File: _utils.py

package info (click to toggle)
python-mne 0.19.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 100,440 kB
  • sloc: python: 120,243; pascal: 1,861; makefile: 225; sh: 15
file content (486 lines) | stat: -rw-r--r-- 18,101 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
# -*- coding: utf-8 -*-
# Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr>
#          Matti Hamalainen <msh@nmr.mgh.harvard.edu>
#          Teon Brooks <teon.brooks@gmail.com>
#          Stefan Appelhoff <stefan.appelhoff@mailbox.org>
#          Joan Massich <mailsik@gmail.com>
#
# License: BSD (3-clause)

from collections import OrderedDict
import datetime
import os.path as op
import re

import numpy as np

from ..utils import logger
from ..utils import warn

from ..io.constants import FIFF
from ..io.tree import dir_tree_find
from ..io.tag import read_tag
from ..io.write import start_file
from ..io.write import end_file
from ..io.write import write_dig_points

from ..transforms import apply_trans
from ..transforms import als_ras_trans
from ..transforms import get_ras_to_neuromag_trans
from ..transforms import Transform
from ..transforms import combine_transforms
from ..transforms import invert_transform
from ..transforms import _to_const
from ..transforms import _str_to_frame

from ..utils.check import _check_option
from ..utils import Bunch
from .. import __version__

from .base import _format_dig_points

b = bytes  # alias


def _read_dig_fif(fid, meas_info):
    """Read digitizer data from a FIFF file."""
    isotrak = dir_tree_find(meas_info, FIFF.FIFFB_ISOTRAK)
    dig = None
    if len(isotrak) == 0:
        logger.info('Isotrak not found')
    elif len(isotrak) > 1:
        warn('Multiple Isotrak found')
    else:
        isotrak = isotrak[0]
        dig = []
        for k in range(isotrak['nent']):
            kind = isotrak['directory'][k].kind
            pos = isotrak['directory'][k].pos
            if kind == FIFF.FIFF_DIG_POINT:
                tag = read_tag(fid, pos)
                dig.append(tag.data)
                dig[-1]['coord_frame'] = FIFF.FIFFV_COORD_HEAD
    return _format_dig_points(dig)


def write_dig(fname, pts, coord_frame=None):
    """Write digitization data to a FIF file.

    Parameters
    ----------
    fname : str
        Destination file name.
    pts : iterator of dict
        Iterator through digitizer points. Each point is a dictionary with
        the keys 'kind', 'ident' and 'r'.
    coord_frame : int | str | None
        If all the points have the same coordinate frame, specify the type
        here. Can be None (default) if the points could have varying
        coordinate frames.
    """
    if coord_frame is not None:
        coord_frame = _to_const(coord_frame)
        pts_frames = {pt.get('coord_frame', coord_frame) for pt in pts}
        bad_frames = pts_frames - {coord_frame}
        if len(bad_frames) > 0:
            raise ValueError(
                'Points have coord_frame entries that are incompatible with '
                'coord_frame=%i: %s.' % (coord_frame, str(tuple(bad_frames))))

    with start_file(fname) as fid:
        write_dig_points(fid, pts, block=True, coord_frame=coord_frame)
        end_file(fid)


_cardinal_ident_mapping = {
    FIFF.FIFFV_POINT_NASION: 'nasion',
    FIFF.FIFFV_POINT_LPA: 'lpa',
    FIFF.FIFFV_POINT_RPA: 'rpa',
}


def _foo_get_data_from_dig(dig):
    # XXXX:
    # This does something really similar to _read_dig_montage_fif but:
    #   - does not check coord_frame
    #   - does not do any operation that implies assumptions with the names

    # Split up the dig points by category
    hsp, hpi, elp = list(), list(), list()
    fids, dig_ch_pos_location = dict(), list()

    for d in dig:
        if d['kind'] == FIFF.FIFFV_POINT_CARDINAL:
            fids[_cardinal_ident_mapping[d['ident']]] = d['r']
        elif d['kind'] == FIFF.FIFFV_POINT_HPI:
            hpi.append(d['r'])
            elp.append(d['r'])
            # XXX: point_names.append('HPI%03d' % d['ident'])
        elif d['kind'] == FIFF.FIFFV_POINT_EXTRA:
            hsp.append(d['r'])
        elif d['kind'] == FIFF.FIFFV_POINT_EEG:
            # XXX: dig_ch_pos['EEG%03d' % d['ident']] = d['r']
            dig_ch_pos_location.append(d['r'])

    dig_coord_frames = set([d['coord_frame'] for d in dig])
    assert len(dig_coord_frames) == 1, 'Only single coordinate frame in dig is supported' # noqa # XXX

