File: montage.py

package info (click to toggle)
python-mne 0.19.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 100,440 kB
  • sloc: python: 120,243; pascal: 1,861; makefile: 225; sh: 15
file content (1999 lines) | stat: -rw-r--r-- 75,912 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
# Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr>
#          Denis Engemann <denis.engemann@gmail.com>
#          Martin Luessi <mluessi@nmr.mgh.harvard.edu>
#          Eric Larson <larson.eric.d@gmail.com>
#          Marijn van Vliet <w.m.vanvliet@gmail.com>
#          Jona Sassenhagen <jona.sassenhagen@gmail.com>
#          Teon Brooks <teon.brooks@gmail.com>
#          Christian Brodbeck <christianbrodbeck@nyu.edu>
#          Stefan Appelhoff <stefan.appelhoff@mailbox.org>
#          Joan Massich <mailsik@gmail.com>
#
# License: Simplified BSD

from collections import OrderedDict
from collections.abc import Iterable
import os
import os.path as op
import re
from copy import deepcopy
from itertools import takewhile, chain
from functools import partial

import numpy as np
import xml.etree.ElementTree as ElementTree

from ..viz import plot_montage
from .channels import _contains_ch_type
from ..transforms import (apply_trans, get_ras_to_neuromag_trans, _sph_to_cart,
                          _topo_to_sph, _frame_to_str, _str_to_frame,
                          Transform)
from .._digitization import Digitization
from .._digitization.base import _count_points_by_type
from .._digitization.base import _get_dig_eeg
from .._digitization._utils import (_make_dig_points, _read_dig_points,
                                    write_dig, _read_dig_fif,
                                    _format_dig_points)
from ..io.pick import pick_types
from ..io.open import fiff_open
from ..io.constants import FIFF
from ..utils import (warn, logger, copy_function_doc_to_method_doc,
                     _check_option, Bunch, deprecated, _validate_type,
                     _check_fname)
from .._digitization._utils import _get_fid_coords, _foo_get_data_from_dig

from .layout import _pol_to_cart, _cart_to_sph
from ._dig_montage_utils import _transform_to_head_call
from ._dig_montage_utils import _read_dig_montage_egi, _read_dig_montage_bvct
from ._dig_montage_utils import _fix_data_fiducials
from ._dig_montage_utils import _parse_brainvision_dig_montage

from .channels import DEPRECATED_PARAM

HEAD_SIZE_DEFAULT = 0.095  # in [m]

_BUILT_IN_MONTAGES = [
    'EGI_256',
    'GSN-HydroCel-128', 'GSN-HydroCel-129', 'GSN-HydroCel-256',
    'GSN-HydroCel-257', 'GSN-HydroCel-32', 'GSN-HydroCel-64_1.0',
    'GSN-HydroCel-65_1.0',
    'biosemi128', 'biosemi16', 'biosemi160', 'biosemi256',
    'biosemi32', 'biosemi64',
    'easycap-M1', 'easycap-M10',
    'mgh60', 'mgh70',
    'standard_1005', 'standard_1020', 'standard_alphabetic',
    'standard_postfixed', 'standard_prefixed', 'standard_primed'
]


def _check_get_coord_frame(dig):
    _MSG = 'Only single coordinate frame in dig is supported'
    dig_coord_frames = set([d['coord_frame'] for d in dig])
    assert len(dig_coord_frames) <= 1, _MSG
    return _frame_to_str[dig_coord_frames.pop()] if dig_coord_frames else None


def _check_ch_names_are_compatible(info_names, montage_names, raise_if_subset):
    assert isinstance(info_names, set) and isinstance(montage_names, set)

    match_set = info_names & montage_names
    not_in_montage = info_names - montage_names
    not_in_info = montage_names - info_names

    if len(not_in_montage):  # Montage is subset of info
        if raise_if_subset:
            raise ValueError((
                'DigMontage is a only a subset of info.'
                ' There are {n_ch} channel positions not present it the'
                ' DigMontage. The required channels are: {ch_names}.'

                # XXX: the rest of the message is deprecated. to remove in 0.20
                '\nYou can use `raise_if_subset=False` in `set_montage` to'
                ' avoid this ValueError and get a DeprecationWarning instead.'
            ).format(n_ch=len(not_in_montage), ch_names=not_in_montage))
        else:
            # XXX: deprecated. to remove in 0.20 (raise_if_subset, too)
            warn('DigMontage is a only a subset of info.'
                 ' Did not set %s channel positions:\n%s'
                 % (len(not_in_montage), ', '.join(not_in_montage)),
                 RuntimeWarning)
    else:
        pass  # noqa

    if len(not_in_info):  # Montage is superset of info
        logger.info((
            'DigMontage is a superset of info. {n_ch} in DigMontage will be'
            ' ignored. The ignored channels are: {ch_names}'
        ).format(n_ch=len(not_in_info), ch_names=not_in_info))

    else:
        pass  # noqa

    return match_set


@deprecated(
    'Montage class is deprecated and will be removed in v0.20.'
    ' Please use DigMontage instead.'
)
class Montage(object):
    """Montage for standard EEG electrode locations.

    Parameters
    ----------
    pos : array, shape (n_channels, 3)
        The positions of the channels in 3d given in meters.
    ch_names : list
        The channel names.
    kind : str
        The type of montage (e.g. 'standard_1005').
    selection : array of int
        The indices of the selected channels in the montage file.

    See Also
    --------
    DigMontage
    read_montage
    read_dig_montage

    Notes
    -----
    .. versionadded:: 0.9.0
    """

    def __init__(self, pos, ch_names, kind, selection,
                 nasion=None, lpa=None, rpa=None):  # noqa: D102
        self.pos = pos
        self.ch_names = ch_names
        self.kind = kind
        self.selection = selection
        self.lpa = lpa
        self.nasion = nasion
        self.rpa = rpa

    def __repr__(self):
        """Return string representation."""
        s = ('<Montage | %s - %d channels: %s ...>'
             % (self.kind, len(self.ch_names), ', '.join(self.ch_names[:3])))
        return s

    def get_pos2d(self):
        """Return positions converted to 2D."""
        return _pol_to_cart(_cart_to_sph(self.pos)[:, 1:][:, ::-1])

    @copy_function_doc_to_method_doc(plot_montage)
    def plot(self, scale_factor=20, show_names=True, kind='topomap',
             show=True):
        return plot_montage(self, scale_factor=scale_factor,
                            show_names=show_names, kind=kind, show=show)


def get_builtin_montages():
    """Get a list of all builtin montages.

    Returns
    -------
    montages : list
        Names of all builtin montages that can be loaded with
        :func:`make_standard_montage`.
    """
    return _BUILT_IN_MONTAGES


@deprecated(
    '``read_montage`` is deprecated and will be removed in v0.20. Please use'
    ' ``read_dig_fif``, ``read_dig_egi``, ``read_custom_montage``,'
    ' or ``read_dig_captrack``'
    ' to read a digitization based on your needs instead;'
    ' or ``make_standard_montage`` to create ``DigMontage`` based on template;'
    ' or ``make_dig_montage`` to create a ``DigMontage`` out of np.arrays'
)
def read_montage(kind, ch_names=None, path=None, unit='m', transform=False):
    """Read a generic (built-in) montage.

    Individualized (digitized) electrode positions should be read in using
    :func:`read_dig_montage`.

    In most cases, you should only need to set the `kind` parameter to load one
    of the built-in montages (see Notes).

    Parameters
    ----------
    kind : str
        The name of the montage file without the file extension (e.g.
        kind='easycap-M10' for 'easycap-M10.txt'). Files with extensions
        '.elc', '.txt', '.csd', '.elp', '.hpts', '.sfp', '.loc' ('.locs' and
        '.eloc') or .bvef are supported.
    ch_names : list of str | None
        If not all electrodes defined in the montage are present in the EEG
        data, use this parameter to select a subset of electrode positions to
        load. If None (default), all defined electrode positions are returned.

        .. note:: ``ch_names`` are compared to channel names in the montage
                  file after converting them both to upper case. If a match is
                  found, the letter case in the original ``ch_names`` is used
                  in the returned montage.

    path : str | None
        The path of the folder containing the montage file. Defaults to the
        mne/channels/data/montages folder in your mne-python installation.
    unit : 'm' | 'cm' | 'mm' | 'auto'
        Unit of the input file. When 'auto' the montage is normalized to
        a sphere with a radius capturing the average head size (8.5cm).
        Defaults to 'auto'.
    transform : bool
        If True, points will be transformed to Neuromag space. The fiducials,
        'nasion', 'lpa', 'rpa' must be specified in the montage file. Useful
        for points captured using Polhemus FastSCAN. Default is False.

    Returns
    -------
    montage : instance of Montage
        The montage.

    See Also
    --------
    DigMontage

    Notes
    -----
    Built-in montages are not scaled or transformed by default.

    Montages can contain fiducial points in addition to electrode channels,
    e.g. ``biosemi64`` contains 67 locations. In the following table, the
    number of channels and fiducials is given in parentheses in the description
    column (e.g. 64+3 means 64 channels and 3 fiducials).

