1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
|
# Authors: Jaakko Leppakangas <jaeilepp@student.jyu.fi>
#
# License: BSD (3-clause)
from datetime import datetime, timedelta
import time
import os.path as op
import re
from copy import deepcopy
from itertools import takewhile
import collections
import numpy as np
from .utils import (_pl, check_fname, _validate_type, verbose, warn, logger,
_check_pandas_installed, _mask_to_onsets_offsets)
from .utils import _DefaultEventParser
from .io.write import (start_block, end_block, write_float, write_name_list,
write_double, start_file)
from .io.constants import FIFF
from .io.open import fiff_open
from .io.tree import dir_tree_find
from .io.tag import read_tag
def _check_o_d_s(onset, duration, description):
onset = np.atleast_1d(np.array(onset, dtype=float))
if onset.ndim != 1:
raise ValueError('Onset must be a one dimensional array, got %s '
'(shape %s).'
% (onset.ndim, onset.shape))
duration = np.array(duration, dtype=float)
if duration.ndim == 0 or duration.shape == (1,):
duration = np.repeat(duration, len(onset))
if duration.ndim != 1:
raise ValueError('Duration must be a one dimensional array, '
'got %d.' % (duration.ndim,))
description = np.array(description, dtype=str)
if description.ndim == 0 or description.shape == (1,):
description = np.repeat(description, len(onset))
if description.ndim != 1:
raise ValueError('Description must be a one dimensional array, '
'got %d.' % (description.ndim,))
if any([';' in desc for desc in description]):
raise ValueError('Semicolons in descriptions not supported.')
if not (len(onset) == len(duration) == len(description)):
raise ValueError('Onset, duration and description must be '
'equal in sizes, got %s, %s, and %s.'
% (len(onset), len(duration), len(description)))
return onset, duration, description
class Annotations(object):
"""Annotation object for annotating segments of raw data.
Parameters
----------
onset : array of float, shape (n_annotations,)
The starting time of annotations in seconds after ``orig_time``.
duration : array of float, shape (n_annotations,)
Durations of the annotations in seconds.
description : array of str, shape (n_annotations,) | str
Array of strings containing description for each annotation. If a
string, all the annotations are given the same description. To reject
epochs, use description starting with keyword 'bad'. See example above.
orig_time : float | int | instance of datetime.datetime | array of int | None | str
A POSIX Timestamp, datetime or an array containing the timestamp as the
first element and microseconds as the second element. Determines the
starting time of annotation acquisition. If None (default),
starting time is determined from beginning of raw data acquisition.
In general, ``raw.info['meas_date']`` (or None) can be used for syncing
the annotations with raw data if their acquisiton is started at the
same time. If it is a string, it should conform to the ISO8601 format.
More precisely to this '%Y-%m-%d %H:%M:%S.%f' particular case of the
ISO8601 format where the delimiter between date and time is ' '.
Notes
-----
Annotations are added to instance of :class:`mne.io.Raw` as the attribute
:attr:`raw.annotations <mne.io.Raw.annotations>`.
To reject bad epochs using annotations, use
annotation description starting with 'bad' keyword. The epochs with
overlapping bad segments are then rejected automatically by default.
To remove epochs with blinks you can do:
>>> eog_events = mne.preprocessing.find_eog_events(raw) # doctest: +SKIP
>>> n_blinks = len(eog_events) # doctest: +SKIP
>>> onset = eog_events[:, 0] / raw.info['sfreq'] - 0.25 # doctest: +SKIP
>>> duration = np.repeat(0.5, n_blinks) # doctest: +SKIP
>>> description = ['bad blink'] * n_blinks # doctest: +SKIP
>>> annotations = mne.Annotations(onset, duration, description) # doctest: +SKIP
>>> raw.set_annotations(annotations) # doctest: +SKIP
>>> epochs = mne.Epochs(raw, events, event_id, tmin, tmax) # doctest: +SKIP
**orig_time**
If ``orig_time`` is None, the annotations are synced to the start of the
data (0 seconds). Otherwise the annotations are synced to sample 0 and
``raw.first_samp`` is taken into account the same way as with events.
