1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
|
"""Dynamic Imaging of Coherent Sources (DICS)."""
# Authors: Marijn van Vliet <w.m.vanvliet@gmail.com>
# Britta Westner <britta.wstnr@gmail.com>
# Susanna Aro <susanna.aro@aalto.fi>
# Roman Goj <roman.goj@gmail.com>
#
# License: BSD (3-clause)
import numpy as np
from ..utils import (logger, verbose, warn, _check_one_ch_type,
_check_channels_spatial_filter, _check_rank,
_check_option)
from ..forward import _subject_from_forward
from ..minimum_norm.inverse import combine_xyz, _check_reference
from ..source_estimate import _make_stc, _get_src_type
from ..time_frequency import csd_fourier, csd_multitaper, csd_morlet
from ._compute_beamformer import (_check_proj_match, _prepare_beamformer_input,
_compute_beamformer, _check_src_type,
Beamformer, _compute_power)
@verbose
def make_dics(info, forward, csd, reg=0.05, label=None, pick_ori=None,
rank=None, inversion='single', weight_norm=None,
normalize_fwd=True, real_filter=False, reduce_rank=False,
verbose=None):
"""Compute a Dynamic Imaging of Coherent Sources (DICS) spatial filter.
This is a beamformer filter that can be used to estimate the source power
at a specific frequency range [1]_. It does this by constructing a spatial
filter for each source point. The computation of these filters is very
similar to those of the LCMV beamformer (:func:`make_lcmv`), but instead of
operating on a covariance matrix, the CSD matrix is used. When applying
these filters to a CSD matrix (see :func:`apply_dics_csd`), the source
power can be estimated for each source point.
Parameters
----------
info : instance of Info
Measurement info, e.g. ``epochs.info``.
forward : instance of Forward
Forward operator.
csd : instance of CrossSpectralDensity
The data cross-spectral density (CSD) matrices. A source estimate is
performed for each frequency or frequency-bin defined in the CSD
object.
reg : float
The regularization to apply to the cross-spectral density before
computing the inverse.
label : Label | None
Restricts the solution to a given label.
pick_ori : None | 'normal' | 'max-power'
The source orientation to compute the filter for:
``None`` :
orientations are pooled (Default)
'normal' :
filters are computed for the orientation tangential to the
cortical surface
'max-power' :
filters are computer for the orientation that maximizes
spectral power.
rank : None | int | 'full'
This controls the effective rank of the covariance matrix when
computing the inverse. The rank can be set explicitly by specifying an
integer value. If ``None``, the rank will be automatically estimated.
Since applying regularization will always make the covariance matrix
full rank, the rank is estimated before regularization in this case. If
'full', the rank will be estimated after regularization and hence
will mean using the full rank, unless ``reg=0`` is used.
The default is None.
.. versionadded:: 0.17
inversion : 'single' | 'matrix'
This determines how the beamformer deals with source spaces in "free"
orientation. Such source spaces define three orthogonal dipoles at each
source point. When ``inversion='single'``, each dipole is considered
as an individual source and the corresponding spatial filter is
computed for each dipole separately. When ``inversion='matrix'``, all
three dipoles at a source vertex are considered as a group and the
spatial filters are computed jointly using a matrix inversion. While
``inversion='single'`` is more stable, ``inversion='matrix'`` is more
precise. See section 5 of [5]_. Defaults to 'single'.
weight_norm : 'unit-noise-gain' | 'nai' | None
If 'unit-noise-gain', the unit-noise gain minimum variance beamformer
will be computed (Borgiotti-Kaplan beamformer) [2]_,
If 'nai', the Neural Activity Index [4]_ will be computed.
Defaults to ``None``, in which case no normalization is performed.
normalize_fwd : bool
Whether to normalize the forward solution. Defaults to ``True``. Note
that this normalization is not required when weight normalization
(``weight_norm``) is used.
real_filter : bool
If ``True``, take only the real part of the cross-spectral-density
matrices to compute real filters. Defaults to ``False``.
reduce_rank : bool
If ``True``, the rank of the forward operator will be reduced by 1 for
each spatial location, prior to inversion. This may be necessary when
you use a single sphere model for MEG and ``mode='vertex'``.
Defaults to ``False``.
