1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
|
import os.path as op
import numpy as np
from numpy.testing import (assert_allclose, assert_array_equal)
import pytest
from mne import io, pick_types, pick_channels, read_events, Epochs
from mne.channels.interpolation import _make_interpolation_matrix
from mne.datasets import testing
from mne.utils import run_tests_if_main
base_dir = op.join(op.dirname(__file__), '..', '..', 'io', 'tests', 'data')
raw_fname = op.join(base_dir, 'test_raw.fif')
event_name = op.join(base_dir, 'test-eve.fif')
raw_fname_ctf = op.join(base_dir, 'test_ctf_raw.fif')
event_id, tmin, tmax = 1, -0.2, 0.5
event_id_2 = 2
def _load_data(kind):
"""Load data."""
# It is more memory efficient to load data in a separate
# function so it's loaded on-demand
raw = io.read_raw_fif(raw_fname)
events = read_events(event_name)
# subselect channels for speed
if kind == 'eeg':
picks = pick_types(raw.info, meg=False, eeg=True, exclude=[])[:15]
epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks,
preload=True, reject=dict(eeg=80e-6))
else:
picks = pick_types(raw.info, meg=True, eeg=False, exclude=[])[1:200:2]
assert kind == 'meg'
with pytest.warns(RuntimeWarning, match='projection'):
epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks,
preload=True,
reject=dict(grad=1000e-12, mag=4e-12))
return raw, epochs
def test_interpolation_eeg():
"""Test interpolation of EEG channels."""
raw, epochs_eeg = _load_data('eeg')
# check that interpolation does nothing if no bads are marked
epochs_eeg.info['bads'] = []
evoked_eeg = epochs_eeg.average()
with pytest.warns(RuntimeWarning, match='Doing nothing'):
evoked_eeg.interpolate_bads()
# create good and bad channels for EEG
epochs_eeg.info['bads'] = []
goods_idx = np.ones(len(epochs_eeg.ch_names), dtype=bool)
goods_idx[epochs_eeg.ch_names.index('EEG 012')] = False
bads_idx = ~goods_idx
evoked_eeg = epochs_eeg.average()
ave_before = evoked_eeg.data[bads_idx]
# interpolate bad channels for EEG
pos = epochs_eeg._get_channel_positions()
pos_good = pos[goods_idx]
pos_bad = pos[bads_idx]
interpolation = _make_interpolation_matrix(pos_good, pos_bad)
assert interpolation.shape == (1, len(epochs_eeg.ch_names) - 1)
ave_after = np.dot(interpolation, evoked_eeg.data[goods_idx])
epochs_eeg.info['bads'] = ['EEG 012']
evoked_eeg = epochs_eeg.average()
assert_array_equal(ave_after, evoked_eeg.interpolate_bads().data[bads_idx])
assert_allclose(ave_before, ave_after, atol=2e-6)
# check that interpolation fails when preload is False
epochs_eeg.preload = False
pytest.raises(RuntimeError, epochs_eeg.interpolate_bads)
epochs_eeg.preload = True
# check that interpolation changes the data in raw
raw_eeg = io.RawArray(data=epochs_eeg._data[0], info=epochs_eeg.info)
raw_before = raw_eeg._data[bads_idx]
raw_after = raw_eeg.interpolate_bads()._data[bads_idx]
assert not np.all(raw_before == raw_after)
# check that interpolation fails when preload is False
for inst in [raw, epochs_eeg]:
assert hasattr(inst, 'preload')
inst.preload = False
inst.info['bads'] = [inst.ch_names[1]]
pytest.raises(RuntimeError, inst.interpolate_bads)
# check that interpolation works with few channels
raw_few = raw.copy().crop(0, 0.1).load_data()
raw_few.pick_channels(raw_few.ch_names[:1] + raw_few.ch_names[3:4])
assert len(raw_few.ch_names) == 2
raw_few.del_proj()
raw_few.info['bads'] = [raw_few.ch_names[-1]]
orig_data = raw_few[1][0]
with pytest.warns(None) as w:
raw_few.interpolate_bads(reset_bads=False)
assert len(w) == 0
new_data = raw_few[1][0]
assert (new_data == 0).mean() < 0.5
assert np.corrcoef(new_data, orig_data)[0, 1] > 0.1
def test_interpolation_meg():
"""Test interpolation of MEG channels."""