When setting annotations, the following alignments
between ``raw.info['meas_date']`` and ``annotation.orig_time`` take place:
::
----------- meas_date=XX, orig_time=YY -----------------------------
| +------------------+
|______________| RAW |
| | |
| +------------------+
meas_date first_samp
.
. | +------+
. |_________| ANOT |
. | | |
. | +------+
. orig_time onset[0]
.
| +------+
|___________________| |
| | |
| +------+
orig_time onset[0]'
----------- meas_date=XX, orig_time=None ---------------------------
| +------------------+
|______________| RAW |
| | |
| +------------------+
. N +------+
. o_________| ANOT |
. n | |
. e +------+
.
| +------+
|________________________| |
| | |
| +------+
orig_time onset[0]'
----------- meas_date=None, orig_time=YY ---------------------------
N +------------------+
o______________| RAW |
n | |
e +------------------+
| +------+
|_________| ANOT |
| | |
| +------+
[[[ CRASH ]]]
----------- meas_date=None, orig_time=None -------------------------
N +------------------+
o______________| RAW |
n | |
e +------------------+
. N +------+
. o_________| ANOT |
. n | |
. e +------+
.
N +------+
o________________________| |
n | |
e +------+
orig_time onset[0]'
""" # noqa: E501
def __init__(self, onset, duration, description,
orig_time=None): # noqa: D102
if orig_time is not None:
orig_time = _handle_meas_date(orig_time)
self.orig_time = orig_time
self.onset, self.duration, self.description = _check_o_d_s(
onset, duration, description)
self._sort() # ensure we're sorted
def __repr__(self):
"""Show the representation."""
counter = collections.Counter(self.description)
kinds = ['%s (%s)' % k for k in counter.items()]
kinds = ', '.join(kinds[:3]) + ('' if len(kinds) <= 3 else '...')
kinds = (': ' if len(kinds) > 0 else '') + kinds
if self.orig_time is None:
orig = 'orig_time : None'
else:
orig = 'orig_time : %s' % datetime.utcfromtimestamp(self.orig_time)
return ('<Annotations | %s segment%s %s, %s>'
% (len(self.onset), _pl(len(self.onset)), kinds, orig))
def __len__(self):
"""Return the number of annotations."""
return len(self.duration)
def __add__(self, other):
"""Add (concatencate) two Annotation objects."""
out = self.copy()
out += other
return out
def __iadd__(self, other):
"""Add (concatencate) two Annotation objects in-place.
Both annotations must have the same orig_time
"""
if len(self) == 0:
self.orig_time = other.orig_time
if self.orig_time != other.orig_time:
raise ValueError("orig_time should be the same to "
"add/concatenate 2 annotations "
"(got %s != %s)" % (self.orig_time,
other.orig_time))
return self.append(other.onset, other.duration, other.description)
def __iter__(self):
"""Iterate over the annotations."""
for idx in range(len(self.onset)):
yield self.__getitem__(idx)
def __getitem__(self, key):
"""Propagate indexing and slicing to the underlying numpy structure."""
if isinstance(key, int):
out_keys = ('onset', 'duration', 'description', 'orig_time')
out_vals = (self.onset[key], self.duration[key],
self.description[key], self.orig_time)
return collections.OrderedDict(zip(out_keys, out_vals))
else:
key = list(key) if isinstance(key, tuple) else key
return Annotations(onset=self.onset[key],
duration=self.duration[key],
description=self.description[key],
orig_time=self.orig_time)
def append(self, onset, duration, description):
"""Add an annotated segment. Operates inplace.