%(verbose)s
Returns
-------
filters : instance of Beamformer
Dictionary containing filter weights from DICS beamformer.
Contains the following keys:
'weights' : ndarray, shape (n_frequencies, n_weights)
For each frequency, the filter weights of the beamformer.
'csd' : instance of CrossSpectralDensity
The data cross-spectral density matrices used to compute the
beamformer.
'ch_names' : list of str
Channels used to compute the beamformer.
'proj' : ndarray, shape (n_channels, n_channels)
Projections used to compute the beamformer.
'vertices' : list of ndarray
Vertices for which the filter weights were computed.
'inversion' : 'single' | 'matrix'
Whether the spatial filters were computed for each dipole
separately or jointly for all dipoles at each vertex using a
matrix inversion.
'weight_norm' : None | 'unit-noise-gain'
The normalization of the weights.
'normalize_fwd' : bool
Whether the forward solution was normalized
'n_orient' : int
Number of source orientations defined in the forward model.
'subject' : str
The subject ID.
'src_type' : str
Type of source space.
See Also
--------
apply_dics_csd, tf_dics
Notes
-----
The original reference is [1]_. See [5]_ for a tutorial style paper on the
topic.
The DICS beamformer is very similar to the LCMV (:func:`make_lcmv`)
beamformer and many of the parameters are shared. However,
:func:`make_dics` and :func:`make_lcmv` currently have different defaults
for these parameters, which were settled on separately through extensive
practical use case testing (but not necessarily exhaustive parameter space
searching), and it remains to be seen how functionally interchangeable they
could be.
The default setting reproduce the DICS beamformer as described in [5]_::
inversion='single', weight_norm=None, normalize_fwd=True
To use the :func:`make_lcmv` defaults, use::
inversion='matrix', weight_norm='unit-gain', normalize_fwd=False
For more information about ``real_filter``, see the
supplemental information from [3]_.
References
----------
.. [1] Gross et al. (2001) Dynamic imaging of coherent sources: Studying
neural interactions in the human brain. PNAS vol. 98 (2)
pp. 694-699. https://doi.org/10.1073/pnas.98.2.694
.. [2] Sekihara & Nagarajan. Adaptive spatial filters for electromagnetic
brain imaging (2008) Springer Science & Business Media
.. [3] Hipp JF, Engel AK, Siegel M (2011) Oscillatory Synchronization
in Large-Scale Cortical Networks Predicts Perception.
Neuron (2011) vol 69 pp. 387-396.
https://doi.org/10.1016/j.neuron.2010.12.027
.. [4] Van Veen et al. Localization of brain electrical activity via
linearly constrained minimum variance spatial filtering.
Biomedical Engineering (1997) vol. 44 (9) pp. 867--880
.. [5] van Vliet, et al. (2018) Analysis of functional connectivity and
oscillatory power using DICS: from raw MEG data to group-level
statistics in Python. bioRxiv, 245530.
https://doi.org/10.1101/245530
""" # noqa: E501
rank = _check_rank(rank)
_check_option('pick_ori', pick_ori, [None, 'normal', 'max-power'])
_check_option('inversion', inversion, ['single', 'matrix'])
_check_option('weight_norm', weight_norm, ['unit-noise-gain', 'nai', None])
# Leadfield rank and optional rank reduction
# (to deal with problems with complex eigenvalues within the computation
# of the optimal orientation when using pinv if the leadfield was only
# rank 2 (e.g., with the spherical headmodel of the phantom data),
# see gh-4568 and gh-4628.
if reduce_rank and not (pick_ori == 'max-power' and inversion == 'matrix'):
raise NotImplementedError(
'The computation of spatial filters with rank reduction using '
'reduce_rank=True is only implemented with pick_ori=="max-power" '
'and inversion="matrix".'
