1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
|
# -*- coding: utf-8 -*-
# Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Matti Hamalainen <msh@nmr.mgh.harvard.edu>
# Teon Brooks <teon.brooks@gmail.com>
# Stefan Appelhoff <stefan.appelhoff@mailbox.org>
# Joan Massich <mailsik@gmail.com>
#
# License: BSD (3-clause)
from collections import OrderedDict
import datetime
import os.path as op
import re
import numpy as np
from ..utils import logger
from ..utils import warn
from ..io.constants import FIFF
from ..io.tree import dir_tree_find
from ..io.tag import read_tag
from ..io.write import start_file
from ..io.write import end_file
from ..io.write import write_dig_points
from ..transforms import apply_trans
from ..transforms import als_ras_trans
from ..transforms import get_ras_to_neuromag_trans
from ..transforms import Transform
from ..transforms import combine_transforms
from ..transforms import invert_transform
from ..transforms import _to_const
from ..transforms import _str_to_frame
from ..utils.check import _check_option
from ..utils import Bunch
from .. import __version__
from .base import _format_dig_points
b = bytes # alias
def _read_dig_fif(fid, meas_info):
"""Read digitizer data from a FIFF file."""
isotrak = dir_tree_find(meas_info, FIFF.FIFFB_ISOTRAK)
dig = None
if len(isotrak) == 0:
logger.info('Isotrak not found')
elif len(isotrak) > 1:
warn('Multiple Isotrak found')
else:
isotrak = isotrak[0]
dig = []
for k in range(isotrak['nent']):
kind = isotrak['directory'][k].kind
pos = isotrak['directory'][k].pos
if kind == FIFF.FIFF_DIG_POINT:
tag = read_tag(fid, pos)
dig.append(tag.data)
dig[-1]['coord_frame'] = FIFF.FIFFV_COORD_HEAD
return _format_dig_points(dig)
def write_dig(fname, pts, coord_frame=None):
"""Write digitization data to a FIF file.
Parameters
----------
fname : str
Destination file name.
pts : iterator of dict
Iterator through digitizer points. Each point is a dictionary with
the keys 'kind', 'ident' and 'r'.
coord_frame : int | str | None
If all the points have the same coordinate frame, specify the type
here. Can be None (default) if the points could have varying
coordinate frames.
"""
if coord_frame is not None:
coord_frame = _to_const(coord_frame)
pts_frames = {pt.get('coord_frame', coord_frame) for pt in pts}
bad_frames = pts_frames - {coord_frame}
if len(bad_frames) > 0:
raise ValueError(
'Points have coord_frame entries that are incompatible with '
'coord_frame=%i: %s.' % (coord_frame, str(tuple(bad_frames))))
with start_file(fname) as fid:
write_dig_points(fid, pts, block=True, coord_frame=coord_frame)
end_file(fid)
_cardinal_ident_mapping = {
FIFF.FIFFV_POINT_NASION: 'nasion',
FIFF.FIFFV_POINT_LPA: 'lpa',
FIFF.FIFFV_POINT_RPA: 'rpa',
}
def _foo_get_data_from_dig(dig):
# XXXX:
# This does something really similar to _read_dig_montage_fif but:
# - does not check coord_frame
# - does not do any operation that implies assumptions with the names
# Split up the dig points by category
hsp, hpi, elp = list(), list(), list()
fids, dig_ch_pos_location = dict(), list()
for d in dig:
if d['kind'] == FIFF.FIFFV_POINT_CARDINAL:
fids[_cardinal_ident_mapping[d['ident']]] = d['r']
elif d['kind'] == FIFF.FIFFV_POINT_HPI:
hpi.append(d['r'])
elp.append(d['r'])
# XXX: point_names.append('HPI%03d' % d['ident'])
elif d['kind'] == FIFF.FIFFV_POINT_EXTRA:
hsp.append(d['r'])
elif d['kind'] == FIFF.FIFFV_POINT_EEG:
# XXX: dig_ch_pos['EEG%03d' % d['ident']] = d['r']
dig_ch_pos_location.append(d['r'])
dig_coord_frames = set([d['coord_frame'] for d in dig])
assert len(dig_coord_frames) == 1, 'Only single coordinate frame in dig is supported' # noqa # XXX
return Bunch(
nasion=fids.get('nasion', None),
lpa=fids.get('lpa', None),
rpa=fids.get('rpa', None),
hsp=np.array(hsp) if len(hsp) else None,
hpi=np.array(hpi) if len(hpi) else None,
elp=np.array(elp) if len(elp) else None,
dig_ch_pos_location=dig_ch_pos_location,
coord_frame=dig_coord_frames.pop(),
)
def _get_fid_coords(dig):
fid_coords = Bunch(nasion=None, lpa=None, rpa=None)
fid_coord_frames = dict()
for d in dig:
if d['kind'] == FIFF.FIFFV_POINT_CARDINAL:
key = _cardinal_ident_mapping[d['ident']]
fid_coords[key] = d['r']
fid_coord_frames[key] = d['coord_frame']
if len(fid_coord_frames) > 0:
if set(fid_coord_frames.keys()) != set(['nasion', 'lpa', 'rpa']):
raise ValueError("Some fiducial points are missing (got %s)." %
fid_coords.keys())
if len(set(fid_coord_frames.values())) > 1:
raise ValueError(
'All fiducial points must be in the same coordinate system '
'(got %s)' % len(fid_coord_frames)
)
coord_frame = fid_coord_frames.popitem()[1] if fid_coord_frames else None
return fid_coords, coord_frame
def _read_dig_points(fname, comments='%', unit='auto'):
"""Read digitizer data from a file.