    Valid ``kind`` arguments are:

    ===================   =====================================================
    Kind                  Description
    ===================   =====================================================
    standard_1005         Electrodes are named and positioned according to the
                          international 10-05 system (343+3 locations)
    standard_1020         Electrodes are named and positioned according to the
                          international 10-20 system (94+3 locations)
    standard_alphabetic   Electrodes are named with LETTER-NUMBER combinations
                          (A1, B2, F4, ...) (65+3 locations)
    standard_postfixed    Electrodes are named according to the international
                          10-20 system using postfixes for intermediate
                          positions (100+3 locations)
    standard_prefixed     Electrodes are named according to the international
                          10-20 system using prefixes for intermediate
                          positions (74+3 locations)
    standard_primed       Electrodes are named according to the international
                          10-20 system using prime marks (' and '') for
                          intermediate positions (100+3 locations)

    biosemi16             BioSemi cap with 16 electrodes (16+3 locations)
    biosemi32             BioSemi cap with 32 electrodes (32+3 locations)
    biosemi64             BioSemi cap with 64 electrodes (64+3 locations)
    biosemi128            BioSemi cap with 128 electrodes (128+3 locations)
    biosemi160            BioSemi cap with 160 electrodes (160+3 locations)
    biosemi256            BioSemi cap with 256 electrodes (256+3 locations)

    easycap-M1            EasyCap with 10-05 electrode names (74 locations)
    easycap-M10           EasyCap with numbered electrodes (61 locations)

    EGI_256               Geodesic Sensor Net (256 locations)

    GSN-HydroCel-32       HydroCel Geodesic Sensor Net and Cz (33+3 locations)
    GSN-HydroCel-64_1.0   HydroCel Geodesic Sensor Net (64+3 locations)
    GSN-HydroCel-65_1.0   HydroCel Geodesic Sensor Net and Cz (65+3 locations)
    GSN-HydroCel-128      HydroCel Geodesic Sensor Net (128+3 locations)
    GSN-HydroCel-129      HydroCel Geodesic Sensor Net and Cz (129+3 locations)
    GSN-HydroCel-256      HydroCel Geodesic Sensor Net (256+3 locations)
    GSN-HydroCel-257      HydroCel Geodesic Sensor Net and Cz (257+3 locations)

    mgh60                 The (older) 60-channel cap used at
                          MGH (60+3 locations)
    mgh70                 The (newer) 70-channel BrainVision cap used at
                          MGH (70+3 locations)
    ===================   =====================================================

    .. versionadded:: 0.9.0
    """
    _check_option('unit', unit, ['mm', 'cm', 'm', 'auto'])

    if path is None:
        path = op.join(op.dirname(__file__), 'data', 'montages')
    if not op.isabs(kind):
        supported = ('.elc', '.txt', '.csd', '.sfp', '.elp', '.hpts', '.loc',
                     '.locs', '.eloc', '.bvef')
        montages = [op.splitext(f) for f in os.listdir(path)]
        montages = [m for m in montages if m[1] in supported and kind == m[0]]
        if len(montages) != 1:
            raise ValueError('Could not find the montage. Please provide the '
                             'full path.')
        kind, ext = montages[0]
    else:
        kind, ext = op.splitext(kind)
    fname = op.join(path, kind + ext)

    fid_names = ['lpa', 'nz', 'rpa']
    if ext == '.sfp':
        # EGI geodesic
        fid_names = ['fidt9', 'fidnz', 'fidt10']
        with open(fname, 'r') as f:
            lines = f.read().replace('\t', ' ').splitlines()

        ch_names_, pos = [], []
        for ii, line in enumerate(lines):
            line = line.strip().split()
            if len(line) > 0:  # skip empty lines
                if len(line) != 4:  # name, x, y, z
                    raise ValueError("Malformed .sfp file in line " + str(ii))
                this_name, x, y, z = line
                ch_names_.append(this_name)
                pos.append([float(cord) for cord in (x, y, z)])
        pos = np.asarray(pos)
    elif ext == '.elc':
        # 10-5 system
        ch_names_ = []
        pos = []
        with open(fname) as fid:
            # Default units are meters
            for line in fid:
                if 'UnitPosition' in line:
                    units = line.split()[1]
                    scale_factor = dict(m=1., mm=1e-3)[units]
                    break
            else:
                raise RuntimeError('Could not detect units in file %s' % fname)
            for line in fid:
                if 'Positions\n' in line:
                    break
            pos = []
            for line in fid:
                if 'Labels\n' in line:
                    break
                pos.append(list(map(float, line.split())))
            for line in fid:
                if not line or not set(line) - {' '}:
                    break
                ch_names_.append(line.strip(' ').strip('\n'))
        pos = np.array(pos) * scale_factor
    elif ext == '.txt':
        # easycap
        data = np.genfromtxt(fname, dtype='str', skip_header=1)
        ch_names_ = data[:, 0].tolist()
        az = np.deg2rad(data[:, 2].astype(float))
        pol = np.deg2rad(data[:, 1].astype(float))
        rad = np.ones(len(az))  # spherical head model
        rad *= 85.  # scale up to realistic head radius (8.5cm == 85mm)
        pos = _sph_to_cart(np.array([rad, az, pol]).T)
    elif ext == '.csd':
        # CSD toolbox
        data = np.genfromtxt(fname, dtype='str', skip_header=2)
        ch_names_ = data[:, 0].tolist()
        az = np.deg2rad(data[:, 1].astype(float))
        pol = np.deg2rad(90. - data[:, 2].astype(float))
        pos = _sph_to_cart(np.array([np.ones(len(az)), az, pol]).T)
    elif ext == '.elp':
        # standard BESA spherical
        dtype = np.dtype('S8, S8, f8, f8, f8')
        try:
            data = np.loadtxt(fname, dtype=dtype, skip_header=1)
        except TypeError:
            data = np.loadtxt(fname, dtype=dtype, skiprows=1)

        ch_names_ = data['f1'].astype(str).tolist()
        az = data['f2']
        horiz = data['f3']
        radius = np.abs(az / 180.)
        az = np.deg2rad(np.array([h if a >= 0. else 180 + h
                                  for h, a in zip(horiz, az)]))
        pol = radius * np.pi
        rad = np.ones(len(az))  # spherical head model
        rad *= 85.  # scale up to realistic head radius (8.5cm == 85mm)
        pos = _sph_to_cart(np.array([rad, az, pol]).T)
    elif ext == '.hpts':
        # MNE-C specified format for generic digitizer data
        fid_names = ['1', '2', '3']
        dtype = [('type', 'S8'), ('name', 'S8'),
                 ('x', 'f8'), ('y', 'f8'), ('z', 'f8')]
        data = np.loadtxt(fname, dtype=dtype)
        ch_names_ = data['name'].astype(str).tolist()
        pos = np.vstack((data['x'], data['y'], data['z'])).T
    elif ext in ('.loc', '.locs', '.eloc'):
        ch_names_ = np.genfromtxt(fname, dtype=str, usecols=3).tolist()
        topo = np.loadtxt(fname, dtype=float, usecols=[1, 2])
        sph = _topo_to_sph(topo)
        pos = _sph_to_cart(sph)
        pos[:, [0, 1]] = pos[:, [1, 0]] * [-1, 1]
    elif ext == '.bvef':
        # 'BrainVision Electrodes File' format
        # Based on BrainVision Analyzer coordinate system: Defined between
        # standard electrode positions: X-axis from T7 to T8, Y-axis from Oz to
        # Fpz, Z-axis orthogonal from XY-plane through Cz, fit to a sphere if
        # idealized (when radius=1), specified in millimeters
        if unit not in ['auto', 'mm']:
            raise ValueError('`unit` must be "auto" or "mm" for .bvef files.')
        root = ElementTree.parse(fname).getroot()
        ch_names_ = [s.text for s in root.findall("./Electrode/Name")]
        theta = [float(s.text) for s in root.findall("./Electrode/Theta")]
        pol = np.deg2rad(np.array(theta))
        phi = [float(s.text) for s in root.findall("./Electrode/Phi")]
        az = np.deg2rad(np.array(phi))
        rad = [float(s.text) for s in root.findall("./Electrode/Radius")]
        rad = np.array(rad)  # specified in mm
        if set(rad) == set([1]):
            # idealized montage (spherical head model), scale up to realistic
            # head radius (8.5cm == 85mm)
            rad = np.array(rad) * 85.
        pos = _sph_to_cart(np.array([rad, az, pol]).T)
    else:
        raise ValueError('Currently the "%s" template is not supported.' %
                         kind)
    selection = np.arange(len(pos))

    if unit == 'auto':  # rescale to realistic head radius in meters: 0.085
        pos -= np.mean(pos, axis=0)
        pos = 0.085 * (pos / np.linalg.norm(pos, axis=1).mean())
    elif unit == 'mm':
        pos /= 1e3
    elif unit == 'cm':
        pos /= 1e2
    elif unit == 'm':  # montage is supposed to be in m
        pass

    names_lower = [name.lower() for name in list(ch_names_)]
    fids = {key: pos[names_lower.index(fid_names[ii])]
            if fid_names[ii] in names_lower else None
            for ii, key in enumerate(['lpa', 'nasion', 'rpa'])}
    if transform:
        missing = [name for name, val in fids.items() if val is None]
        if missing:
            raise ValueError("The points %s are missing, but are needed "
                             "to transform the points to the MNE coordinate "
                             "system. Either add the points, or read the "
                             "montage with transform=False. " % missing)
        neuromag_trans = get_ras_to_neuromag_trans(
            fids['nasion'], fids['lpa'], fids['rpa'])
        pos = apply_trans(neuromag_trans, pos)
    # XXX: This code was duplicated !!
    fids = {key: pos[names_lower.index(fid_names[ii])]
            if fid_names[ii] in names_lower else None
            for ii, key in enumerate(['lpa', 'nasion', 'rpa'])}

    if ch_names is not None:
        # Ensure channels with differing case are found.
        upper_names = [ch_name.upper() for ch_name in ch_names]
        sel, ch_names_ = zip(*[(i, ch_names[upper_names.index(e)]) for i, e in
                               enumerate([n.upper() for n in ch_names_])
                               if e in upper_names])
        sel = list(sel)
        pos = pos[sel]
        selection = selection[sel]
    kind = op.split(kind)[-1]
    return Montage(pos=pos, ch_names=ch_names_, kind=kind, selection=selection,
                   lpa=fids['lpa'], nasion=fids['nasion'], rpa=fids['rpa'])


def make_dig_montage(ch_pos=None, nasion=None, lpa=None, rpa=None,
                     hsp=None, hpi=None, coord_frame='unknown'):
    r"""Make montage from arrays.