)
frequencies = [np.mean(freq_bin) for freq_bin in csd.frequencies]
n_freqs = len(frequencies)
n_orient = forward['sol']['ncol'] // forward['nsource']
# Determine how to normalize the leadfield
if normalize_fwd:
if inversion == 'single':
if weight_norm == 'unit-noise-gain':
raise ValueError('The computation of a unit-noise-gain '
'beamformer with inversion="single" is not '
'stable with depth normalization, set '
'normalize_fwd to False.')
combine_xyz = False
else:
combine_xyz = 'fro'
exp = 1. # turn on depth weighting with exponent 1
else:
exp = None # turn off depth weighting entirely
combine_xyz = False
_check_one_ch_type('dics', info, forward)
# pick info, get gain matrix, etc.
_, info, proj, vertices, G, _, nn, orient_std = _prepare_beamformer_input(
info, forward, label, pick_ori,
combine_xyz=combine_xyz, exp=exp)
subject = _subject_from_forward(forward)
src_type = _get_src_type(forward['src'], vertices)
del forward
ch_names = list(info['ch_names'])
csd_picks = [csd.ch_names.index(ch) for ch in ch_names]
logger.info('Computing DICS spatial filters...')
Ws = []
for i, freq in enumerate(frequencies):
if n_freqs > 1:
logger.info(' computing DICS spatial filter at %sHz (%d/%d)' %
(freq, i + 1, n_freqs))
Cm = csd.get_data(index=i)
if real_filter:
Cm = Cm.real
# Ensure the CSD is in the same order as the leadfield
Cm = Cm[csd_picks, :][:, csd_picks]
# compute spatial filter
W = _compute_beamformer(G, Cm, reg, n_orient, weight_norm, pick_ori,
reduce_rank, rank=rank, inversion=inversion,
nn=nn, orient_std=orient_std)
Ws.append(W)
Ws = np.array(Ws)
filters = Beamformer(
kind='DICS', weights=Ws, csd=csd, ch_names=ch_names, proj=proj,
vertices=vertices, subject=subject, pick_ori=pick_ori,
inversion=inversion, weight_norm=weight_norm,
normalize_fwd=bool(normalize_fwd), src_type=src_type,
n_orient=n_orient if pick_ori is None else 1)
return filters
def _apply_dics(data, filters, info, tmin):
"""Apply DICS spatial filter to data for source reconstruction."""
if isinstance(data, np.ndarray) and data.ndim == 2:
data = [data]
one_epoch = True
else:
one_epoch = False
Ws = filters['weights']
one_freq = len(Ws) == 1
subject = filters['subject']
# compatibility with 0.16, add src_type as None if not present:
filters, warn_text = _check_src_type(filters)
for i, M in enumerate(data):
if not one_epoch:
logger.info("Processing epoch : %d" % (i + 1))
# Apply SSPs
if info['projs']:
_check_proj_match(info, filters)
M = np.dot(filters['proj'], M)
stcs = []
for W in Ws:
# project to source space using beamformer weights
sol = np.dot(W, M)
if filters['n_orient'] > 1:
logger.info('combining the current components...')
sol = combine_xyz(sol)
tstep = 1.0 / info['sfreq']
stcs.append(_make_stc(sol, vertices=filters['vertices'],
src_type=filters['src_type'], tmin=tmin,
tstep=tstep, subject=subject,
warn_text=warn_text))
if one_freq:
yield stcs[0]
else:
yield stcs
logger.info('[done]')
@verbose
def apply_dics(evoked, filters, verbose=None):
"""Apply Dynamic Imaging of Coherent Sources (DICS) beamformer weights.
Apply Dynamic Imaging of Coherent Sources (DICS) beamformer weights
on evoked data.
.. warning:: The result of this function is meant as an intermediate step
for further processing (such as computing connectivity). If
you are interested in estimating source time courses, use an
LCMV beamformer (:func:`make_lcmv`, :func:`apply_lcmv`)
instead. If you are interested in estimating spectral power at
the source level, use :func:`apply_dics_csd`.
.. warning:: This implementation has not been heavily tested so please
report any issues or suggestions.
Parameters
----------
evoked : Evoked
Evoked data to apply the DICS beamformer weights to.
filters : instance of Beamformer
DICS spatial filter (beamformer weights)
Filter weights returned from :func:`make_dics`.
%(verbose)s
Returns
-------
stc : SourceEstimate | VolSourceEstimate | list
Source time courses. If the DICS beamformer has been computed for more
than one frequency, a list is returned containing for each frequency
the corresponding time courses.