If fname ends in .hsp or .esp, the function assumes digitizer files in [m],
otherwise it assumes space-delimited text files in [mm].
Parameters
----------
fname : str
The filepath of space delimited file with points, or a .mat file
(Polhemus FastTrak format).
comments : str
The character used to indicate the start of a comment;
Default: '%'.
unit : 'auto' | 'm' | 'cm' | 'mm'
Unit of the digitizer files (hsp and elp). If not 'm', coordinates will
be rescaled to 'm'. Default is 'auto', which assumes 'm' for *.hsp and
*.elp files and 'mm' for *.txt files, corresponding to the known
Polhemus export formats.
Returns
-------
dig_points : np.ndarray, shape (n_points, 3)
Array of dig points in [m].
"""
_check_option('unit', unit, ['auto', 'm', 'mm', 'cm'])
_, ext = op.splitext(fname)
if ext == '.elp' or ext == '.hsp':
# XXX: This should be dead code, but is deeply buried in
# read_dig_montage. To be deprecated
# raise RuntimeError('if you are reading isotrak files please use'
# ' read_dig_polhemus_isotrak')
with open(fname) as fid:
file_str = fid.read()
value_pattern = r"\-?\d+\.?\d*e?\-?\d*"
coord_pattern = r"({0})\s+({0})\s+({0})\s*$".format(value_pattern)
if ext == '.hsp':
coord_pattern = '^' + coord_pattern
points_str = [m.groups() for m in re.finditer(coord_pattern, file_str,
re.MULTILINE)]
dig_points = np.array(points_str, dtype=float)
elif ext == '.mat': # like FastScan II
from scipy.io import loadmat
dig_points = loadmat(fname)['Points'].T
else:
dig_points = np.loadtxt(fname, comments=comments, ndmin=2)
if unit == 'auto':
unit = 'mm'
if dig_points.shape[1] > 3:
warn('Found %d columns instead of 3, using first 3 for XYZ '
'coordinates' % (dig_points.shape[1],))
dig_points = dig_points[:, :3]
if dig_points.shape[-1] != 3:
raise ValueError(
'Data must be of shape (n, 3) instead of %s' % (dig_points.shape,))
if unit == 'mm':
dig_points /= 1000.
elif unit == 'cm':
dig_points /= 100.
return dig_points
def _write_dig_points(fname, dig_points):
"""Write points to text file.
Parameters
----------
fname : str
Path to the file to write. The kind of file to write is determined
based on the extension: '.txt' for tab separated text file.
dig_points : numpy.ndarray, shape (n_points, 3)
Points.
"""
_, ext = op.splitext(fname)
dig_points = np.asarray(dig_points)
if (dig_points.ndim != 2) or (dig_points.shape[1] != 3):
err = ("Points must be of shape (n_points, 3), "
"not %s" % (dig_points.shape,))
raise ValueError(err)
if ext == '.txt':
with open(fname, 'wb') as fid:
version = __version__
now = datetime.datetime.now().strftime("%I:%M%p on %B %d, %Y")
fid.write(b'%% Ascii 3D points file created by mne-python version'
b' %s at %s\n' % (version.encode(), now.encode()))
fid.write(b'%% %d 3D points, x y z per line\n' % len(dig_points))
np.savetxt(fid, dig_points, delimiter='\t', newline='\n')
else:
msg = "Unrecognized extension: %r. Need '.txt'." % ext
raise ValueError(msg)
def _make_dig_points(nasion=None, lpa=None, rpa=None, hpi=None,
extra_points=None, dig_ch_pos=None,
coord_frame='head'):
"""Construct digitizer info for the info.
