
ax.set(title='Original and predicted activity', xlabel='Time (s)')
ax.legend(['Original', 'Predicted'])
plt.autoscale(tight=True)
mne.viz.tight_layout()
###############################################################################
# Visualize the effects of regularization
# ---------------------------------------
#
# Above we fit a :class:`mne.decoding.ReceptiveField` model for one of many
# values for the ridge regularization parameter. Here we will plot the model
# score as well as the model coefficients for each value, in order to
# visualize how coefficients change with different levels of regularization.
# These issues as well as the STRF pipeline are described in detail
# in [1]_, [2]_, and [4]_.
# Plot model score for each ridge parameter
fig = plt.figure(figsize=(10, 4))
ax = plt.subplot2grid([2, len(alphas)], [1, 0], 1, len(alphas))
ax.plot(np.arange(len(alphas)), scores, marker='o', color='r')
ax.annotate('Best parameter', (ix_best_alpha, scores[ix_best_alpha]),
(ix_best_alpha, scores[ix_best_alpha] - .1),
arrowprops={'arrowstyle': '->'})
plt.xticks(np.arange(len(alphas)), ["%.0e" % ii for ii in alphas])
ax.set(xlabel="Ridge regularization value", ylabel="Score ($R^2$)",
xlim=[-.4, len(alphas) - .6])
mne.viz.tight_layout()
# Plot the STRF of each ridge parameter
for ii, (rf, i_alpha) in enumerate(zip(models, alphas)):
ax = plt.subplot2grid([2, len(alphas)], [0, ii], 1, 1)
ax.pcolormesh(times, rf.feature_names, rf.coef_[0], **kwargs)
plt.xticks([], [])
plt.yticks([], [])
plt.autoscale(tight=True)
fig.suptitle('Model coefficients / scores for many ridge parameters', y=1)
mne.viz.tight_layout()
###############################################################################
# Using different regularization types
# ------------------------------------
# In addition to the standard ridge regularization, the
# :class:`mne.decoding.TimeDelayingRidge` class also exposes
# `Laplacian <https://en.wikipedia.org/wiki/Laplacian_matrix>`_ regularization
# term as:
#
# .. math::
# \left[\begin{matrix}
# 1 & -1 & & & & \\
# -1 & 2 & -1 & & & \\
# & -1 & 2 & -1 & & \\
# & & \ddots & \ddots & \ddots & \\
# & & & -1 & 2 & -1 \\
# & & & & -1 & 1\end{matrix}\right]
#
# This imposes a smoothness constraint of nearby time samples and/or features.
# Quoting [5]_:
#
# Tikhonov [identity] regularization (Equation 5) reduces overfitting by
# smoothing the TRF estimate in a way that is insensitive to
# the amplitude of the signal of interest. However, the Laplacian
# approach (Equation 6) reduces off-sample error whilst preserving
# signal amplitude (Lalor et al., 2006). As a result, this approach
# usually leads to an improved estimate of the system’s response (as
# indexed by MSE) compared to Tikhonov regularization.
#
scores_lap = np.zeros_like(alphas)
models_lap = []
for ii, alpha in enumerate(alphas):
estimator = TimeDelayingRidge(tmin, tmax, sfreq, reg_type='laplacian',
alpha=alpha)
rf = ReceptiveField(tmin, tmax, sfreq, freqs, estimator=estimator)
rf.fit(X_train, y_train)
# Now make predictions about the model output, given input stimuli.
scores_lap[ii] = rf.score(X_test, y_test)
models_lap.append(rf)
ix_best_alpha_lap = np.argmax(scores_lap)
###############################################################################
# Compare model performance
# -------------------------
# Below we visualize the model performance of each regularization method
# (ridge vs. Laplacian) for different levels of alpha. As you can see, the
# Laplacian method performs better in general, because it imposes a smoothness
# constraint along the time and feature dimensions of the coefficients.
# This matches the "true" receptive field structure and results in a better
# model fit.
fig = plt.figure(figsize=(10, 6))
ax = plt.subplot2grid([3, len(alphas)], [2, 0], 1, len(alphas))
ax.plot(np.arange(len(alphas)), scores_lap, marker='o', color='r')
ax.plot(np.arange(len(alphas)), scores, marker='o', color='0.5', ls=':')
ax.annotate('Best Laplacian', (ix_best_alpha_lap,
scores_lap[ix_best_alpha_lap]),
(ix_best_alpha_lap, scores_lap[ix_best_alpha_lap] - .1),
arrowprops={'arrowstyle': '->'})
ax.annotate('Best Ridge', (ix_best_alpha, scores[ix_best_alpha]),
(ix_best_alpha, scores[ix_best_alpha] - .1),
arrowprops={'arrowstyle': '->'})
plt.xticks(np.arange(len(alphas)), ["%.0e" % ii for ii in alphas])
ax.set(xlabel="Laplacian regularization value", ylabel="Score ($R^2$)",
xlim=[-.4, len(alphas) - .6])
mne.viz.tight_layout()
# Plot the STRF of each ridge parameter
xlim = times[[0, -1]]
for ii, (rf_lap, rf, i_alpha) in enumerate(zip(models_lap, models, alphas)):
ax = plt.subplot2grid([3, len(alphas)], [0, ii], 1, 1)
ax.pcolormesh(times, rf_lap.feature_names, rf_lap.coef_[0], **kwargs)
ax.set(xticks=[], yticks=[], xlim=xlim)
if ii == 0:
ax.set(ylabel='Laplacian')
ax = plt.subplot2grid([3, len(alphas)], [1, ii], 1, 1)
ax.pcolormesh(times, rf.feature_names, rf.coef_[0], **kwargs)
ax.set(xticks=[], yticks=[], xlim=xlim)
if ii == 0:
ax.set(ylabel='Ridge')
fig.suptitle('Model coefficients / scores for laplacian regularization', y=1)
mne.viz.tight_layout()
###############################################################################
# Plot the original STRF, and the one that we recovered with modeling.
rf = models[ix_best_alpha]
rf_lap = models_lap[ix_best_alpha_lap]
fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(9, 3),
sharey=True, sharex=True)
ax1.pcolormesh(delays_sec, freqs, weights, **kwargs)
ax2.pcolormesh(times, rf.feature_names, rf.coef_[0], **kwargs)
ax3.pcolormesh(times, rf_lap.feature_names, rf_lap.coef_[0], **kwargs)
ax1.set_title('Original STRF')
ax2.set_title('Best Ridge STRF')
ax3.set_title('Best Laplacian STRF')
plt.setp([iax.get_xticklabels() for iax in [ax1, ax2, ax3]], rotation=45)
plt.autoscale(tight=True)
mne.viz.tight_layout()
plt.show()
|