See Also
--------
apply_dics_epochs
apply_dics_csd
""" # noqa: E501
_check_reference(evoked)
info = evoked.info
data = evoked.data
tmin = evoked.times[0]
sel = _check_channels_spatial_filter(evoked.ch_names, filters)
data = data[sel]
stc = _apply_dics(data=data, filters=filters, info=info, tmin=tmin)
return next(stc)
@verbose
def apply_dics_epochs(epochs, filters, return_generator=False, verbose=None):
"""Apply Dynamic Imaging of Coherent Sources (DICS) beamformer weights.
Apply Dynamic Imaging of Coherent Sources (DICS) beamformer weights
on single trial data.
.. warning:: The result of this function is meant as an intermediate step
for further processing (such as computing connectivity). If
you are interested in estimating source time courses, use an
LCMV beamformer (:func:`make_lcmv`, :func:`apply_lcmv`)
instead. If you are interested in estimating spectral power at
the source level, use :func:`apply_dics_csd`.
.. warning:: This implementation has not been heavily tested so please
report any issue or suggestions.
Parameters
----------
epochs : Epochs
Single trial epochs.
filters : instance of Beamformer
DICS spatial filter (beamformer weights)
Filter weights returned from :func:`make_dics`. The DICS filters must
have been computed for a single frequency only.
return_generator : bool
Return a generator object instead of a list. This allows iterating
over the stcs without having to keep them all in memory.
%(verbose)s
Returns
-------
stc: list | generator of (SourceEstimate | VolSourceEstimate)
The source estimates for all epochs.
See Also
--------
apply_dics
apply_dics_csd
"""
_check_reference(epochs)
if len(filters['weights']) > 1:
raise ValueError(
'This function only works on DICS beamformer weights that have '
'been computed for a single frequency. When calling make_dics(), '
'make sure to use a CSD object with only a single frequency (or '
'frequency-bin) defined.'
)
info = epochs.info
tmin = epochs.times[0]
sel = _check_channels_spatial_filter(epochs.ch_names, filters)
data = epochs.get_data()[:, sel, :]
stcs = _apply_dics(data=data, filters=filters, info=info, tmin=tmin)
if not return_generator:
stcs = list(stcs)
return stcs
@verbose
def apply_dics_csd(csd, filters, verbose=None):
"""Apply Dynamic Imaging of Coherent Sources (DICS) beamformer weights.
Apply a previously computed DICS beamformer to a cross-spectral density
(CSD) object to estimate source power in time and frequency windows
specified in the CSD object [1]_.
Parameters
----------
csd : instance of CrossSpectralDensity
The data cross-spectral density (CSD) matrices. A source estimate is
performed for each frequency or frequency-bin defined in the CSD
object.
filters : instance of Beamformer
DICS spatial filter (beamformer weights)
Filter weights returned from `make_dics`.
%(verbose)s
Returns
-------
stc : SourceEstimate
Source power with frequency instead of time.
frequencies : list of float
The frequencies for which the source power has been computed. If the
data CSD object defines frequency-bins instead of exact frequencies,
the mean of each bin is returned.
References
----------
.. [1] Gross et al. Dynamic imaging of coherent sources: Studying neural
interactions in the human brain. PNAS (2001) vol. 98 (2) pp. 694-699
""" # noqa: E501
ch_names = filters['ch_names']
vertices = filters['vertices']
n_orient = filters['n_orient']
subject = filters['subject']
n_sources = np.sum([len(v) for v in vertices])
# If CSD is summed over multiple frequencies, take the average frequency
frequencies = [np.mean(dfreq) for dfreq in csd.frequencies]
n_freqs = len(frequencies)
source_power = np.zeros((n_sources, len(csd.frequencies)))
# Ensure the CSD is in the same order as the weights
csd_picks = [csd.ch_names.index(ch) for ch in ch_names]
logger.info('Computing DICS source power...')