Parameters
----------
nasion : array-like | numpy.ndarray, shape (3,) | None
Point designated as the nasion point.
lpa : array-like | numpy.ndarray, shape (3,) | None
Point designated as the left auricular point.
rpa : array-like | numpy.ndarray, shape (3,) | None
Point designated as the right auricular point.
hpi : array-like | numpy.ndarray, shape (n_points, 3) | None
Points designated as head position indicator points.
extra_points : array-like | numpy.ndarray, shape (n_points, 3)
Points designed as the headshape points.
dig_ch_pos : dict
Dict of EEG channel positions.
coord_frame : str
The coordinate frame of the points. Usually this is "unknown"
for native digitizer space. Defaults to "head".
Returns
-------
dig : list of dicts
A container of DigPoints to be added to the info['dig'].
"""
if not isinstance(coord_frame, str) or coord_frame not in _str_to_frame:
raise ValueError('coord_frame must be one of %s, got %s'
% (sorted(_str_to_frame.keys()), coord_frame))
else:
coord_frame = _str_to_frame[coord_frame]
dig = []
if lpa is not None:
lpa = np.asarray(lpa)
if lpa.shape != (3,):
raise ValueError('LPA should have the shape (3,) instead of %s'
% (lpa.shape,))
dig.append({'r': lpa, 'ident': FIFF.FIFFV_POINT_LPA,
'kind': FIFF.FIFFV_POINT_CARDINAL,
'coord_frame': coord_frame})
if nasion is not None:
nasion = np.asarray(nasion)
if nasion.shape != (3,):
raise ValueError('Nasion should have the shape (3,) instead of %s'
% (nasion.shape,))
dig.append({'r': nasion, 'ident': FIFF.FIFFV_POINT_NASION,
'kind': FIFF.FIFFV_POINT_CARDINAL,
'coord_frame': coord_frame})
if rpa is not None:
rpa = np.asarray(rpa)
if rpa.shape != (3,):
raise ValueError('RPA should have the shape (3,) instead of %s'
% (rpa.shape,))
dig.append({'r': rpa, 'ident': FIFF.FIFFV_POINT_RPA,
'kind': FIFF.FIFFV_POINT_CARDINAL,
'coord_frame': coord_frame})
if hpi is not None:
hpi = np.asarray(hpi)
if hpi.ndim != 2 or hpi.shape[1] != 3:
raise ValueError('HPI should have the shape (n_points, 3) instead '
'of %s' % (hpi.shape,))
for idx, point in enumerate(hpi):
dig.append({'r': point, 'ident': idx + 1,
'kind': FIFF.FIFFV_POINT_HPI,
'coord_frame': coord_frame})
if extra_points is not None:
extra_points = np.asarray(extra_points)
if extra_points.shape[1] != 3:
raise ValueError('Points should have the shape (n_points, 3) '
'instead of %s' % (extra_points.shape,))
for idx, point in enumerate(extra_points):
dig.append({'r': point, 'ident': idx + 1,
'kind': FIFF.FIFFV_POINT_EXTRA,
'coord_frame': coord_frame})
if dig_ch_pos is not None:
keys = dig_ch_pos.keys()
if not isinstance(dig_ch_pos, OrderedDict):
keys = sorted(keys)
try: # use the last 3 as int if possible (e.g., EEG001->1)
idents = []
for key in keys:
if not isinstance(key, str):
raise ValueError()
idents.append(int(key[-3:]))
except ValueError: # and if any conversion fails, simply use arange
idents = np.arange(1, len(keys) + 1)
for key, ident in zip(keys, idents):
dig.append({'r': dig_ch_pos[key], 'ident': ident,
'kind': FIFF.FIFFV_POINT_EEG,
'coord_frame': coord_frame})
return _format_dig_points(dig)
def _call_make_dig_points(nasion, lpa, rpa, hpi, extra, convert=True):
if convert:
neuromag_trans = get_ras_to_neuromag_trans(nasion, lpa, rpa)
nasion = apply_trans(neuromag_trans, nasion)
lpa = apply_trans(neuromag_trans, lpa)
rpa = apply_trans(neuromag_trans, rpa)
if hpi is not None:
hpi = apply_trans(neuromag_trans, hpi)
extra = apply_trans(neuromag_trans, extra).astype(np.float32)
else:
neuromag_trans = None
ctf_head_t = Transform(fro='ctf_head', to='head', trans=neuromag_trans)
info_dig = _make_dig_points(nasion=nasion,
lpa=lpa,
rpa=rpa,
hpi=hpi,
extra_points=extra)
return info_dig, ctf_head_t
##############################################################################
# From mne.io.kit
def _set_dig_kit(mrk, elp, hsp):
"""Add landmark points and head shape data to the KIT instance.