    Parameters
    ----------
    ch_pos : dict
        Dictionary of channel positions. Keys are channel names and values
        are 3D coordinates - array of shape (3,) - in native digitizer space
        in m.
    nasion : None | array, shape (3,)
        The position of the nasion fiducial point.
        This point is assumed to be in the native digitizer space in m.
    lpa : None | array, shape (3,)
        The position of the left periauricular fiducial point.
        This point is assumed to be in the native digitizer space in m.
    rpa : None | array, shape (3,)
        The position of the right periauricular fiducial point.
        This point is assumed to be in the native digitizer space in m.
    hsp : None | array, shape (n_points, 3)
        This corresponds to an array of positions of the headshape points in
        3d. These points are assumed to be in the native digitizer space in m.
    hpi : None | array, shape (n_hpi, 3)
        This corresponds to an array of HPI points in the native digitizer
        space. They only necessary if computation of a ``compute_dev_head_t``
        is True.
    coord_frame : str
        The coordinate frame of the points. Usually this is "unknown"
        for native digitizer space.

    Returns
    -------
    montage : instance of DigMontage
        The montage.

    See Also
    --------
    DigMontage
    read_dig_captrack
    read_dig_egi
    read_dig_fif
    read_dig_polhemus_isotrak
    """
    if ch_pos is None:
        ch_names = None
    else:
        ch_names = list(ch_pos.keys())
        if not isinstance(ch_pos, OrderedDict):
            ch_names = sorted(ch_names)
    dig = _make_dig_points(
        nasion=nasion, lpa=lpa, rpa=rpa, hpi=hpi, extra_points=hsp,
        dig_ch_pos=ch_pos, coord_frame=coord_frame
    )

    return DigMontage(dig=dig, ch_names=ch_names)


# XXX : should be kill one read_dig_montage is removed in 0.20
def _make_dig_montage(ch_pos=None, nasion=None, lpa=None, rpa=None,
                      hsp=None, hpi=None, hpi_dev=None, coord_frame='unknown',
                      transform_to_head=False, compute_dev_head_t=False):
    # XXX: hpi was historically elp
    # XXX: hpi_dev was historically hpi
    assert coord_frame in _str_to_frame
    from ..coreg import fit_matched_points
    data = Bunch(
        nasion=nasion, lpa=lpa, rpa=rpa,
        elp=hpi, dig_ch_pos=ch_pos, hsp=hsp,
        coord_frame=coord_frame,
    )
    if transform_to_head:
        data = _transform_to_head_call(data)

    if compute_dev_head_t:
        if data.elp is None or hpi_dev is None:
            raise RuntimeError('must have both elp and hpi to compute the '
                               'device to head transform')
        else:
            # here is hpi
            dev_head_t = fit_matched_points(
                tgt_pts=data.elp, src_pts=hpi_dev, out='trans'
            )  # XXX: shall we make it a Transform? rather than np.array
    else:
        dev_head_t = None

    ch_names = list() if ch_pos is None else list(sorted(ch_pos.keys()))
    dig = _make_dig_points(
        nasion=data.nasion, lpa=data.lpa, rpa=data.rpa, hpi=data.elp,
        extra_points=data.hsp, dig_ch_pos=data.dig_ch_pos,
        coord_frame=data.coord_frame,
    )
    return DigMontage(dig=dig, ch_names=ch_names, dev_head_t=dev_head_t)


class DigMontage(object):
    """Montage for digitized electrode and headshape position data.

    .. warning:: Montages are typically created using one of the helper
                 functions in the ``See Also`` section below instead of
                 instantiating this class directly.

    Parameters
    ----------
    hsp : array, shape (n_points, 3)
        The positions of the headshape points in 3d.
        These points are in the native digitizer space.
        Deprecated, will be removed in 0.20.
    hpi : array, shape (n_hpi, 3)
        The positions of the head-position indicator coils in 3d.
        These points are in the MEG device space.
        Deprecated, will be removed in 0.20.
    elp : array, shape (n_hpi, 3)
        The positions of the head-position indicator coils in 3d.
        This is typically in the native digitizer space.
        Deprecated, will be removed in 0.20.
    point_names : list, shape (n_elp)
        The names of the digitized points for hpi and elp.
        Deprecated, will be removed in 0.20.
    nasion : array, shape (1, 3)
        The position of the nasion fiducial point.
        Deprecated, will be removed in 0.20.
    lpa : array, shape (1, 3)
        The position of the left periauricular fiducial point.
        Deprecated, will be removed in 0.20.
    rpa : array, shape (1, 3)
        The position of the right periauricular fiducial point.
        Deprecated, will be removed in 0.20.
    dev_head_t : array, shape (4, 4)
        A Device-to-Head transformation matrix.
    dig_ch_pos : dict
        Dictionary of channel positions given in meters.
        Deprecated, will be removed in 0.20.

        .. versionadded:: 0.12

    dig : list of dict
        The object containing all the dig points.
    ch_names : list of str
        The names of the EEG channels.

    See Also
    --------
    read_dig_captrack
    read_dig_egi
    read_dig_fif
    read_dig_hpts
    read_dig_polhemus_isotrak
    make_dig_montage

    Notes
    -----
    .. versionadded:: 0.9.0
    """

    def __init__(self,
        hsp=DEPRECATED_PARAM, hpi=DEPRECATED_PARAM, elp=DEPRECATED_PARAM,
        point_names=DEPRECATED_PARAM, nasion=DEPRECATED_PARAM,
        lpa=DEPRECATED_PARAM, rpa=DEPRECATED_PARAM,
        dev_head_t=None, dig_ch_pos=DEPRECATED_PARAM,
        dig=None, ch_names=None,
    ):  # noqa: D102
        # XXX: dev_head_t now is np.array, we should add dev_head_transform
        #      (being instance of Transformation) and move the parameter to the
        #      end of the call.
        _non_deprecated_kwargs = [
            key for key, val in dict(
                hsp=hsp, hpi=hpi, elp=elp, point_names=point_names,
                nasion=nasion, lpa=lpa, rpa=rpa,
                dig_ch_pos=dig_ch_pos,
            ).items() if val is not DEPRECATED_PARAM
        ]
        if not _non_deprecated_kwargs:
            dig = Digitization() if dig is None else dig
            _validate_type(item=dig, types=Digitization,
                           item_name='dig', type_name='Digitization')
            ch_names = list() if ch_names is None else ch_names
            n_eeg = sum([1 for d in dig if d['kind'] == FIFF.FIFFV_POINT_EEG])
            if n_eeg != len(ch_names):
                raise ValueError(
                    'The number of EEG channels (%d) does not match the number'
                    ' of channel names provided (%d)' % (n_eeg, len(ch_names))
                )

            self.dev_head_t = dev_head_t
            self.dig = dig
            self.ch_names = ch_names
            self._coord_frame = _check_get_coord_frame(self.dig)
        else:
            # Deprecated
            _msg = (
                "Using {params} in DigMontage constructor is deprecated."
                " Use 'dig', and 'ch_names' instead."
            ).format(params=", ".join(
                ["'{}'".format(k) for k in _non_deprecated_kwargs]
            ))
            warn(_msg, DeprecationWarning)

            # Restore old defaults
            hsp = None if hsp is DEPRECATED_PARAM else hsp
            hpi = None if hpi is DEPRECATED_PARAM else hpi
            elp = None if elp is DEPRECATED_PARAM else elp
            nasion = None if nasion is DEPRECATED_PARAM else nasion
            lpa = None if lpa is DEPRECATED_PARAM else lpa
            rpa = None if rpa is DEPRECATED_PARAM else rpa
            dig_ch_pos = None if dig_ch_pos is DEPRECATED_PARAM else dig_ch_pos
            coord_frame = 'unknown'
            point_names = \
                None if point_names is DEPRECATED_PARAM else point_names

