1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
|
# -*- coding: utf-8 -*-
"""
.. _ex-evoked-topomap:
========================================
Plotting topographic maps of evoked data
========================================
Load evoked data and plot topomaps for selected time points using multiple
additional options.
"""
# Authors: Christian Brodbeck <christianbrodbeck@nyu.edu>
# Tal Linzen <linzen@nyu.edu>
# Denis A. Engeman <denis.engemann@gmail.com>
# MikoĊaj Magnuski <mmagnuski@swps.edu.pl>
#
# License: BSD (3-clause)
# sphinx_gallery_thumbnail_number = 5
import numpy as np
import matplotlib.pyplot as plt
from mne.datasets import sample
from mne import read_evokeds
print(__doc__)
path = sample.data_path()
fname = path + '/MEG/sample/sample_audvis-ave.fif'
# load evoked corresponding to a specific condition
# from the fif file and subtract baseline
condition = 'Left Auditory'
evoked = read_evokeds(fname, condition=condition, baseline=(None, 0))
###############################################################################
# Basic `plot_topomap` options
# ----------------------------
#
# We plot evoked topographies using :func:`mne.Evoked.plot_topomap`. The first
# argument, ``times`` allows to specify time instants (in seconds!) for which
# topographies will be shown. We select timepoints from 50 to 150 ms with a
# step of 20ms and plot magnetometer data:
times = np.arange(0.05, 0.151, 0.02)
evoked.plot_topomap(times, ch_type='mag', time_unit='s')
###############################################################################
# If times is set to None at most 10 regularly spaced topographies will be
# shown:
evoked.plot_topomap(ch_type='mag', time_unit='s')
###############################################################################
# Instead of showing topographies at specific time points we can compute
# averages of 50 ms bins centered on these time points to reduce the noise in
# the topographies:
evoked.plot_topomap(times, ch_type='mag', average=0.05, time_unit='s')
###############################################################################
# We can plot gradiometer data (plots the RMS for each pair of gradiometers)
evoked.plot_topomap(times, ch_type='grad', time_unit='s')
###############################################################################
# Additional `plot_topomap` options
# ---------------------------------
#
# We can also use a range of various :func:`mne.viz.plot_topomap` arguments
# that control how the topography is drawn. For example:
#
# * ``cmap`` - to specify the color map
# * ``res`` - to control the resolution of the topographies (lower resolution
# means faster plotting)
# * ``outlines='skirt'`` to see the topography stretched beyond the head circle
# * ``contours`` to define how many contour lines should be plotted
evoked.plot_topomap(times, ch_type='mag', cmap='Spectral_r', res=32,
outlines='skirt', contours=4, time_unit='s')
###############################################################################
# If you look at the edges of the head circle of a single topomap you'll see
# the effect of extrapolation. By default ``extrapolate='box'`` is used which
# extrapolates to a large box stretching beyond the head circle.
# Compare this with ``extrapolate='head'`` (second topography below) where
# extrapolation goes to 0 at the head circle and ``extrapolate='local'`` where
# extrapolation is performed only within some distance from channels:
extrapolations = ['box', 'head', 'local']
fig, axes = plt.subplots(figsize=(7.5, 2.5), ncols=3)
for ax, extr in zip(axes, extrapolations):
evoked.plot_topomap(0.1, ch_type='mag', size=2, extrapolate=extr, axes=ax,
show=False, colorbar=False)
ax.set_title(extr, fontsize=14)
###############################################################################
# More advanced usage
# -------------------
#
# Now we plot magnetometer data as topomap at a single time point: 100 ms
# post-stimulus, add channel labels, title and adjust plot margins:
evoked.plot_topomap(0.1, ch_type='mag', show_names=True, colorbar=False,
size=6, res=128, title='Auditory response',
time_unit='s')
plt.subplots_adjust(left=0.01, right=0.99, bottom=0.01, top=0.88)
###############################################################################
# Animating the topomap
# ---------------------
#
# Instead of using a still image we can plot magnetometer data as an animation
# (animates only in matplotlib interactive mode)
evoked.animate_topomap(ch_type='mag', times=times, frame_rate=10,
time_unit='s')
|