Parameters
----------
onset : float | array-like
Annotation time onset from the beginning of the recording in
seconds.
duration : float | array-like
Duration of the annotation in seconds.
description : str | array-like
Description for the annotation. To reject epochs, use description
starting with keyword 'bad'
Returns
-------
self : mne.Annotations
The modified Annotations object.
Notes
-----
The array-like support for arguments allows this to be used similarly
to not only ``list.append``, but also
`list.extend <https://docs.python.org/3/library/stdtypes.html#mutable-sequence-types>`__.
""" # noqa: E501
onset, duration, description = _check_o_d_s(
onset, duration, description)
self.onset = np.append(self.onset, onset)
self.duration = np.append(self.duration, duration)
self.description = np.append(self.description, description)
self._sort()
return self
def copy(self):
"""Return a deep copy of self."""
return deepcopy(self)
def delete(self, idx):
"""Remove an annotation. Operates inplace.
Parameters
----------
idx : int | array-like of int
Index of the annotation to remove. Can be array-like to
remove multiple indices.
"""
self.onset = np.delete(self.onset, idx)
self.duration = np.delete(self.duration, idx)
self.description = np.delete(self.description, idx)
def save(self, fname):
"""Save annotations to FIF, CSV or TXT.
Typically annotations get saved in the FIF file for raw data
(e.g., as ``raw.annotations``), but this offers the possibility
to also save them to disk separately in different file formats
which are easier to share between packages.
Parameters
----------
fname : str
The filename to use.
"""
check_fname(fname, 'annotations', ('-annot.fif', '-annot.fif.gz',
'_annot.fif', '_annot.fif.gz',
'.txt', '.csv'))
if fname.endswith(".txt"):
_write_annotations_txt(fname, self)
elif fname.endswith(".csv"):
_write_annotations_csv(fname, self)
else:
with start_file(fname) as fid:
_write_annotations(fid, self)
def _sort(self):
"""Sort in place."""
# instead of argsort here we use sorted so that it gives us
# the onset-then-duration hierarchy
vals = sorted(zip(self.onset, self.duration, range(len(self))))
order = list(list(zip(*vals))[-1]) if len(vals) else []
self.onset = self.onset[order]
self.duration = self.duration[order]
self.description = self.description[order]
def crop(self, tmin=None, tmax=None, emit_warning=False):
"""Remove all annotation that are outside of [tmin, tmax].
The method operates inplace.
Parameters
----------
tmin : float | None
Start time of selection in seconds.
tmax : float | None
End time of selection in seconds.
emit_warning : bool
Whether to emit warnings when limiting or omitting annotations.
Defaults to False.
Returns
-------
self : instance of Annotations
The cropped Annotations object.
"""
if len(self) == 0:
return # no annotations, nothing to do
offset = 0 if self.orig_time is None else self.orig_time
absolute_onset = self.onset + offset
absolute_offset = absolute_onset + self.duration
tmin = tmin if tmin is not None else absolute_onset.min()
tmax = tmax if tmax is not None else absolute_offset.max()
if tmin > tmax:
raise ValueError('tmax should be greater than tmin.')
out_of_bounds = (absolute_onset > tmax) | (absolute_offset < tmin)
# clip the left side
clip_left_elem = (absolute_onset < tmin) & ~out_of_bounds
self.onset[clip_left_elem] = tmin - offset
diff = tmin - absolute_onset[clip_left_elem]
self.duration[clip_left_elem] = self.duration[clip_left_elem] - diff
# clip the right side
clip_right_elem = (absolute_offset > tmax) & ~out_of_bounds
diff = absolute_offset[clip_right_elem] - tmax
self.duration[clip_right_elem] = self.duration[clip_right_elem] - diff
# remove out of bounds
self.onset = self.onset.compress(~out_of_bounds)
self.duration = self.duration.compress(~out_of_bounds)
self.description = self.description.compress(~out_of_bounds)
if emit_warning:
omitted = out_of_bounds.sum()
if omitted > 0:
warn('Omitted %s annotation(s) that were outside data'
' range.' % omitted)
limited = clip_left_elem.sum() + clip_right_elem.sum()
if limited > 0:
warn('Limited %s annotation(s) that were expanding outside the'
' data range.' % limited)
return self
def _combine_annotations(one, two, one_n_samples, one_first_samp,
two_first_samp, sfreq, meas_date):
"""Combine a tuple of annotations."""