            # Old behavior
            if elp is not None:
                if not isinstance(point_names, Iterable):
                    raise TypeError('If elp is specified, point_names must'
                                    ' provide a list of str with one entry per'
                                    ' ELP point.')
                point_names = list(point_names)
                if len(point_names) != len(elp):
                    raise ValueError('elp contains %i points but %i '
                                     'point_names were specified.' %
                                     (len(elp), len(point_names)))

            self.dev_head_t = dev_head_t
            self._point_names = point_names
            self.ch_names = \
                [] if dig_ch_pos is None else list(sorted(dig_ch_pos.keys()))
            self._hpi = hpi
            self._coord_frame = coord_frame
            self.dig = _make_dig_points(
                nasion=nasion, lpa=lpa, rpa=rpa, hpi=elp,
                extra_points=hsp, dig_ch_pos=dig_ch_pos,
                coord_frame=self._coord_frame,
            )

    @property
    def point_names(self):
        warn('"point_names" attribute is deprecated and will be removed'
             ' in v0.20', DeprecationWarning)
        return self._point_names

    @property
    def coord_frame(self):
        warn('"coord_frame" attribute is deprecated and will be removed'
             ' in v0.20', DeprecationWarning)
        return self._coord_frame

    def __repr__(self):
        """Return string representation."""
        n_points = _count_points_by_type(self.dig)
        return ('<DigMontage | {extra:d} extras (headshape), {hpi:d} HPIs,'
                ' {fid:d} fiducials, {eeg:d} channels>').format(**n_points)

    @copy_function_doc_to_method_doc(plot_montage)
    def plot(self, scale_factor=20, show_names=False, kind='3d', show=True):
        # XXX: plot_montage takes an empty info and sets 'self'
        #      Therefore it should not be a representation problem.
        return plot_montage(self, scale_factor=scale_factor,
                            show_names=show_names, kind=kind, show=show)

    def transform_to_head(self):
        """Transform digitizer points to Neuromag head coordinates."""
        raise RuntimeError('The transform_to_head method has been removed to '
                           'enforce that DigMontage are constructed already '
                           'in the correct coordinate system. This method '
                           'will disappear in version 0.20.')

    @deprecated(
        'compute_dev_head_t is deprecated and will be removed in 0.20.'
    )
    def compute_dev_head_t(self):
        """Compute the Neuromag dev_head_t from matched points."""
        if not hasattr(self, '_hpi'):
            raise RuntimeError(
                'Cannot compute dev_head_t if DigMontage was not created'
                ' from arrays')

        from ..coreg import fit_matched_points
        data = _foo_get_data_from_dig(self.dig)
        if data.elp is None or self._hpi is None:
            raise RuntimeError('must have both elp and hpi to compute the '
                               'device to head transform')
        self.dev_head_t = fit_matched_points(tgt_pts=data.elp,
                                             src_pts=self._hpi, out='trans')

    def save(self, fname):
        """Save digitization points to FIF.

        Parameters
        ----------
        fname : str
            The filename to use. Should end in .fif or .fif.gz.
        """
        if self._coord_frame != 'head':
            raise RuntimeError('Can only write out digitization points in '
                               'head coordinates.')
        write_dig(fname, self.dig)

    def __iadd__(self, other):
        """Add two DigMontages in place.

        Notes
        -----
        Two DigMontages can only be added if there are no duplicated ch_names
        and if fiducials are present they should share the same coordinate
        system and location values.
        """
        def is_fid_defined(fid):
            return not(
                fid.nasion is None and fid.lpa is None and fid.rpa is None
            )

        # Check for none duplicated ch_names
        ch_names_intersection = set(self.ch_names).intersection(other.ch_names)
        if ch_names_intersection:
            raise RuntimeError((
                "Cannot add two DigMontage objects if they contain duplicated"
                " channel names. Duplicated channel(s) found: {}."
            ).format(
                ', '.join(['%r' % v for v in sorted(ch_names_intersection)])
            ))

        # Check for unique matching fiducials
        self_fid, self_coord = _get_fid_coords(self.dig)
        other_fid, other_coord = _get_fid_coords(other.dig)

        if is_fid_defined(self_fid) and is_fid_defined(other_fid):
            if self_coord != other_coord:
                raise RuntimeError('Cannot add two DigMontage objects if '
                                   'fiducial locations are not in the same '
                                   'coordinate system.')

            for kk in self_fid:
                if not np.array_equal(self_fid[kk], other_fid[kk]):
                    raise RuntimeError('Cannot add two DigMontage objects if '
                                       'fiducial locations do not match '
                                       '(%s)' % kk)

            # keep self
            self.dig = _format_dig_points(
                self.dig + [d for d in other.dig
                            if d['kind'] != FIFF.FIFFV_POINT_CARDINAL]
            )
        else:
            self.dig = _format_dig_points(self.dig + other.dig)

        self.ch_names += other.ch_names
        return self

    def copy(self):
        """Copy the DigMontage object.

        Returns
        -------
        dig : instance of DigMontage
            The copied DigMontage instance.
        """
        return deepcopy(self)

    def __add__(self, other):
        """Add two DigMontages."""
        out = self.copy()
        out += other
        return out

    @property
    def dig_ch_pos(self):
        warn('"dig_ch_pos" attribute is deprecated and will be removed in '
             'v0.20', DeprecationWarning)
        return self._ch_pos()

    def _get_ch_pos(self):
        pos = [d['r'] for d in _get_dig_eeg(self.dig)]
        assert len(self.ch_names) == len(pos)
        return dict(zip(self.ch_names, pos))

    def _get_dig_names(self):
        NAMED_KIND = (FIFF.FIFFV_POINT_EEG,)
        is_eeg = np.array([d['kind'] in NAMED_KIND for d in self.dig])
        assert len(self.ch_names) == is_eeg.sum()
        dig_names = [None] * len(self.dig)
        for ch_name_idx, dig_idx in enumerate(np.where(is_eeg)[0]):
            dig_names[dig_idx] = self.ch_names[ch_name_idx]

        return dig_names

    @property
    def elp(self):
        warn('"elp" attribute is deprecated and will be removed in v0.20',
             DeprecationWarning)
        return _foo_get_data_from_dig(self.dig).elp

    @property
    def hpi(self):
        warn('"hpi" attribute is deprecated and will be removed in v0.20',
             DeprecationWarning)
        return getattr(self, '_hpi', None)

    @property
    def hsp(self):
        warn('"hsp" attribute is deprecated and will be removed in v0.20',
             DeprecationWarning)
        return _foo_get_data_from_dig(self.dig).hsp

    @property
    def lpa(self):
        warn('"lpa" attribute is deprecated and will be removed in v0.20',
             DeprecationWarning)
        return _foo_get_data_from_dig(self.dig).lpa

    @property
    def rpa(self):
        warn('"rpa" attribute is deprecated and will be removed in v0.20',
             DeprecationWarning)
        return _foo_get_data_from_dig(self.dig).rpa

    @property
    def nasion(self):
        warn('"nasion" attribute is deprecated and will be removed in v0.20',
             DeprecationWarning)
        return _foo_get_data_from_dig(self.dig).nasion


def _get_scaling(unit, scale):
    if unit not in scale:
        raise ValueError("Unit needs to be one of %s, not %r" %
                         (sorted(scale.keys()), unit))
    else:
        return scale[unit]


def _check_unit_and_get_scaling(unit, valid_scales):
    _check_option('unit', unit, list(valid_scales.keys()))
    return valid_scales[unit]


def transform_to_head(montage):
    """Transform a DigMontage object into head coordinate.

    It requires that the LPA, RPA and Nasion fiducial
    point are available. It requires that all fiducial
    points are in the same coordinate e.g. 'unknown'
    and it will convert all the point in this coordinate
    system to Neuromag head coordinate system.

    Parameters
    ----------
    montage : instance of DigMontage
        The montage.

    Returns
    -------
    montage : instance of DigMontage
        The montage after transforming the points to head
        coordinate system.
    """
    # Get fiducial points and their coord_frame
    fid_coords, coord_frame = _get_fid_coords(montage.dig)

    montage = deepcopy(montage)  # to avoid inplace modification

    if coord_frame != FIFF.FIFFV_COORD_HEAD:
        nasion, lpa, rpa = \
            fid_coords['nasion'], fid_coords['lpa'], fid_coords['rpa']
        native_head_t = get_ras_to_neuromag_trans(nasion, lpa, rpa)

        for d in montage.dig:
            if d['coord_frame'] == coord_frame:
                d['r'] = apply_trans(native_head_t, d['r'])
                d['coord_frame'] = FIFF.FIFFV_COORD_HEAD

    montage._coord_frame = 'head'  # XXX : should desappear in 0.20
    return montage


def _read_dig_montage_deprecation_warning_helper(**kwargs):
    if kwargs.pop('fif') is not None:
        warn('Using "read_dig_montage" with "fif" not None'
             ' is deprecated and will be removed in v0.20'
             ' Please use read_dig_fif instead.', DeprecationWarning)
        return
    if kwargs.pop('egi') is not None:
        warn('Using "read_dig_montage" with "egi" not None'
             ' is deprecated and will be removed in v0.20'
             ' Please use read_dig_egi instead.', DeprecationWarning)
        return
    if kwargs.pop('bvct') is not None:
        warn('Using "read_dig_montage" with "bvct" not None'
             ' is deprecated and will be removed in v0.20.'
             ' Please use read_dig_captrack instead.', DeprecationWarning)
        return

    if [kk for kk in ('hsp', 'hpi', 'elp') if isinstance(kwargs[kk],
                                                         np.ndarray)]:
        warn('Passing "np.arrays" to "hsp", "hpi" or "elp" in'
             ' "read_dig_montage" is deprecated and will be removed in v0.20.'
             ' Please use "make_dig_montage" instead.', DeprecationWarning)
        return

    warn('Using "read_dig_montage" is deprecated and will be removed in '
         'v0.20. Use read_dig_polhemus_isotrak.', DeprecationWarning)


def read_dig_montage(hsp=None, hpi=None, elp=None,
                     point_names=None, unit='auto', fif=None, egi=None,
                     bvct=None, transform=True, dev_head_t=False, ):
    r"""Read subject-specific digitization montage from a file.