    return Bunch(
        nasion=fids.get('nasion', None),
        lpa=fids.get('lpa', None),
        rpa=fids.get('rpa', None),
        hsp=np.array(hsp) if len(hsp) else None,
        hpi=np.array(hpi) if len(hpi) else None,
        elp=np.array(elp) if len(elp) else None,
        dig_ch_pos_location=dig_ch_pos_location,
        coord_frame=dig_coord_frames.pop(),
    )


def _get_fid_coords(dig):
    fid_coords = Bunch(nasion=None, lpa=None, rpa=None)
    fid_coord_frames = dict()

    for d in dig:
        if d['kind'] == FIFF.FIFFV_POINT_CARDINAL:
            key = _cardinal_ident_mapping[d['ident']]
            fid_coords[key] = d['r']
            fid_coord_frames[key] = d['coord_frame']

    if len(fid_coord_frames) > 0:
        if set(fid_coord_frames.keys()) != set(['nasion', 'lpa', 'rpa']):
            raise ValueError("Some fiducial points are missing (got %s)." %
                             fid_coords.keys())

        if len(set(fid_coord_frames.values())) > 1:
            raise ValueError(
                'All fiducial points must be in the same coordinate system '
                '(got %s)' % len(fid_coord_frames)
            )

    coord_frame = fid_coord_frames.popitem()[1] if fid_coord_frames else None

    return fid_coords, coord_frame


def _read_dig_points(fname, comments='%', unit='auto'):
    """Read digitizer data from a file.

    If fname ends in .hsp or .esp, the function assumes digitizer files in [m],
    otherwise it assumes space-delimited text files in [mm].

    Parameters
    ----------
    fname : str
        The filepath of space delimited file with points, or a .mat file
        (Polhemus FastTrak format).
    comments : str
        The character used to indicate the start of a comment;
        Default: '%'.
    unit : 'auto' | 'm' | 'cm' | 'mm'
        Unit of the digitizer files (hsp and elp). If not 'm', coordinates will
        be rescaled to 'm'. Default is 'auto', which assumes 'm' for *.hsp and
        *.elp files and 'mm' for *.txt files, corresponding to the known
        Polhemus export formats.

    Returns
    -------
    dig_points : np.ndarray, shape (n_points, 3)
        Array of dig points in [m].
    """
    _check_option('unit', unit, ['auto', 'm', 'mm', 'cm'])

    _, ext = op.splitext(fname)
    if ext == '.elp' or ext == '.hsp':
        # XXX: This should be dead code, but is deeply buried in
        #      read_dig_montage. To be deprecated
        # raise RuntimeError('if you are reading isotrak files please use'
        #                    ' read_dig_polhemus_isotrak')
        with open(fname) as fid:
            file_str = fid.read()
        value_pattern = r"\-?\d+\.?\d*e?\-?\d*"
        coord_pattern = r"({0})\s+({0})\s+({0})\s*$".format(value_pattern)
        if ext == '.hsp':
            coord_pattern = '^' + coord_pattern
        points_str = [m.groups() for m in re.finditer(coord_pattern, file_str,
                                                      re.MULTILINE)]
        dig_points = np.array(points_str, dtype=float)
    elif ext == '.mat':  # like FastScan II
        from scipy.io import loadmat
        dig_points = loadmat(fname)['Points'].T
    else:
        dig_points = np.loadtxt(fname, comments=comments, ndmin=2)
        if unit == 'auto':
            unit = 'mm'
        if dig_points.shape[1] > 3:
            warn('Found %d columns instead of 3, using first 3 for XYZ '
                 'coordinates' % (dig_points.shape[1],))
            dig_points = dig_points[:, :3]

    if dig_points.shape[-1] != 3:
        raise ValueError(
            'Data must be of shape (n, 3) instead of %s' % (dig_points.shape,))

    if unit == 'mm':
        dig_points /= 1000.
    elif unit == 'cm':
        dig_points /= 100.

    return dig_points


def _write_dig_points(fname, dig_points):
    """Write points to text file.

    Parameters
    ----------
    fname : str
        Path to the file to write. The kind of file to write is determined
        based on the extension: '.txt' for tab separated text file.
    dig_points : numpy.ndarray, shape (n_points, 3)
        Points.
    """
    _, ext = op.splitext(fname)
    dig_points = np.asarray(dig_points)
    if (dig_points.ndim != 2) or (dig_points.shape[1] != 3):
        err = ("Points must be of shape (n_points, 3), "
               "not %s" % (dig_points.shape,))
        raise ValueError(err)

    if ext == '.txt':
        with open(fname, 'wb') as fid:
            version = __version__
            now = datetime.datetime.now().strftime("%I:%M%p on %B %d, %Y")
            fid.write(b'%% Ascii 3D points file created by mne-python version'
                      b' %s at %s\n' % (version.encode(), now.encode()))
            fid.write(b'%% %d 3D points, x y z per line\n' % len(dig_points))
            np.savetxt(fid, dig_points, delimiter='\t', newline='\n')
    else:
        msg = "Unrecognized extension: %r. Need '.txt'." % ext
        raise ValueError(msg)


def _make_dig_points(nasion=None, lpa=None, rpa=None, hpi=None,
                     extra_points=None, dig_ch_pos=None,
                     coord_frame='head'):
    """Construct digitizer info for the info.