if one is None and two is None:
return None
elif two is None:
return one
elif one is None:
one = Annotations([], [], [], None)
# Compute the shift necessary for alignment:
# 1. The shift (in time) due to concatenation
shift = one_n_samples / sfreq
meas_date = _handle_meas_date(meas_date)
# 2. Shift by the difference in meas_date and one.orig_time
if one.orig_time is not None:
shift += one_first_samp / sfreq
shift += meas_date - one.orig_time
# 3. Shift by the difference in meas_date and two.orig_time
if two.orig_time is not None:
shift -= two_first_samp / sfreq
shift -= meas_date - two.orig_time
onset = np.concatenate([one.onset, two.onset + shift])
duration = np.concatenate([one.duration, two.duration])
description = np.concatenate([one.description, two.description])
return Annotations(onset, duration, description, one.orig_time)
def _handle_meas_date(meas_date):
"""Convert meas_date to seconds.
If `meas_date` is a string, it should conform to the ISO8601 format.
More precisely to this '%Y-%m-%d %H:%M:%S.%f' particular case of the
ISO8601 format where the delimiter between date and time is ' '.
Otherwise, this function returns 0. Note that ISO8601 allows for ' ' or 'T'
as delimiters between date and time.
"""
if meas_date is None:
meas_date = 0
elif isinstance(meas_date, str):
ACCEPTED_ISO8601 = '%Y-%m-%d %H:%M:%S.%f'
try:
meas_date = datetime.strptime(meas_date, ACCEPTED_ISO8601)
except ValueError:
meas_date = 0
else:
unix_ref_time = datetime.utcfromtimestamp(0)
meas_date = (meas_date - unix_ref_time).total_seconds()
meas_date = round(meas_date, 6) # round that 6th decimal
elif isinstance(meas_date, datetime):
meas_date = float(time.mktime(meas_date.timetuple()))
elif not np.isscalar(meas_date):
if len(meas_date) > 1:
meas_date = meas_date[0] + meas_date[1] / 1000000.
else:
meas_date = meas_date[0]
return float(meas_date)
def _sync_onset(raw, onset, inverse=False):
"""Adjust onsets in relation to raw data."""
meas_date = _handle_meas_date(raw.info['meas_date'])
if raw.annotations.orig_time is None:
annot_start = onset
else:
offset = -raw._first_time if inverse else raw._first_time
annot_start = (raw.annotations.orig_time - meas_date) - offset + onset
return annot_start
def _annotations_starts_stops(raw, kinds, name='unknown', invert=False):
"""Get starts and stops from given kinds.
onsets and ends are inclusive.
"""
_validate_type(kinds, (str, list, tuple), str(type(kinds)),
"str, list or tuple")
if isinstance(kinds, str):
kinds = [kinds]
else:
for kind in kinds:
_validate_type(kind, 'str', "All entries")
if len(raw.annotations) == 0:
onsets, ends = np.array([], int), np.array([], int)
else:
idxs = [idx for idx, desc in enumerate(raw.annotations.description)
if any(desc.upper().startswith(kind.upper())
for kind in kinds)]
# onsets are already sorted
onsets = raw.annotations.onset[idxs]
onsets = _sync_onset(raw, onsets)
ends = onsets + raw.annotations.duration[idxs]
onsets = raw.time_as_index(onsets, use_rounding=True)
ends = raw.time_as_index(ends, use_rounding=True)
assert (onsets <= ends).all() # all durations >= 0
if invert:
# We need to eliminate overlaps here, otherwise wacky things happen,
# so we carefully invert the relationship
mask = np.zeros(len(raw.times), bool)
for onset, end in zip(onsets, ends):
mask[onset:end] = True
mask = ~mask
extras = (onsets == ends)
extra_onsets, extra_ends = onsets[extras], ends[extras]
onsets, ends = _mask_to_onsets_offsets(mask)
# Keep ones where things were exactly equal
del extras
# we could do this with a np.insert+np.searchsorted, but our
# ordered-ness should get us it for free
onsets = np.sort(np.concatenate([onsets, extra_onsets]))
ends = np.sort(np.concatenate([ends, extra_ends]))
assert (onsets <= ends).all()
return onsets, ends
def _write_annotations(fid, annotations):
"""Write annotations."""