    Parameters
    ----------
    hsp : None | str | array, shape (n_points, 3)
        If str, this corresponds to the filename of the headshape points.
        This is typically used with the Polhemus FastSCAN system.
        If numpy.array, this corresponds to an array of positions of the
        headshape points in 3d. These points are assumed to be in the native
        digitizer space and will be rescaled according to the unit parameter.
    hpi : None | str | array, shape (n_hpi, 3)
        If str, this corresponds to the filename of Head Position Indicator
        (HPI) points. If numpy.array, this corresponds to an array
        of HPI points. These points are in device space, and are only
        necessary if computation of a ``dev_head_t`` by the
        :class:`DigMontage` is required.
    elp : None | str | array, shape (n_fids + n_hpi, 3)
        If str, this corresponds to the filename of electrode position
        points. This is typically used with the Polhemus FastSCAN system.
        If numpy.array, this corresponds to an array of digitizer points in
        the same order. These points are assumed to be in the native digitizer
        space and will be rescaled according to the unit parameter.
    point_names : None | list
        A list of point names for elp (required if elp is defined).
        Typically this would be like::

            ('nasion', 'lpa', 'rpa', 'CHPI001', 'CHPI002', 'CHPI003')

    unit : 'auto' | 'm' | 'cm' | 'mm'
        Unit of the digitizer files (hsp and elp). If not 'm', coordinates will
        be rescaled to 'm'. Default is 'auto', which assumes 'm' for \*.hsp and
        \*.elp files and 'mm' for \*.txt files, corresponding to the known
        Polhemus export formats.
    fif : str | None
        FIF file from which to read digitization locations.
        If str (filename), all other arguments are ignored.

        .. versionadded:: 0.12

    egi : str | None
        EGI MFF XML coordinates file from which to read digitization locations.
        If str (filename), all other arguments are ignored.

        .. versionadded:: 0.14

    bvct : None | str
        BrainVision CapTrak coordinates file from which to read digitization
        locations. This is typically in XML format. If str (filename), all
        other arguments are ignored.

        .. versionadded:: 0.19
    transform : bool
        If True (default), points will be transformed to Neuromag space
        using :meth:`DigMontage.transform_to_head`.
        The fiducials (nasion, lpa, and rpa) must be specified.
        This is useful for points captured using a device that does
        not automatically convert points to Neuromag head coordinates
        (e.g., Polhemus FastSCAN).
    dev_head_t : bool
        If True, a Dev-to-Head transformation matrix will be added to the
        montage using :meth:`DigMontage.compute_dev_head_t`.
        To get a proper `dev_head_t`, the hpi and the elp points
        must be in the same order. If False (default), no transformation
        will be added to the montage.

    Returns
    -------
    montage : instance of DigMontage
        The digitizer montage.

    See Also
    --------
    DigMontage

    Notes
    -----
    All digitized points will be transformed to head-based coordinate system
    if transform is True and fiducials are present.

    .. versionadded:: 0.9.0
    """
    # XXX: This scaling business seems really dangerous to me.
    EGI_SCALE = dict(mm=1e-3, cm=1e-2, auto=1e-2, m=1)
    NUMPY_DATA_SCALE = dict(mm=1e-3, cm=1e-2, auto=1e-3, m=1)

    _read_dig_montage_deprecation_warning_helper(
        hsp=hsp, hpi=hpi, elp=elp, fif=fif, egi=egi, bvct=bvct,
    )

    if fif is not None:
        _raise_transform_err = True if dev_head_t or not transform else False
        _all_data_kwargs_are_none = all(
            x is None for x in (hsp, hpi, elp, point_names, egi, bvct)
        )

        if _raise_transform_err:
            raise ValueError('transform must be True and dev_head_t must be'
                             ' False for FIF dig montage')
        if not _all_data_kwargs_are_none:
            raise ValueError('hsp, hpi, elp, point_names, egi must all be'
                             ' None if fif is not None')

        return read_dig_fif(fname=fif)

    elif egi is not None:
        data = _read_dig_montage_egi(
            fname=egi,
            _scaling=_get_scaling(unit, EGI_SCALE),
            _all_data_kwargs_are_none=all(
                x is None for x in (hsp, hpi, elp, point_names, fif, bvct))
        )

    elif bvct is not None:
        data = _read_dig_montage_bvct(
            fname=bvct,
            unit=unit,  # XXX: this should change
            _all_data_kwargs_are_none=all(
                x is None for x in (hsp, hpi, elp, point_names, fif, egi))
        )

    else:
        # XXX: This should also become a function
        _scaling = _get_scaling(unit, NUMPY_DATA_SCALE),
        # HSP
        if isinstance(hsp, str):
            hsp = _read_dig_points(hsp, unit=unit)
        elif hsp is not None:
            hsp *= _scaling

        # HPI
        if isinstance(hpi, str):
            ext = op.splitext(hpi)[-1]
            if ext in ('.txt', '.mat'):
                hpi = _read_dig_points(hpi, unit='m')
            elif ext in ('.sqd', '.mrk'):
                from ..io.kit import read_mrk
                hpi = read_mrk(hpi)
            else:
                raise ValueError('HPI file with extension *%s is not '
                                 'supported. Only *.txt, *.sqd and *.mrk are '
                                 'supported.' % ext)

        # ELP
        if isinstance(elp, str):
            elp = _read_dig_points(elp, unit=unit)
        elif elp is not None:
            elp *= _scaling

        data = Bunch(
            nasion=None, lpa=None, rpa=None,
            hsp=hsp, elp=elp, coord_frame='unknown',
            dig_ch_pos=None, hpi=hpi, point_names=point_names,
        )

    if any(x is None for x in (data.nasion, data.rpa, data.lpa)) and transform:
        data = _fix_data_fiducials(data)

    point_names = data.pop('point_names')
    data['hpi_dev'] = data['hpi']
    data['hpi'] = data.pop('elp')
    data['ch_pos'] = data.pop('dig_ch_pos')
    montage = _make_dig_montage(
        **data, transform_to_head=transform,
        compute_dev_head_t=dev_head_t,
    )

    montage._point_names = point_names  # XXX: hack this should go!!
    return montage


def read_dig_fif(fname):
    r"""Read digitized points from a .fif file.

    Note that electrode names are not present in the .fif file so
    they are here defined with the convention from VectorView
    systems (EEG001, EEG002, etc.)

    Parameters
    ----------
    fname : path-like
        FIF file from which to read digitization locations.

    Returns
    -------
    montage : instance of DigMontage
        The montage.

    See Also
    --------
    DigMontage
    read_dig_egi
    read_dig_captrack
    read_dig_polhemus_isotrak
    read_dig_hpts
    make_dig_montage
    """
    _check_fname(fname, overwrite='read', must_exist=True)
    # Load the dig data
    f, tree = fiff_open(fname)[:2]
    with f as fid:
        dig = _read_dig_fif(fid, tree)

    ch_names = []
    for d in dig:
        if d['kind'] == FIFF.FIFFV_POINT_EEG:
            ch_names.append('EEG%03d' % d['ident'])

    montage = DigMontage(dig=dig, ch_names=ch_names)
    return montage


def read_dig_hpts(fname, unit='mm'):
    """Read historical .hpts mne-c files.

    Parameters
    ----------
    fname : str
        The filepath of .hpts file.
    unit : 'm' | 'cm' | 'mm'
        Unit of the positions. Defaults to 'mm'.

    Returns
    -------
    montage : instance of DigMontage
        The montage.

    See Also
    --------
    DigMontage
    read_dig_captrack
    read_dig_egi
    read_dig_fif
    read_dig_polhemus_isotrak
    make_dig_montage

    Notes
    -----
    The hpts format digitzer data file may contain comment lines starting
    with the pound sign (#) and data lines of the form::

         <*category*> <*identifier*> <*x/mm*> <*y/mm*> <*z/mm*>

    where:

    ``<*category*>``
        defines the type of points. Allowed categories are: `hpi`,
        `cardinal` (fiducial), `eeg`, and `extra` corresponding to
        head-position indicator coil locations, cardinal landmarks, EEG
        electrode locations, and additional head surface points,
        respectively.

    ``<*identifier*>``
        identifies the point. The identifiers are usually sequential
        numbers. For cardinal landmarks, 1 = left auricular point,
        2 = nasion, and 3 = right auricular point. For EEG electrodes,
        identifier = 0 signifies the reference electrode.

    ``<*x/mm*> , <*y/mm*> , <*z/mm*>``
        Location of the point, usually in the head coordinate system
        in millimeters. If your points are in [m] then unit parameter can
        be changed.