# speed accuracy tradeoff: channel subselection is faster but the
# correlation drops
thresh = 0.7
raw, epochs_meg = _load_data('meg')
# check that interpolation works when non M/EEG channels are present
# before MEG channels
raw.crop(0, 0.1).load_data().pick_channels(epochs_meg.ch_names)
raw.info.normalize_proj()
with pytest.warns(RuntimeWarning, match='unit .* changed from .* to .*'):
raw.set_channel_types({raw.ch_names[0]: 'stim'})
raw.info['bads'] = [raw.ch_names[1]]
raw.load_data()
raw.interpolate_bads(mode='fast')
del raw
# check that interpolation works for MEG
epochs_meg.info['bads'] = ['MEG 0141']
evoked = epochs_meg.average()
pick = pick_channels(epochs_meg.info['ch_names'], epochs_meg.info['bads'])
# MEG -- raw
raw_meg = io.RawArray(data=epochs_meg._data[0], info=epochs_meg.info)
raw_meg.info['bads'] = ['MEG 0141']
data1 = raw_meg[pick, :][0][0]
raw_meg.info.normalize_proj()
data2 = raw_meg.interpolate_bads(reset_bads=False,
mode='fast')[pick, :][0][0]
assert np.corrcoef(data1, data2)[0, 1] > thresh
# the same number of bads as before
assert len(raw_meg.info['bads']) == len(raw_meg.info['bads'])
# MEG -- epochs
data1 = epochs_meg.get_data()[:, pick, :].ravel()
epochs_meg.info.normalize_proj()
epochs_meg.interpolate_bads(mode='fast')
data2 = epochs_meg.get_data()[:, pick, :].ravel()
assert np.corrcoef(data1, data2)[0, 1] > thresh
assert len(epochs_meg.info['bads']) == 0
# MEG -- evoked (plus auto origin)
data1 = evoked.data[pick]
evoked.info.normalize_proj()
data2 = evoked.interpolate_bads(origin='auto').data[pick]
assert np.corrcoef(data1, data2)[0, 1] > thresh
def _this_interpol(inst, ref_meg=False):
from mne.channels.interpolation import _interpolate_bads_meg
_interpolate_bads_meg(inst, ref_meg=ref_meg, mode='fast')
return inst
def test_interpolate_meg_ctf():
"""Test interpolation of MEG channels from CTF system."""
thresh = .7
tol = .05 # assert the new interpol correlates at least .05 "better"
bad = 'MLC22-2622' # select a good channel to test the interpolation
raw = io.read_raw_fif(raw_fname_ctf, preload=True) # 3 secs
raw.apply_gradient_compensation(3)
# Show that we have to exclude ref_meg for interpolating CTF MEG-channels
# (fixed in #5965):
raw.info['bads'] = [bad]
pick_bad = pick_channels(raw.info['ch_names'], raw.info['bads'])
data_orig = raw[pick_bad, :][0]
# mimic old behavior (the ref_meg-arg in _interpolate_bads_meg only serves
# this purpose):
data_interp_refmeg = _this_interpol(raw, ref_meg=True)[pick_bad, :][0]
# new:
data_interp_no_refmeg = _this_interpol(raw, ref_meg=False)[pick_bad, :][0]
R = dict()
R['no_refmeg'] = np.corrcoef(data_orig, data_interp_no_refmeg)[0, 1]
R['with_refmeg'] = np.corrcoef(data_orig, data_interp_refmeg)[0, 1]
print('Corrcoef of interpolated with original channel: ', R)
assert R['no_refmeg'] > R['with_refmeg'] + tol
assert R['no_refmeg'] > thresh
@testing.requires_testing_data
def test_interpolation_ctf_comp():
"""Test interpolation with compensated CTF data."""
ctf_dir = op.join(testing.data_path(download=False), 'CTF')
raw_fname = op.join(ctf_dir, 'somMDYO-18av.ds')
raw = io.read_raw_ctf(raw_fname, preload=True)
raw.info['bads'] = [raw.ch_names[5], raw.ch_names[-5]]
raw.interpolate_bads(mode='fast')
assert raw.info['bads'] == []
run_tests_if_main()
|