start_block(fid, FIFF.FIFFB_MNE_ANNOTATIONS)
write_float(fid, FIFF.FIFF_MNE_BASELINE_MIN, annotations.onset)
write_float(fid, FIFF.FIFF_MNE_BASELINE_MAX,
annotations.duration + annotations.onset)
# To allow : in description, they need to be replaced for serialization
write_name_list(fid, FIFF.FIFF_COMMENT, [d.replace(':', ';') for d in
annotations.description])
if annotations.orig_time is not None:
write_double(fid, FIFF.FIFF_MEAS_DATE, annotations.orig_time)
end_block(fid, FIFF.FIFFB_MNE_ANNOTATIONS)
def _write_annotations_csv(fname, annot):
pd = _check_pandas_installed(strict=True)
meas_date = _handle_meas_date(annot.orig_time)
dt = datetime.utcfromtimestamp(meas_date)
onsets_dt = [dt + timedelta(seconds=o) for o in annot.onset]
df = pd.DataFrame(dict(onset=onsets_dt, duration=annot.duration,
description=annot.description))
df.to_csv(fname, index=False)
def _write_annotations_txt(fname, annot):
content = "# MNE-Annotations\n"
if annot.orig_time is not None:
meas_date = _handle_meas_date(annot.orig_time)
orig_dt = datetime.utcfromtimestamp(meas_date)
content += "# orig_time : %s \n" % orig_dt
content += "# onset, duration, description\n"
data = np.array([annot.onset, annot.duration, annot.description],
dtype=str).T
with open(fname, 'wb') as fid:
fid.write(content.encode())
np.savetxt(fid, data, delimiter=',', fmt="%s")
def read_annotations(fname, sfreq='auto', uint16_codec=None):
r"""Read annotations from a file.
This function reads a .fif, .fif.gz, .vrmk, .edf, .txt, .csv .cnt, .cef,
or .set file and makes an :class:`mne.Annotations` object.
Parameters
----------
fname : str
The filename.
sfreq : float | 'auto'
The sampling frequency in the file. This parameter is necessary for
\*.vmrk and \*.cef files as Annotations are expressed in seconds and
\*.vmrk/\*.cef files are in samples. For any other file format,
``sfreq`` is omitted. If set to 'auto' then the ``sfreq`` is taken
from the respective info file of the same name with according file
extension (\*.vhdr for brainvision; \*.dap for Curry 7; \*.cdt.dpa for
Curry 8). So data.vrmk looks for sfreq in data.vhdr, data.cef looks in
data.dap and data.cdt.cef looks in data.cdt.dpa.
uint16_codec : str | None
This parameter is only used in EEGLAB (\*.set) and omitted otherwise.
If your \*.set file contains non-ascii characters, sometimes reading
it may fail and give rise to error message stating that "buffer is
too small". ``uint16_codec`` allows to specify what codec (for example:
'latin1' or 'utf-8') should be used when reading character arrays and
can therefore help you solve this problem.
Returns
-------
annot : instance of Annotations | None
The annotations.