    For example::

        cardinal    2    -5.6729  -12.3873  -30.3671
        cardinal    1    -37.6782  -10.4957   91.5228
        cardinal    3    -131.3127    9.3976  -22.2363
        hpi    1    -30.4493  -11.8450   83.3601
        hpi    2    -122.5353    9.2232  -28.6828
        hpi    3    -6.8518  -47.0697  -37.0829
        hpi    4    7.3744  -50.6297  -12.1376
        hpi    5    -33.4264  -43.7352  -57.7756
        eeg    FP1  3.8676  -77.0439  -13.0212
        eeg    FP2  -31.9297  -70.6852  -57.4881
        eeg    F7  -6.1042  -68.2969   45.4939
        ...

    """
    from ._standard_montage_utils import _str_names, _str
    VALID_SCALES = dict(mm=1e-3, cm=1e-2, m=1)
    _scale = _check_unit_and_get_scaling(unit, VALID_SCALES)

    out = np.genfromtxt(fname, comments='#',
                        dtype=(_str, _str, 'f8', 'f8', 'f8'))
    kind, label = _str_names(out['f0']), _str_names(out['f1'])
    xyz = np.array([out['f%d' % ii] for ii in range(2, 5)]).T
    xyz *= _scale
    del _scale
    fid_idx_to_label = {'1': 'lpa', '2': 'nasion', '3': 'rpa'}
    fid = {fid_idx_to_label[label[ii]]: this_xyz
           for ii, this_xyz in enumerate(xyz) if kind[ii] == 'cardinal'}
    ch_pos = {label[ii]: this_xyz
              for ii, this_xyz in enumerate(xyz) if kind[ii] == 'eeg'}
    hpi = np.array([this_xyz for ii, this_xyz in enumerate(xyz)
                    if kind[ii] == 'hpi'])
    hpi.shape = (-1, 3)  # in case it's empty
    hsp = np.array([this_xyz for ii, this_xyz in enumerate(xyz)
                    if kind[ii] == 'extra'])
    hsp.shape = (-1, 3)  # in case it's empty
    return make_dig_montage(ch_pos=ch_pos, **fid, hpi=hpi, hsp=hsp)


def read_dig_egi(fname):
    """Read electrode locations from EGI system.

    Parameters
    ----------
    fname : path-like
        EGI MFF XML coordinates file from which to read digitization locations.

    Returns
    -------
    montage : instance of DigMontage
        The montage.

    See Also
    --------
    DigMontage
    read_dig_captrack
    read_dig_fif
    read_dig_hpts
    read_dig_polhemus_isotrak
    make_dig_montage
    """
    _check_fname(fname, overwrite='read', must_exist=True)

    data = _read_dig_montage_egi(
        fname=fname,
        _scaling=1.,
        _all_data_kwargs_are_none=True
    )

    # XXX: to change to the new naming in v.0.20 (all this block should go)
    data.pop('point_names')
    data['hpi'] = data.pop('elp')
    data['ch_pos'] = data.pop('dig_ch_pos')

    return make_dig_montage(**data)


def read_dig_captrack(fname):
    """Read electrode locations from CapTrak Brain Products system.

    Parameters
    ----------
    fname : path-like
        BrainVision CapTrak coordinates file from which to read EEG electrode
        locations. This is typically in XML format with the .bvct extension.

    Returns
    -------
    montage : instance of DigMontage
        The montage.

    See Also
    --------
    DigMontage
    read_dig_egi
    read_dig_fif
    read_dig_hpts
    read_dig_polhemus_isotrak
    make_dig_montage
    """
    _check_fname(fname, overwrite='read', must_exist=True)
    data = _parse_brainvision_dig_montage(fname)

    # XXX: to change to the new naming in v.0.20 (all this block should go)
    data.pop('point_names')
    data['hpi'] = data.pop('elp')
    data['ch_pos'] = data.pop('dig_ch_pos')

    return make_dig_montage(**data)


def _get_montage_in_head(montage):
    coords = set([d['coord_frame'] for d in montage.dig])
    if len(coords) == 1 and coords.pop() == FIFF.FIFFV_COORD_HEAD:
        return montage
    else:
        return transform_to_head(montage.copy())


def _set_montage_deprecation_helper(montage, update_ch_names, set_dig,
                                    raise_if_subset):
    """Manage deprecation policy for _set_montage.

    montage : instance of DigMontage | 'kind' | None
        The montage.
    update_ch_names : bool
        Whether to update or not ``ch_names`` in info.
    set_dig : bool
        Whether to copy or not ``montage.dig`` into ``info['dig']``
    raise_if_subset: bool
        Flag to grant raise/warn backward compatibility.

    Notes
    -----
    v0.19:
       - deprecate all montage types but DigMontage (or None, or valid 'kind')
       - deprecate using update_ch_names and set_dig
       - add raise_if_subset flag (defaults to False)

    v0.20:
       - montage is only DigMontage
       - update_ch_names and set_dig disappear
       - raise_if_subset defaults to True, still warns

    v0.21:
       - remove raise_if_subset
    """
    if isinstance(montage, (DigMontage, type(None))):
        # only worry about the DigMontage case
        if update_ch_names is not DEPRECATED_PARAM:
            warn((
                'Using ``update_ch_names`` to ``set_montage`` when using'
                ' DigMontage is deprecated and ``update_ch_names`` will be'
                ' removed in 0.20'
            ), DeprecationWarning)
        if set_dig is not DEPRECATED_PARAM:
            warn((
                'Using ``set_dig`` to ``set_montage`` when using'
                ' DigMontage is deprecated and ``set_dig`` will be'
                ' removed in 0.20'
            ), DeprecationWarning)

    elif isinstance(montage, str) and montage not in _BUILT_IN_MONTAGES:
        warn((
            'Using str in montage different from the built in templates '
            ' (i.e. a path) is deprecated. Please choose the proper reader to'
            ' load your montage using: '
            ' ``read_dig_fif``, ``read_dig_egi``, ``read_custom_montage``,'
            ' or ``read_dig_captrack``'
        ), DeprecationWarning)
    elif not (isinstance(montage, str) or montage is None):  # Montage
        warn((
            'Setting a montage using anything rather than DigMontage'
            ' is deprecated and will raise an error in v0.20.'
            ' Please use ``read_dig_fif``, ``read_dig_egi``,'
            ' ``read_dig_polhemus_isotrak``, or ``read_dig_captrack``'
            ' ``read_dig_hpts``, ``read_dig_captrack`` or'
            ' ``read_custom_montage`` to read a digitization based on'
            ' your needs instead; or ``make_standard_montage`` to create'
            ' ``DigMontage`` based on template; or ``make_dig_montage``'
            ' to create a ``DigMontage`` out of np.arrays.'
        ), DeprecationWarning)

    # This is unlikely to be trigger but it applies in all cases
    if raise_if_subset is not DEPRECATED_PARAM:
        # nothing to be done in 0.19
        pass  # noqa

    # Return defaults
    return (
        False if update_ch_names is DEPRECATED_PARAM else update_ch_names,
        True if set_dig is DEPRECATED_PARAM else set_dig,
        True if raise_if_subset is DEPRECATED_PARAM else raise_if_subset,
    )


def _set_montage(info, montage, update_ch_names=DEPRECATED_PARAM,
                 set_dig=DEPRECATED_PARAM, raise_if_subset=DEPRECATED_PARAM):
    """Apply montage to data.

    With a Montage, this function will replace the EEG channel names and
    locations with the values specified for the particular montage.

    With a DigMontage, this function will replace the digitizer info with
    the values specified for the particular montage.

    Usually, a montage is expected to contain the positions of all EEG
    electrodes and a warning is raised when this is not the case.

    Parameters
    ----------
    info : instance of Info
        The measurement info to update.
    montage : instance of Montage | instance of DigMontage | str | None
        The montage to apply (None removes any location information). If
        montage is a string, a builtin montage with that name will be used.

        Deprecated all types of montage but DigMontage in v0.19.
    update_ch_names : bool
        If True, overwrite the info channel names with the ones from montage.
        Defaults to False.

        Deprecated in v0.19 and will be removed in v0.20.
    raise_if_subset: bool
        If True, ValueError will be raised when montage.ch_names is a
        subset of info['ch_names']. This parameter was introduced for
        backward compatibility when set to False.

        Defaults to False in 0.19, it will change to default to True in
        0.20, and will be removed in 0.21.

        .. versionadded: 0.19
    Notes
    -----
    This function will change the info variable in place.
    """
    update_ch_names, set_dig, _raise = _set_montage_deprecation_helper(
        montage, update_ch_names, set_dig, raise_if_subset
    )

    if isinstance(montage, str):  # load builtin montage
        if montage in _BUILT_IN_MONTAGES:
            montage = make_standard_montage(montage)
        else:
            montage = read_montage(montage)

    if isinstance(montage, Montage):
        if update_ch_names:
            for ii, (ch, ch_name) in \
                    enumerate(zip(info['chs'], montage.ch_names)):
                ch_info = {'cal': 1., 'logno': ii + 1, 'scanno': ii + 1,
                           'range': 1.0, 'unit_mul': 0, 'ch_name': ch_name,
                           'unit': FIFF.FIFF_UNIT_V, 'kind': FIFF.FIFFV_EEG_CH,
                           'coord_frame': FIFF.FIFFV_COORD_HEAD,
                           'coil_type': FIFF.FIFFV_COIL_EEG}
                ch.update(ch_info)
            info._update_redundant()

        if not _contains_ch_type(info, 'eeg'):
            raise ValueError('No EEG channels found.')