    Parameters
    ----------
    nasion : array-like | numpy.ndarray, shape (3,) | None
        Point designated as the nasion point.
    lpa : array-like |  numpy.ndarray, shape (3,) | None
        Point designated as the left auricular point.
    rpa : array-like |  numpy.ndarray, shape (3,) | None
        Point designated as the right auricular point.
    hpi : array-like | numpy.ndarray, shape (n_points, 3) | None
        Points designated as head position indicator points.
    extra_points : array-like | numpy.ndarray, shape (n_points, 3)
        Points designed as the headshape points.
    dig_ch_pos : dict
        Dict of EEG channel positions.
    coord_frame : str
        The coordinate frame of the points. Usually this is "unknown"
        for native digitizer space. Defaults to "head".

    Returns
    -------
    dig : list of dicts
        A container of DigPoints to be added to the info['dig'].
    """
    if not isinstance(coord_frame, str) or coord_frame not in _str_to_frame:
        raise ValueError('coord_frame must be one of %s, got %s'
                         % (sorted(_str_to_frame.keys()), coord_frame))
    else:
        coord_frame = _str_to_frame[coord_frame]

    dig = []
    if lpa is not None:
        lpa = np.asarray(lpa)
        if lpa.shape != (3,):
            raise ValueError('LPA should have the shape (3,) instead of %s'
                             % (lpa.shape,))
        dig.append({'r': lpa, 'ident': FIFF.FIFFV_POINT_LPA,
                    'kind': FIFF.FIFFV_POINT_CARDINAL,
                    'coord_frame': coord_frame})
    if nasion is not None:
        nasion = np.asarray(nasion)
        if nasion.shape != (3,):
            raise ValueError('Nasion should have the shape (3,) instead of %s'
                             % (nasion.shape,))
        dig.append({'r': nasion, 'ident': FIFF.FIFFV_POINT_NASION,
                    'kind': FIFF.FIFFV_POINT_CARDINAL,
                    'coord_frame': coord_frame})
    if rpa is not None:
        rpa = np.asarray(rpa)
        if rpa.shape != (3,):
            raise ValueError('RPA should have the shape (3,) instead of %s'
                             % (rpa.shape,))
        dig.append({'r': rpa, 'ident': FIFF.FIFFV_POINT_RPA,
                    'kind': FIFF.FIFFV_POINT_CARDINAL,
                    'coord_frame': coord_frame})
    if hpi is not None:
        hpi = np.asarray(hpi)
        if hpi.ndim != 2 or hpi.shape[1] != 3:
            raise ValueError('HPI should have the shape (n_points, 3) instead '
                             'of %s' % (hpi.shape,))
        for idx, point in enumerate(hpi):
            dig.append({'r': point, 'ident': idx + 1,
                        'kind': FIFF.FIFFV_POINT_HPI,
                        'coord_frame': coord_frame})
    if extra_points is not None:
        extra_points = np.asarray(extra_points)
        if extra_points.shape[1] != 3:
            raise ValueError('Points should have the shape (n_points, 3) '
                             'instead of %s' % (extra_points.shape,))
        for idx, point in enumerate(extra_points):
            dig.append({'r': point, 'ident': idx + 1,
                        'kind': FIFF.FIFFV_POINT_EXTRA,
                        'coord_frame': coord_frame})
    if dig_ch_pos is not None:
        keys = dig_ch_pos.keys()
        if not isinstance(dig_ch_pos, OrderedDict):
            keys = sorted(keys)
        try:  # use the last 3 as int if possible (e.g., EEG001->1)
            idents = []
            for key in keys:
                if not isinstance(key, str):
                    raise ValueError()
                idents.append(int(key[-3:]))
        except ValueError:  # and if any conversion fails, simply use arange
            idents = np.arange(1, len(keys) + 1)
        for key, ident in zip(keys, idents):
            dig.append({'r': dig_ch_pos[key], 'ident': ident,
                        'kind': FIFF.FIFFV_POINT_EEG,
                        'coord_frame': coord_frame})

    return _format_dig_points(dig)