Notes
-----
The annotations stored in a .csv require the onset columns to be
timestamps. If you have onsets as floats (in seconds), you should use the
.txt extension.
"""
from .io.brainvision.brainvision import _read_annotations_brainvision
from .io.eeglab.eeglab import _read_annotations_eeglab
from .io.edf.edf import _read_annotations_edf
from .io.cnt.cnt import _read_annotations_cnt
from .io.curry.curry import _read_annotations_curry
from .io.ctf.markers import _read_annotations_ctf
name = op.basename(fname)
if name.endswith(('fif', 'fif.gz')):
# Read FiF files
ff, tree, _ = fiff_open(fname, preload=False)
with ff as fid:
annotations = _read_annotations_fif(fid, tree)
elif name.endswith('txt'):
orig_time = _read_annotations_txt_parse_header(fname)
onset, duration, description = _read_annotations_txt(fname)
annotations = Annotations(onset=onset, duration=duration,
description=description,
orig_time=orig_time)
elif name.endswith('vmrk'):
annotations = _read_annotations_brainvision(fname, sfreq=sfreq)
elif name.endswith('csv'):
annotations = _read_annotations_csv(fname)
elif name.endswith('cnt'):
annotations = _read_annotations_cnt(fname)
elif name.endswith('ds'):
annotations = _read_annotations_ctf(fname)
elif name.endswith('cef'):
annotations = _read_annotations_curry(fname, sfreq=sfreq)
elif name.endswith('set'):
annotations = _read_annotations_eeglab(fname,
uint16_codec=uint16_codec)
elif name.endswith(('edf', 'bdf', 'gdf')):
onset, duration, description = _read_annotations_edf(fname)
onset = np.array(onset, dtype=float)
duration = np.array(duration, dtype=float)
annotations = Annotations(onset=onset, duration=duration,
description=description,
orig_time=None)
elif name.startswith('events_') and fname.endswith('mat'):
annotations = _read_brainstorm_annotations(fname)
else:
raise IOError('Unknown annotation file format "%s"' % fname)
if annotations is None:
raise IOError('No annotation data found in file "%s"' % fname)
return annotations
def _read_annotations_csv(fname):
"""Read annotations from csv.
Parameters
----------
fname : str
The filename.
Returns
-------
annot : instance of Annotations
The annotations.
"""
pd = _check_pandas_installed(strict=True)
df = pd.read_csv(fname)
orig_time = df['onset'].values[0]
try:
float(orig_time)
warn('It looks like you have provided annotation onsets as floats. '
'These will be interpreted as MILLISECONDS. If that is not what '
'you want, save your CSV as a TXT file; the TXT reader accepts '
'onsets in seconds.')
except ValueError:
pass
orig_time = _handle_meas_date(orig_time)
onset_dt = pd.to_datetime(df['onset'])
onset = (onset_dt - onset_dt[0]).dt.total_seconds()
duration = df['duration'].values.astype(float)
description = df['description'].values
if orig_time == 0:
orig_time = None
return Annotations(onset, duration, description, orig_time)
def _read_brainstorm_annotations(fname, orig_time=None):
"""Read annotations from a Brainstorm events_ file.
Parameters
----------
fname : str
The filename
orig_time : float | int | instance of datetime | array of int | None
A POSIX Timestamp, datetime or an array containing the timestamp as the
first element and microseconds as the second element. Determines the
starting time of annotation acquisition. If None (default),
starting time is determined from beginning of raw data acquisition.
In general, ``raw.info['meas_date']`` (or None) can be used for syncing
the annotations with raw data if their acquisiton is started at the
same time.
Returns
-------
annot : instance of Annotations | None
The annotations.