        # If there are no name collisions, match channel names in a case
        # insensitive manner.
        montage_lower = [ch_name.lower() for ch_name in montage.ch_names]
        info_lower = [ch_name.lower() for ch_name in info['ch_names']]
        if (len(set(montage_lower)) == len(montage_lower) and
                len(set(info_lower)) == len(info_lower)):
            montage_ch_names = montage_lower
            info_ch_names = info_lower
        else:
            montage_ch_names = montage.ch_names
            info_ch_names = info['ch_names']

        info_ch_names = [name.replace(' ', '') for name in info_ch_names]
        montage_ch_names = [name.replace(' ', '') for name in montage_ch_names]

        dig = dict()
        for pos, ch_name in zip(montage.pos, montage_ch_names):
            if ch_name not in info_ch_names:
                continue

            ch_idx = info_ch_names.index(ch_name)
            info['chs'][ch_idx]['loc'] = np.r_[pos, [0.] * 9]
            info['chs'][ch_idx]['coord_frame'] = FIFF.FIFFV_COORD_HEAD
            dig[ch_idx] = pos
        if set_dig:
            info['dig'] = _make_dig_points(
                nasion=montage.nasion, lpa=montage.lpa, rpa=montage.rpa,
                dig_ch_pos=dig)
        if len(dig) == 0:
            raise ValueError('None of the sensors defined in the montage were '
                             'found in the info structure. Check the channel '
                             'names.')

        eeg_sensors = pick_types(info, meg=False, ref_meg=False, eeg=True,
                                 exclude=[])
        not_found = np.setdiff1d(eeg_sensors, list(dig.keys()))
        if len(not_found) > 0:
            not_found_names = [info['ch_names'][ch] for ch in not_found]
            warn('The following EEG sensors did not have a position '
                 'specified in the selected montage: ' +
                 str(not_found_names) + '. Their position has been '
                 'left untouched.')

    elif isinstance(montage, DigMontage):
        _mnt = _get_montage_in_head(montage)

        def _backcompat_value(pos, ref_pos):
            if any(np.isnan(pos)):
                return np.full(6, np.nan)
            else:
                return np.concatenate((pos, ref_pos))

        ch_pos = _mnt._get_ch_pos()
        refs = set(ch_pos.keys()) & {'EEG000', 'REF'}
        assert len(refs) <= 1
        eeg_ref_pos = np.zeros(3) if not(refs) else ch_pos.pop(refs.pop())

        # This raises based on info being subset/superset of montage
        _pick_chs = partial(
            pick_types, exclude=[], eeg=True, seeg=True, ecog=True, meg=False,
        )
        matched_ch_names = _check_ch_names_are_compatible(
            info_names=set([info['ch_names'][ii] for ii in _pick_chs(info)]),
            montage_names=set(ch_pos),
            raise_if_subset=_raise,  # XXX: deprecated param to remove in 0.20
        )

        for name in matched_ch_names:
            _loc_view = info['chs'][info['ch_names'].index(name)]['loc']
            _loc_view[:6] = _backcompat_value(ch_pos[name], eeg_ref_pos)

        if set_dig:  # XXX: in 0.20 it is safe to move the code out of the if.
            _names = _mnt._get_dig_names()
            info['dig'] = _format_dig_points([
                _mnt.dig[ii] for ii, name in enumerate(_names)
                if name in matched_ch_names.union({None, 'EEG000', 'REF'})
            ])

        if _mnt.dev_head_t is not None:
            info['dev_head_t'] = Transform('meg', 'head', _mnt.dev_head_t)

    elif montage is None:
        for ch in info['chs']:
            ch['loc'] = np.full(12, np.nan)
        if set_dig:
            info['dig'] = None
    else:
        raise TypeError("Montage must be a 'Montage', 'DigMontage', 'str' or "
                        "'None' instead of '%s'." % type(montage))


def _read_isotrak_elp_points(fname):
    """Read Polhemus Isotrak digitizer data from a ``.elp`` file.

    Parameters
    ----------
    fname : str
        The filepath of .elp Polhemus Isotrak file.

    Returns
    -------
    out : dict of arrays
        The dictionary containing locations for 'nasion', 'lpa', 'rpa'
        and 'points'.
    """
    value_pattern = r"\-?\d+\.?\d*e?\-?\d*"
    coord_pattern = r"({0})\s+({0})\s+({0})\s*$".format(value_pattern)

    with open(fname) as fid:
        file_str = fid.read()

    points_str = [m.groups() for m in re.finditer(coord_pattern, file_str,
                                                  re.MULTILINE)]
    points = np.array(points_str, dtype=float)

    return {
        'nasion': points[0], 'lpa': points[1], 'rpa': points[2],
        'points': points[3:]
    }


def _read_isotrak_hsp_points(fname):
    """Read Polhemus Isotrak digitizer data from a ``.hsp`` file.

    Parameters
    ----------
    fname : str
        The filepath of .hsp Polhemus Isotrak file.

    Returns
    -------
    out : dict of arrays
        The dictionary containing locations for 'nasion', 'lpa', 'rpa'
        and 'points'.
    """
    def consume(fid, predicate):  # just a consumer to move around conveniently
        while(predicate(fid.readline())):
            pass

    def get_hsp_fiducial(line):
        return np.fromstring(line.replace('%F', ''), dtype=float, sep='\t')

    with open(fname) as ff:
        consume(ff, lambda l: 'position of fiducials' not in l.lower())

        nasion = get_hsp_fiducial(ff.readline())
        lpa = get_hsp_fiducial(ff.readline())
        rpa = get_hsp_fiducial(ff.readline())

        _ = ff.readline()
        n_points, n_cols = np.fromstring(ff.readline(), dtype=int, sep='\t')
        points = np.fromstring(
            string=ff.read(), dtype=float, sep='\t',
        ).reshape(-1, n_cols)
        assert points.shape[0] == n_points

    return {
        'nasion': nasion, 'lpa': lpa, 'rpa': rpa, 'points': points
    }


def read_dig_polhemus_isotrak(fname, ch_names=None, unit='m'):
    """Read Polhemus digitizer data from a file.

    Parameters
    ----------
    fname : str
        The filepath of Polhemus ISOTrak formatted file.
        File extension is expected to be '.hsp', '.elp' or '.eeg'.
    ch_names : None | list of str
        The names of the points. This will make the points
        considered as EEG channels.
    unit : 'm' | 'cm' | 'mm'
        Unit of the digitizer file. Polhemus ISOTrak systems data is usually
        exported in meters. Defaults to 'm'

    Returns
    -------
    montage : instance of DigMontage
        The montage.

    See Also
    --------
    DigMontage
    make_dig_montage
    read_polhemus_fastscan
    read_dig_captrack
    read_dig_egi
    read_dig_fif
    """
    VALID_FILE_EXT = ('.hsp', '.elp', '.eeg')
    VALID_SCALES = dict(mm=1e-3, cm=1e-2, m=1)
    _scale = _check_unit_and_get_scaling(unit, VALID_SCALES)

    _, ext = op.splitext(fname)
    _check_option('fname', ext, VALID_FILE_EXT)

    if ext == '.elp':
        data = _read_isotrak_elp_points(fname)
    else:
        # Default case we read points as hsp since is the most likely scenario
        data = _read_isotrak_hsp_points(fname)

    if _scale != 1:
        data = {key: val * _scale for key, val in data.items()}
    else:
        pass  # noqa

    if ch_names is None:
        keyword = 'hpi' if ext == '.elp' else 'hsp'
        data[keyword] = data.pop('points')

    else:
        points = data.pop('points')
        if points.shape[0] == len(ch_names):
            data['ch_pos'] = dict(zip(ch_names, points))
        else:
            raise ValueError((
                "Length of ``ch_names`` does not match the number of points"
                " in {fname}. Expected ``ch_names`` length {n_points:d},"
                " given {n_chnames:d}"
            ).format(
                fname=fname, n_points=points.shape[0], n_chnames=len(ch_names)
            ))

    return make_dig_montage(**data)


def _get_polhemus_fastscan_header(fname):
    with open(fname, 'r') as fid:
        header = [l for l in takewhile(lambda line: line.startswith('%'), fid)]

    return ''.join(header)


def read_polhemus_fastscan(fname, unit='mm'):
    """Read Polhemus FastSCAN digitizer data from a ``.txt`` file.

    Parameters
    ----------
    fname : str
        The filepath of .txt Polhemus FastSCAN file.
    unit : 'm' | 'cm' | 'mm'
        Unit of the digitizer file. Polhemus FastSCAN systems data is usually
        exported in millimeters. Defaults to 'mm'

    Returns
    -------
    points : array, shape (n_points, 3)
        The digitization points in digitizer coordinates.