for i, freq in enumerate(frequencies):
if n_freqs > 1:
logger.info(' applying DICS spatial filter at %sHz (%d/%d)' %
(freq, i + 1, n_freqs))
Cm = csd.get_data(index=i)
Cm = Cm[csd_picks, :][:, csd_picks]
W = filters['weights'][i]
source_power[:, i] = _compute_power(Cm, W, n_orient)
logger.info('[done]')
# compatibility with 0.16, add src_type as None if not present:
filters, warn_text = _check_src_type(filters)
return (_make_stc(source_power, vertices=vertices,
src_type=filters['src_type'], tmin=0., tstep=1.,
subject=subject, warn_text=warn_text),
frequencies)
@verbose
def tf_dics(epochs, forward, noise_csds, tmin, tmax, tstep, win_lengths,
subtract_evoked=False, mode='fourier', freq_bins=None,
frequencies=None, n_ffts=None, mt_bandwidths=None,
mt_adaptive=False, mt_low_bias=True, cwt_n_cycles=7, decim=1,
reg=0.05, label=None, pick_ori=None, rank=None, inversion='single',
weight_norm=None, normalize_fwd=True, real_filter=False,
reduce_rank=False, verbose=None):
"""5D time-frequency beamforming based on DICS.
Calculate source power in time-frequency windows using a spatial filter
based on the Dynamic Imaging of Coherent Sources (DICS) beamforming
approach [1]_. For each time window and frequency bin combination,
cross-spectral density (CSD) is computed and used to create a DICS
beamformer spatial filter.
Parameters
----------
epochs : Epochs
Single trial epochs.
forward : dict
Forward operator.
noise_csds : list of instances of CrossSpectralDensity | None
Noise cross-spectral density for each frequency bin. If these are
specified, the DICS filters will be applied to both the signal and
noise CSDs. The source power estimates for each frequency bin will be
scaled by the estimated noise power (signal / noise).
Specifying ``None`` will disable performing noise normalization.
tmin : float
Minimum time instant to consider.
tmax : float
Maximum time instant to consider.
tstep : float
Spacing between consecutive time windows, should be smaller than or
equal to the shortest time window length.
win_lengths : list of float
Time window lengths in seconds. One time window length should be
provided for each frequency bin.
subtract_evoked : bool
If True, subtract the averaged evoked response prior to computing the
tf source grid. Defaults to False.
mode : 'fourier' | 'multitaper' | 'cwt_morlet'
Spectrum estimation mode. Defaults to 'fourier'.
freq_bins : list of tuple of float
Start and end point of frequency bins of interest.
Only used in 'multitaper' or 'fourier' mode. For 'cwt_morlet' mode, use
the ``frequencies`` parameter instead.
frequencies : list of float | list of list of float
The frequencies to compute the source power for. If you want to compute
the average power for multiple frequency bins, specify a list of
lists: each list containing the frequencies for the corresponding bin.
Only used in 'cwt_morlet' mode. In other modes, use the ``freq_bins``
parameter instead.
n_ffts : list | None
Length of the FFT for each frequency bin. If ``None`` (the default),
the exact number of samples between ``tmin`` and ``tmax`` will be used.
Only used in 'multitaper' or 'fourier' mode.
mt_bandwidths : list of float
The bandwidths of the multitaper windowing function in Hz. Only used in
'multitaper' mode. One value should be provided for each frequency bin.
Defaults to None.
mt_adaptive : bool
Use adaptive weights to combine the tapered spectra into CSD. Only used
in 'multitaper' mode. Defaults to False.
mt_low_bias : bool
Only use tapers with more than 90%% spectral concentration within
bandwidth. Only used in 'multitaper' mode. Defaults to True.
cwt_n_cycles: float | list of float | None
Number of cycles to use when constructing Morlet wavelets. Fixed number
or one per frequency. Defaults to 7.
Only used in 'cwt_morlet' mode.
decim : int | slice
To reduce memory usage, decimation factor during time-frequency
decomposition. Defaults to 1 (no decimation).
Only used in 'cwt_morlet' mode.
If `int`, uses tfr[..., ::decim].
If `slice`, uses tfr[..., decim].
reg : float
Regularization to use for the DICS beamformer computation.
Defaults to 0.05.
label : Label | None
Restricts the solution to a given label. Defaults to None.
pick_ori : None | 'normal' | 'max-power'
The source orientation to estimate source power for:
``None`` :
orientations are pooled. (Default)
'normal' :
filters are computed for the orientation tangential to the
cortical surface
'max-power' :
filters are computer for the orientation that maximizes
spectral power.
Defaults to ``None``.
rank : None | int | 'full'
This controls the effective rank of the covariance matrix when
computing the inverse. The rank can be set explicitly by specifying an
integer value. If ``None``, the rank will be automatically estimated.