"""
from scipy import io
def get_duration_from_times(t):
return t[1] - t[0] if t.shape[0] == 2 else np.zeros(len(t[0]))
annot_data = io.loadmat(fname)
onsets, durations, descriptions = (list(), list(), list())
for label, _, _, _, times, _, _ in annot_data['events'][0]:
onsets.append(times[0])
durations.append(get_duration_from_times(times))
n_annot = len(times[0])
descriptions += [str(label[0])] * n_annot
return Annotations(onset=np.concatenate(onsets),
duration=np.concatenate(durations),
description=descriptions,
orig_time=orig_time)
def _is_iso8601(candidate_str):
ISO8601 = r'^\d{4}-\d{2}-\d{2}[ T]\d{2}:\d{2}:\d{2}\.\d{6}$'
return re.compile(ISO8601).match(candidate_str) is not None
def _read_annotations_txt_parse_header(fname):
def is_orig_time(x):
return x.startswith('# orig_time :')
with open(fname) as fid:
header = list(takewhile(lambda x: x.startswith('#'), fid))
orig_values = [h[13:].strip() for h in header if is_orig_time(h)]
orig_values = [_handle_meas_date(orig) for orig in orig_values
if _is_iso8601(orig)]
return None if not orig_values else orig_values[0]
def _read_annotations_txt(fname):
onset, duration, desc = np.loadtxt(fname, delimiter=',',
dtype=np.bytes_, unpack=True)
onset = [float(o.decode()) for o in onset]
duration = [float(d.decode()) for d in duration]
desc = [str(d.decode()).strip() for d in desc]
return onset, duration, desc
def _read_annotations_fif(fid, tree):
"""Read annotations."""
annot_data = dir_tree_find(tree, FIFF.FIFFB_MNE_ANNOTATIONS)
if len(annot_data) == 0:
annotations = None
else:
annot_data = annot_data[0]
orig_time = None
onset, duration, description = list(), list(), list()
for ent in annot_data['directory']:
kind = ent.kind
pos = ent.pos
tag = read_tag(fid, pos)
if kind == FIFF.FIFF_MNE_BASELINE_MIN:
onset = tag.data
onset = list() if onset is None else onset
elif kind == FIFF.FIFF_MNE_BASELINE_MAX:
duration = tag.data
duration = list() if duration is None else duration - onset
elif kind == FIFF.FIFF_COMMENT:
description = tag.data.split(':')
description = [d.replace(';', ':') for d in
description]
elif kind == FIFF.FIFF_MEAS_DATE:
orig_time = float(tag.data)
assert len(onset) == len(duration) == len(description)
annotations = Annotations(onset, duration, description,
orig_time)
return annotations
def _ensure_annotation_object(obj):
"""Check that the object is an Annotations instance.
Raise error otherwise.
"""
if not isinstance(obj, Annotations):
raise ValueError('Annotations must be an instance of '
'mne.Annotations. Got %s.' % obj)
def _select_annotations_based_on_description(descriptions, event_id, regexp):
"""Get a collection of descriptions and returns index of selected."""
regexp_comp = re.compile('.*' if regexp is None else regexp)
event_id_ = dict()
dropped = []
# Iterate over the sorted descriptions so that the Counter mapping
# is slightly less arbitrary
for desc in sorted(descriptions):
if desc in event_id_:
continue
if regexp_comp.match(desc) is None:
continue
if isinstance(event_id, dict):
if desc in event_id:
event_id_[desc] = event_id[desc]
else:
continue
else:
trigger = event_id(desc)
if trigger is not None:
event_id_[desc] = trigger
else:
dropped.append(desc)
event_sel = [ii for ii, kk in enumerate(descriptions)
if kk in event_id_]
if len(event_sel) == 0 and regexp is not None:
raise ValueError('Could not find any of the events you specified.')