def _call_make_dig_points(nasion, lpa, rpa, hpi, extra, convert=True):
    if convert:
        neuromag_trans = get_ras_to_neuromag_trans(nasion, lpa, rpa)
        nasion = apply_trans(neuromag_trans, nasion)
        lpa = apply_trans(neuromag_trans, lpa)
        rpa = apply_trans(neuromag_trans, rpa)

        if hpi is not None:
            hpi = apply_trans(neuromag_trans, hpi)

        extra = apply_trans(neuromag_trans, extra).astype(np.float32)
    else:
        neuromag_trans = None

    ctf_head_t = Transform(fro='ctf_head', to='head', trans=neuromag_trans)

    info_dig = _make_dig_points(nasion=nasion,
                                lpa=lpa,
                                rpa=rpa,
                                hpi=hpi,
                                extra_points=extra)

    return info_dig, ctf_head_t


##############################################################################
# From mne.io.kit
def _set_dig_kit(mrk, elp, hsp):
    """Add landmark points and head shape data to the KIT instance.

    Digitizer data (elp and hsp) are represented in [mm] in the Polhemus
    ALS coordinate system. This is converted to [m].

    Parameters
    ----------
    mrk : None | str | array_like, shape (5, 3)
        Marker points representing the location of the marker coils with
        respect to the MEG Sensors, or path to a marker file.
    elp : None | str | array_like, shape (8, 3)
        Digitizer points representing the location of the fiducials and the
        marker coils with respect to the digitized head shape, or path to a
        file containing these points.
    hsp : None | str | array, shape (n_points, 3)
        Digitizer head shape points, or path to head shape file. If more
        than 10`000 points are in the head shape, they are automatically
        decimated.

    Returns
    -------
    dig_points : list
        List of digitizer points for info['dig'].
    dev_head_t : dict
        A dictionary describe the device-head transformation.
    """
    from ..coreg import fit_matched_points, _decimate_points
    from ..io.kit.constants import KIT
    from ..io.kit.coreg import read_mrk

    if isinstance(hsp, str):
        hsp = _read_dig_points(hsp)
    n_pts = len(hsp)
    if n_pts > KIT.DIG_POINTS:
        hsp = _decimate_points(hsp, res=0.005)
        n_new = len(hsp)
        warn("The selected head shape contained {n_in} points, which is "
             "more than recommended ({n_rec}), and was automatically "
             "downsampled to {n_new} points. The preferred way to "
             "downsample is using FastScan.".format(
                 n_in=n_pts, n_rec=KIT.DIG_POINTS, n_new=n_new))

    if isinstance(elp, str):
        elp_points = _read_dig_points(elp)
        if len(elp_points) != 8:
            raise ValueError("File %r should contain 8 points; got shape "
                             "%s." % (elp, elp_points.shape))
        elp = elp_points
    elif len(elp) != 8:
        raise ValueError("ELP should contain 8 points; got shape "
                         "%s." % (elp.shape,))
    if isinstance(mrk, str):
        mrk = read_mrk(mrk)

    mrk = apply_trans(als_ras_trans, mrk)

    nasion, lpa, rpa = elp[:3]
    nmtrans = get_ras_to_neuromag_trans(nasion, lpa, rpa)
    elp = apply_trans(nmtrans, elp)
    hsp = apply_trans(nmtrans, hsp)

    # device head transform
    trans = fit_matched_points(tgt_pts=elp[3:], src_pts=mrk, out='trans')

    nasion, lpa, rpa = elp[:3]
    elp = elp[3:]

    dig_points = _make_dig_points(nasion, lpa, rpa, elp, hsp)
    dev_head_t = Transform('meg', 'head', trans)

    return dig_points, dev_head_t


##############################################################################
# From artemis123 (we have modified the function a bit)
def _artemis123_read_pos(nas, lpa, rpa, hpi, extra):
    # move into MNE head coords
    dig_points, _ = _call_make_dig_points(nas, lpa, rpa, hpi, extra)
    return dig_points


##############################################################################
# From bti
def _make_bti_dig_points(nasion, lpa, rpa, hpi, extra,
                         convert=False, use_hpi=False,
                         bti_dev_t=False, dev_ctf_t=False):

    _hpi = hpi if use_hpi else None
    info_dig, ctf_head_t = _call_make_dig_points(nasion, lpa, rpa, _hpi, extra,
                                                 convert)

    if convert:
        t = combine_transforms(invert_transform(bti_dev_t), dev_ctf_t,
                               'meg', 'ctf_head')
        dev_head_t = combine_transforms(t, ctf_head_t, 'meg', 'head')
    else:
        dev_head_t = Transform('meg', 'head', trans=None)

    return info_dig, dev_head_t, ctf_head_t  # ctf_head_t should not be needed