Since applying regularization will always make the covariance matrix
full rank, the rank is estimated before regularization in this case. If
'full', the rank will be estimated after regularization and hence
will mean using the full rank, unless ``reg=0`` is used.
The default is None.
.. versionadded:: 0.17
inversion : 'single' | 'matrix'
This determines how the beamformer deals with source spaces in "free"
orientation. Such source spaces define three orthogonal dipoles at each
source point. When ``inversion='single'``, each dipole is considered
as an individual source and the corresponding spatial filter is
computed for each dipole separately. When ``inversion='matrix'``, all
three dipoles at a source vertex are considered as a group and the
spatial filters are computed jointly using a matrix inversion. While
``inversion='single'`` is more stable, ``inversion='matrix'`` is more
precise. See Notes of :func:`make_dics`. Defaults to 'single'.
weight_norm : None | 'unit-noise-gain'
How to normalize the beamformer weights. None means no normalization is
performed. If 'unit-noise-gain', the unit-noise gain minimum variance
beamformer will be computed (Borgiotti-Kaplan beamformer) [2]_.
Defaults to ``None``.
normalize_fwd : bool
Whether to normalize the forward solution. Defaults to ``True``. Note
that this normalization is not required when weight normalization
(``weight_norm``) is used.
real_filter : bool
If ``True``, take only the real part of the cross-spectral-density
matrices to compute real filters. Defaults to ``False``.
reduce_rank : bool
If ``True``, the rank of the forward operator will be reduced by 1 for
each spatial location, prior to inversion. This may be necessary when
you use a single sphere model for MEG and ``mode='vertex'``.
Defaults to ``False``.
%(verbose)s
Returns
-------
stcs : list of SourceEstimate | VolSourceEstimate
Source power at each time window. One SourceEstimate object is returned
for each frequency bin.
Notes
-----
Dalal et al. [1]_ used a synthetic aperture magnetometry beamformer (SAM)
in each time-frequency window instead of DICS.
An alternative to using noise CSDs is to normalize the forward solution
(``normalize_fwd``) or the beamformer weights (``weight_norm``). In
this case, ``noise_csds`` may be set to ``None``.
References
----------
.. [1] Dalal et al. Five-dimensional neuroimaging: Localization of the
time-frequency dynamics of cortical activity.
NeuroImage (2008) vol. 40 (4) pp. 1686-1700
.. [2] Sekihara & Nagarajan. Adaptive spatial filters for electromagnetic
brain imaging (2008) Springer Science & Business Media
"""
_check_reference(epochs)
rank = _check_rank(rank)
if mode == 'cwt_morlet' and frequencies is None:
raise ValueError('In "cwt_morlet" mode, the "frequencies" parameter '
'should be used.')
elif mode != 'cwt_morlet' and freq_bins is None:
raise ValueError('In "%s" mode, the "freq_bins" parameter should be '
'used.' % mode)
if frequencies is not None:
# Make sure frequencies are always in the form of a list of lists
frequencies = [np.atleast_1d(f) for f in frequencies]
n_freq_bins = len(frequencies)
else:
n_freq_bins = len(freq_bins)
if len(win_lengths) != n_freq_bins:
raise ValueError('One time window length expected per frequency bin')
if any(win_length < tstep for win_length in win_lengths):
raise ValueError('Time step should not be larger than any of the '
'window lengths')
if noise_csds is not None and len(noise_csds) != n_freq_bins:
raise ValueError('One noise CSD object expected per frequency bin')
if n_ffts is not None and len(n_ffts) != n_freq_bins:
raise ValueError('When specifying number of FFT samples, one value '
'must be provided per frequency bin')
if mt_bandwidths is not None and len(mt_bandwidths) != n_freq_bins:
raise ValueError('When using multitaper mode and specifying '
'multitaper transform bandwidth, one value must be '
'provided per frequency bin')