    See Also
    --------
    read_dig_polhemus_isotrak
    make_dig_montage
    """
    VALID_FILE_EXT = ['.txt']
    VALID_SCALES = dict(mm=1e-3, cm=1e-2, m=1)
    _scale = _check_unit_and_get_scaling(unit, VALID_SCALES)

    _, ext = op.splitext(fname)
    _check_option('fname', ext, VALID_FILE_EXT)

    if _get_polhemus_fastscan_header(fname).find('FastSCAN') == -1:
        raise ValueError(
            "%s does not contain Polhemus FastSCAN header" % fname
        )

    points = _scale * np.loadtxt(fname, comments='%', ndmin=2)

    return points


def _read_eeglab_locations(fname, unit):
    ch_names = np.genfromtxt(fname, dtype=str, usecols=3).tolist()
    topo = np.loadtxt(fname, dtype=float, usecols=[1, 2])
    sph = _topo_to_sph(topo)
    pos = _sph_to_cart(sph)
    pos[:, [0, 1]] = pos[:, [1, 0]] * [-1, 1]

    return ch_names, pos


def read_custom_montage(fname, head_size=HEAD_SIZE_DEFAULT, unit='m'):
    """Read a montage from a file.

    Parameters
    ----------
    fname : str
        File extension is expected to be:
        '.loc' or '.locs' or '.eloc' (for EEGLAB files),
        '.sfp' (BESA/EGI files), '.csd',
        ‘.elc’, ‘.txt’, ‘.csd’, ‘.elp’ (BESA spherical),
        .bvef (BrainVision files).

    head_size : float | None
        The size of the head in [m]. If none, returns the values read from the
        file with no modification. Defaults to 95mm.

    Returns
    -------
    montage : instance of DigMontage
        The montage.

    Notes
    -----
    The function is a helper to read electrode positions you may have
    in various formats. Most of these format are weakly specified
    in terms of units, coordinate systems. It implies that setting
    a montage using a DigMontage produced by this function may
    be problematic. If you use a standard/template (eg. 10/20,
    10/10 or 10/05) we recommend you use :func:`make_standard_montage`.
    If you can have positions in memory you can also use
    :func:`make_dig_montage` that takes arrays as input.

    See Also
    --------
    make_dig_montage
    make_standard_montage
    """
    from ._standard_montage_utils import (
        _read_theta_phi_in_degrees, _read_sfp, _read_csd, _read_elc,
        _read_elp_besa, _read_brainvision
    )
    SUPPORTED_FILE_EXT = {
        'eeglab': ('.loc', '.locs', '.eloc', ),
        'hydrocel': ('.sfp', ),
        'matlab': ('.csd', ),
        'asa electrode': ('.elc', ),
        'generic (Theta-phi in degrees)': ('.txt', ),
        'standard BESA spherical': ('.elp', ),  # XXX: not same as polhemus elp
        'brainvision': ('.bvef', ),
    }

    _, ext = op.splitext(fname)
    _check_option('fname', ext, list(chain(*SUPPORTED_FILE_EXT.values())))

    if ext in SUPPORTED_FILE_EXT['eeglab']:
        if head_size is None:
            raise(ValueError,
                  "``head_size`` cannot be None for '{}'".format(ext))
        ch_names, pos = _read_eeglab_locations(fname, unit)
        scale = head_size / np.median(np.linalg.norm(pos, axis=-1))
        pos *= scale

        montage = make_dig_montage(
            ch_pos=dict(zip(ch_names, pos)),
            coord_frame='head',
        )

    elif ext in SUPPORTED_FILE_EXT['hydrocel']:
        montage = _read_sfp(fname, head_size=head_size)

    elif ext in SUPPORTED_FILE_EXT['matlab']:
        montage = _read_csd(fname, head_size=head_size)

    elif ext in SUPPORTED_FILE_EXT['asa electrode']:
        montage = _read_elc(fname, head_size=head_size)

    elif ext in SUPPORTED_FILE_EXT['generic (Theta-phi in degrees)']:
        if head_size is None:
            raise(ValueError,
                  "``head_size`` cannot be None for '{}'".format(ext))
        montage = _read_theta_phi_in_degrees(fname, head_size=head_size,
                                             fid_names=('Nz', 'LPA', 'RPA'))

    elif ext in SUPPORTED_FILE_EXT['standard BESA spherical']:
        montage = _read_elp_besa(fname, head_size)

    elif ext in SUPPORTED_FILE_EXT['brainvision']:
        montage = _read_brainvision(fname, head_size, unit)

    return montage


def compute_dev_head_t(montage):
    """Compute device to head transform from a DigMontage.

    Parameters
    ----------
    montage : instance of DigMontage
        The DigMontage must contain the fiducials in head
        coordinate system and hpi points in both head and
        meg device coordinate system.

    Returns
    -------
    dev_head_t : instance of Transform
        A Device-to-Head transformation matrix.
    """
    from ..coreg import fit_matched_points

    _, coord_frame = _get_fid_coords(montage.dig)
    if coord_frame != FIFF.FIFFV_COORD_HEAD:
        raise ValueError('montage should have been set to head coordinate '
                         'system with transform_to_head function.')

    hpi_head = [d['r'] for d in montage.dig
                if (d['kind'] == FIFF.FIFFV_POINT_HPI and
                    d['coord_frame'] == FIFF.FIFFV_COORD_HEAD)]
    hpi_dev = [d['r'] for d in montage.dig
               if (d['kind'] == FIFF.FIFFV_POINT_HPI and
                   d['coord_frame'] == FIFF.FIFFV_COORD_DEVICE)]

    if not (len(hpi_head) == len(hpi_dev) and len(hpi_dev) > 0):
        raise ValueError((
            "To compute Device-to-Head transformation, the same number of HPI"
            " points in device and head coordinates is required. (Got {dev}"
            " points in device and {head} points in head coordinate systems)"
        ).format(dev=len(hpi_dev), head=len(hpi_head)))

    trans = fit_matched_points(tgt_pts=hpi_head, src_pts=hpi_dev, out='trans')
    return Transform(fro='meg', to='head', trans=trans)


def make_standard_montage(kind, head_size=HEAD_SIZE_DEFAULT):
    """Read a generic (built-in) montage.

    Parameters
    ----------
    kind : str
        The name of the montage to use. See notes for valid kinds.
    head_size : float
        The head size (in meters) to use for spherical montages.
        Defaults to 95mm.

    Returns
    -------
    montage : instance of DigMontage
        The montage.

    See Also
    --------
    DigMontage
    make_dig_montage
    read_custom_montage

    Notes
    -----
    Individualized (digitized) electrode positions should be read in using
    :func:`read_dig_captrack`, :func:`read_dig_egi`, :func:`read_dig_fif`,
    :func:`read_dig_polhemus_isotrak`, :func:`read_dig_hpts` or made with
    :func:`make_dig_montage`.

    Valid ``kind`` arguments are:

    ===================   =====================================================
    Kind                  Description
    ===================   =====================================================
    standard_1005         Electrodes are named and positioned according to the
                          international 10-05 system (343+3 locations)
    standard_1020         Electrodes are named and positioned according to the
                          international 10-20 system (94+3 locations)
    standard_alphabetic   Electrodes are named with LETTER-NUMBER combinations
                          (A1, B2, F4, ...) (65+3 locations)
    standard_postfixed    Electrodes are named according to the international
                          10-20 system using postfixes for intermediate
                          positions (100+3 locations)
    standard_prefixed     Electrodes are named according to the international
                          10-20 system using prefixes for intermediate
                          positions (74+3 locations)
    standard_primed       Electrodes are named according to the international
                          10-20 system using prime marks (' and '') for
                          intermediate positions (100+3 locations)

    biosemi16             BioSemi cap with 16 electrodes (16+3 locations)
    biosemi32             BioSemi cap with 32 electrodes (32+3 locations)
    biosemi64             BioSemi cap with 64 electrodes (64+3 locations)
    biosemi128            BioSemi cap with 128 electrodes (128+3 locations)
    biosemi160            BioSemi cap with 160 electrodes (160+3 locations)
    biosemi256            BioSemi cap with 256 electrodes (256+3 locations)

    easycap-M1            EasyCap with 10-05 electrode names (74 locations)
    easycap-M10           EasyCap with numbered electrodes (61 locations)

    EGI_256               Geodesic Sensor Net (256 locations)

    GSN-HydroCel-32       HydroCel Geodesic Sensor Net and Cz (33+3 locations)
    GSN-HydroCel-64_1.0   HydroCel Geodesic Sensor Net (64+3 locations)
    GSN-HydroCel-65_1.0   HydroCel Geodesic Sensor Net and Cz (65+3 locations)
    GSN-HydroCel-128      HydroCel Geodesic Sensor Net (128+3 locations)
    GSN-HydroCel-129      HydroCel Geodesic Sensor Net and Cz (129+3 locations)
    GSN-HydroCel-256      HydroCel Geodesic Sensor Net (256+3 locations)
    GSN-HydroCel-257      HydroCel Geodesic Sensor Net and Cz (257+3 locations)

    mgh60                 The (older) 60-channel cap used at
                          MGH (60+3 locations)
    mgh70                 The (newer) 70-channel BrainVision cap used at
                          MGH (70+3 locations)
    ===================   =====================================================

    .. versionadded:: 0.19.0
    """
    from ._standard_montage_utils import standard_montage_look_up_table
    if kind not in standard_montage_look_up_table:
        raise ValueError('Could not find the montage %s. Please provide one '
                         'among: %s' % (kind,
                                        standard_montage_look_up_table.keys()))
    return standard_montage_look_up_table[kind](head_size=head_size)