Digitizer data (elp and hsp) are represented in [mm] in the Polhemus
ALS coordinate system. This is converted to [m].
Parameters
----------
mrk : None | str | array_like, shape (5, 3)
Marker points representing the location of the marker coils with
respect to the MEG Sensors, or path to a marker file.
elp : None | str | array_like, shape (8, 3)
Digitizer points representing the location of the fiducials and the
marker coils with respect to the digitized head shape, or path to a
file containing these points.
hsp : None | str | array, shape (n_points, 3)
Digitizer head shape points, or path to head shape file. If more
than 10`000 points are in the head shape, they are automatically
decimated.
Returns
-------
dig_points : list
List of digitizer points for info['dig'].
dev_head_t : dict
A dictionary describe the device-head transformation.
"""
from ..coreg import fit_matched_points, _decimate_points
from ..io.kit.constants import KIT
from ..io.kit.coreg import read_mrk
if isinstance(hsp, str):
hsp = _read_dig_points(hsp)
n_pts = len(hsp)
if n_pts > KIT.DIG_POINTS:
hsp = _decimate_points(hsp, res=0.005)
n_new = len(hsp)
warn("The selected head shape contained {n_in} points, which is "
"more than recommended ({n_rec}), and was automatically "
"downsampled to {n_new} points. The preferred way to "
"downsample is using FastScan.".format(
n_in=n_pts, n_rec=KIT.DIG_POINTS, n_new=n_new))
if isinstance(elp, str):
elp_points = _read_dig_points(elp)
if len(elp_points) != 8:
raise ValueError("File %r should contain 8 points; got shape "
"%s." % (elp, elp_points.shape))
elp = elp_points
elif len(elp) != 8:
raise ValueError("ELP should contain 8 points; got shape "
"%s." % (elp.shape,))
if isinstance(mrk, str):
mrk = read_mrk(mrk)
mrk = apply_trans(als_ras_trans, mrk)
nasion, lpa, rpa = elp[:3]
nmtrans = get_ras_to_neuromag_trans(nasion, lpa, rpa)
elp = apply_trans(nmtrans, elp)
hsp = apply_trans(nmtrans, hsp)
# device head transform
trans = fit_matched_points(tgt_pts=elp[3:], src_pts=mrk, out='trans')
nasion, lpa, rpa = elp[:3]
elp = elp[3:]
dig_points = _make_dig_points(nasion, lpa, rpa, elp, hsp)
dev_head_t = Transform('meg', 'head', trans)
return dig_points, dev_head_t
##############################################################################
# From artemis123 (we have modified the function a bit)
def _artemis123_read_pos(nas, lpa, rpa, hpi, extra):
# move into MNE head coords
dig_points, _ = _call_make_dig_points(nas, lpa, rpa, hpi, extra)
return dig_points
##############################################################################
# From bti
def _make_bti_dig_points(nasion, lpa, rpa, hpi, extra,
convert=False, use_hpi=False,
bti_dev_t=False, dev_ctf_t=False):
_hpi = hpi if use_hpi else None
info_dig, ctf_head_t = _call_make_dig_points(nasion, lpa, rpa, _hpi, extra,
convert)
if convert:
t = combine_transforms(invert_transform(bti_dev_t), dev_ctf_t,
'meg', 'ctf_head')
dev_head_t = combine_transforms(t, ctf_head_t, 'meg', 'head')
else:
dev_head_t = Transform('meg', 'head', trans=None)
return info_dig, dev_head_t, ctf_head_t # ctf_head_t should not be needed
|