# Multiplying by 1e3 to avoid numerical issues, e.g. 0.3 // 0.05 == 5
n_time_steps = int(((tmax - tmin) * 1e3) // (tstep * 1e3))
# Subtract evoked response
if subtract_evoked:
epochs = epochs.copy().subtract_evoked()
sol_final = []
# Compute source power for each frequency bin
for i_freq in range(n_freq_bins):
win_length = win_lengths[i_freq]
n_overlap = int((win_length * 1e3) // (tstep * 1e3))
# Scale noise CSD to allow data and noise CSDs to have different length
if noise_csds is not None:
noise_csd = noise_csds[i_freq].copy()
noise_csd._data /= noise_csd.n_fft
if mode == 'cwt_morlet':
freq_bin = frequencies[i_freq]
fmin = np.min(freq_bin)
fmax = np.max(freq_bin)
else:
fmin, fmax = freq_bins[i_freq]
if n_ffts is None:
n_fft = None
else:
n_fft = n_ffts[i_freq]
if mt_bandwidths is None:
mt_bandwidth = None
else:
mt_bandwidth = mt_bandwidths[i_freq]
sol_single = []
sol_overlap = []
for i_time in range(n_time_steps):
win_tmin = tmin + i_time * tstep
win_tmax = win_tmin + win_length
# If in the last step the last time point was not covered in
# previous steps and will not be covered now, a solution needs to
# be calculated for an additional time window
if (i_time == n_time_steps - 1 and
win_tmax - tstep < tmax and
win_tmax >= tmax + (epochs.times[-1] - epochs.times[-2])):
warn('Adding a time window to cover last time points')
win_tmin = tmax - win_length
win_tmax = tmax
if win_tmax < tmax + (epochs.times[-1] - epochs.times[-2]):
# Counteracts unsafe floating point arithmetic ensuring all
# relevant samples will be taken into account when selecting
# data in time windows
logger.info(
'Computing time-frequency DICS beamformer for time '
'window %d to %d ms, in frequency range %d to %d Hz' %
(win_tmin * 1e3, win_tmax * 1e3, fmin, fmax)
)
# Calculating data CSD in current time window
if mode == 'fourier':
csd = csd_fourier(
epochs, fmin=fmin, fmax=fmax, tmin=win_tmin,
tmax=win_tmax, n_fft=n_fft, verbose=False)
elif mode == 'multitaper':
csd = csd_multitaper(
epochs, fmin=fmin, fmax=fmax, tmin=win_tmin,
tmax=win_tmax, n_fft=n_fft, bandwidth=mt_bandwidth,
low_bias=mt_low_bias, verbose=False)
elif mode == 'cwt_morlet':
csd = csd_morlet(
epochs, frequencies=freq_bin, tmin=win_tmin,
tmax=win_tmax, n_cycles=cwt_n_cycles, decim=decim,
verbose=False)
else:
raise ValueError('Invalid mode, choose either '
"'fourier' or 'multitaper'")
csd = csd.sum()
# Scale data CSD to allow data and noise CSDs to have different
# length
csd._data /= csd.n_fft
filters = make_dics(epochs.info, forward, csd, reg=reg,
label=label, pick_ori=pick_ori,
rank=rank, inversion=inversion,
weight_norm=weight_norm,
normalize_fwd=normalize_fwd,
reduce_rank=reduce_rank,
real_filter=real_filter, verbose=False)
stc, _ = apply_dics_csd(csd, filters, verbose=False)
if noise_csds is not None:
# Scale signal power by noise power
noise_stc, _ = apply_dics_csd(noise_csd, filters,
verbose=False)
stc /= noise_stc
sol_single.append(stc.data[:, 0])
# Average over all time windows that contain the current time
# point, which is the current time window along with
# n_overlap - 1 previous ones
if i_time - n_overlap < 0:
curr_sol = np.mean(sol_single[0:i_time + 1], axis=0)
else:
curr_sol = np.mean(sol_single[i_time - n_overlap + 1:
i_time + 1], axis=0)
# The final result for the current time point in the current
# frequency bin
sol_overlap.append(curr_sol)
# Gathering solutions for all time points for current frequency bin
sol_final.append(sol_overlap)
sol_final = np.array(sol_final)
# Creating stc objects containing all time points for each frequency bin
stcs = []
# compatibility with 0.16, add src_type as None if not present:
filters, warn_text = _check_src_type(filters)
for i_freq in range(n_freq_bins):
stc = _make_stc(sol_final[i_freq, :, :].T, vertices=stc.vertices,
src_type=filters['src_type'], tmin=tmin, tstep=tstep,
subject=stc.subject, warn_text=warn_text)
stcs.append(stc)
return stcs
|