return event_sel, event_id_
def _check_event_id(event_id, raw):
from .io.brainvision.brainvision import _BVEventParser
from .io.brainvision.brainvision import _check_bv_annot
from .io.brainvision.brainvision import RawBrainVision
from .io import RawFIF, RawArray
if event_id is None:
return _DefaultEventParser()
elif event_id == 'auto':
if isinstance(raw, RawBrainVision):
return _BVEventParser()
elif (isinstance(raw, (RawFIF, RawArray)) and
_check_bv_annot(raw.annotations.description)):
logger.info('Non-RawBrainVision raw using branvision markers')
return _BVEventParser()
else:
return _DefaultEventParser()
elif callable(event_id) or isinstance(event_id, dict):
return event_id
else:
raise ValueError('Invalid input event_id')
@verbose
def events_from_annotations(raw, event_id="auto",
regexp=r'^(?![Bb][Aa][Dd]|[Ee][Dd][Gg][Ee]).*$',
use_rounding=True, chunk_duration=None,
verbose=None):
"""Get events and event_id from an Annotations object.
Parameters
----------
raw : instance of Raw
The raw data for which Annotations are defined.
event_id : dict | callable | None | 'auto'
Can be:
- **dict**: map descriptions (keys) to integer event codes (values).
Only the descriptions present will be mapped, others will be ignored.
- **callable**: must take a string input and returns an integer event
code or None to ignore it.
- **None**: Map descriptions to unique integer values based on their
``sorted`` order.
- **'auto' (default)**: prefer a raw-format-specific parser:
- Brainvision: map stimulus events to their integer part; response
events to integer part + 1000; optic events to integer part + 2000;
'SyncStatus/Sync On' to 99998; 'New Segment/' to 99999;
all others like ``None`` with an offset of 10000.
- Other raw formats: Behaves like None.
.. versionadded:: 0.18
regexp : str | None
Regular expression used to filter the annotations whose
descriptions is a match. The default ignores descriptions beginning
``'bad'`` or ``'edge'`` (case-insensitive).
.. versionchanged:: 0.18
Default ignores bad and edge descriptions.
use_rounding : boolean
If True, use rounding (instead of truncation) when converting
times to indices. This can help avoid non-unique indices.
chunk_duration: float | None
Chunk duration in seconds. If ``chunk_duration`` is set to None
(default), generated events correspond to the annotation onsets.
If not, :func:`mne.events_from_annotations` returns as many events as
they fit within the annotation duration spaced according to
``chunk_duration``. As a consequence annotations with duration shorter
than ``chunk_duration`` will not contribute events.
%(verbose)s
Returns
-------
events : ndarray, shape (n_events, 3)
The events.
event_id : dict
The event_id variable that can be passed to Epochs.
"""
if len(raw.annotations) == 0:
event_id = dict() if not isinstance(event_id, dict) else event_id
return np.empty((0, 3), dtype=int), event_id
annotations = raw.annotations
event_id = _check_event_id(event_id, raw)
event_sel, event_id_ = _select_annotations_based_on_description(
annotations.description, event_id=event_id, regexp=regexp)
if chunk_duration is None:
inds = raw.time_as_index(annotations.onset, use_rounding=use_rounding,
origin=annotations.orig_time) + raw.first_samp
values = [event_id_[kk] for kk in annotations.description[event_sel]]
inds = inds[event_sel]
else:
inds = values = np.array([]).astype(int)
for annot in annotations[event_sel]:
annot_offset = annot['onset'] + annot['duration']
_onsets = np.arange(start=annot['onset'], stop=annot_offset,
step=chunk_duration)
good_events = annot_offset - _onsets >= chunk_duration
if good_events.any():
_onsets = _onsets[good_events]
_inds = raw.time_as_index(_onsets,
use_rounding=use_rounding,
origin=annotations.orig_time)
_inds += raw.first_samp
inds = np.append(inds, _inds)
_values = np.full(shape=len(_inds),
fill_value=event_id_[annot['description']],
dtype=int)
values = np.append(values, _values)
events = np.c_[inds, np.zeros(len(inds)), values].astype(int)
logger.info('Used Annotations descriptions: %s' %
(list(event_id_.keys()),))
return events, event_id_
|