File: test_array.py

package info (click to toggle)
python-mne 0.19.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 100,440 kB
  • sloc: python: 120,243; pascal: 1,861; makefile: 225; sh: 15
file content (177 lines) | stat: -rw-r--r-- 6,180 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
# Author: Eric Larson <larson.eric.d@gmail.com>
#
# License: BSD (3-clause)

import os.path as op

import numpy as np
from numpy.testing import (assert_array_almost_equal, assert_allclose,
                           assert_equal)
import pytest
import matplotlib.pyplot as plt

from mne import find_events, Epochs, pick_types
from mne.io import read_raw_fif
from mne.io.array import RawArray
from mne.io.tests.test_raw import _test_raw_reader
from mne.io.meas_info import create_info, _kind_dict
from mne.utils import requires_version, run_tests_if_main
from mne.channels import make_dig_montage

base_dir = op.join(op.dirname(__file__), '..', '..', 'tests', 'data')
fif_fname = op.join(base_dir, 'test_raw.fif')


def test_long_names():
    """Test long name support."""
    info = create_info(['a' * 15 + 'b', 'a' * 16], 1000., verbose='error')
    data = np.empty((2, 1000))
    raw = RawArray(data, info)
    assert raw.ch_names == ['a' * 13 + '-0', 'a' * 13 + '-1']
    info = create_info(['a' * 16] * 11, 1000., verbose='error')
    data = np.empty((11, 1000))
    raw = RawArray(data, info)
    assert raw.ch_names == ['a' * 12 + '-%s' % ii for ii in range(11)]


def test_array_copy():
    """Test copying during construction."""
    info = create_info(1, 1000.)
    data = np.empty((1, 1000))
    # 'auto' (default)
    raw = RawArray(data, info)
    assert raw._data is data
    assert raw.info is not info
    raw = RawArray(data.astype(np.float32), info)
    assert raw._data is not data
    assert raw.info is not info
    # 'info' (more restrictive)
    raw = RawArray(data, info, copy='info')
    assert raw._data is data
    assert raw.info is not info
    with pytest.raises(ValueError, match="data copying was not .* copy='info"):
        RawArray(data.astype(np.float32), info, copy='info')
    # 'data'
    raw = RawArray(data, info, copy='data')
    assert raw._data is not data
    assert raw.info is info
    # 'both'
    raw = RawArray(data, info, copy='both')
    assert raw._data is not data
    assert raw.info is not info
    raw = RawArray(data.astype(np.float32), info, copy='both')
    assert raw._data is not data
    assert raw.info is not info
    # None
    raw = RawArray(data, info, copy=None)
    assert raw._data is data
    assert raw.info is info
    with pytest.raises(ValueError, match='data copying was not .* copy=None'):
        RawArray(data.astype(np.float32), info, copy=None)


@pytest.mark.slowtest
@requires_version('scipy', '0.12')
def test_array_raw():
    """Test creating raw from array."""
    # creating
    raw = read_raw_fif(fif_fname).crop(2, 5)
    data, times = raw[:, :]
    sfreq = raw.info['sfreq']
    ch_names = [(ch[4:] if 'STI' not in ch else ch)
                for ch in raw.info['ch_names']]  # change them, why not
    types = list()
    for ci in range(101):
        types.extend(('grad', 'grad', 'mag'))
    types.extend(['ecog', 'seeg', 'hbo'])  # really 3 meg channels
    types.extend(['stim'] * 9)
    types.extend(['eeg'] * 60)
    picks = np.concatenate([pick_types(raw.info)[::20],
                            pick_types(raw.info, meg=False, stim=True),
                            pick_types(raw.info, meg=False, eeg=True)[::20]])
    del raw
    data = data[picks]
    ch_names = np.array(ch_names)[picks].tolist()
    types = np.array(types)[picks].tolist()
    types.pop(-1)
    # wrong length
    pytest.raises(ValueError, create_info, ch_names, sfreq, types)
    # bad entry
    types.append('foo')
    pytest.raises(KeyError, create_info, ch_names, sfreq, types)
    types[-1] = 'eog'
    # default type
    info = create_info(ch_names, sfreq)
    assert_equal(info['chs'][0]['kind'], _kind_dict['misc'][0])
    # use real types
    info = create_info(ch_names, sfreq, types)
    raw2 = _test_raw_reader(RawArray, test_preloading=False,
                            data=data, info=info, first_samp=2 * data.shape[1])
    data2, times2 = raw2[:, :]
    assert_allclose(data, data2)
    assert_allclose(times, times2)
    assert ('RawArray' in repr(raw2))
    pytest.raises(TypeError, RawArray, info, data)

    # filtering
    picks = pick_types(raw2.info, misc=True, exclude='bads')[:4]
    assert_equal(len(picks), 4)
    raw_lp = raw2.copy()
    kwargs = dict(fir_design='firwin', picks=picks)
    raw_lp.filter(None, 4.0, h_trans_bandwidth=4., **kwargs)
    raw_hp = raw2.copy()
    raw_hp.filter(16.0, None, l_trans_bandwidth=4., **kwargs)
    raw_bp = raw2.copy()
    raw_bp.filter(8.0, 12.0, l_trans_bandwidth=4., h_trans_bandwidth=4.,
                  **kwargs)
    raw_bs = raw2.copy()
    raw_bs.filter(16.0, 4.0, l_trans_bandwidth=4., h_trans_bandwidth=4.,
                  **kwargs)
    data, _ = raw2[picks, :]
    lp_data, _ = raw_lp[picks, :]
    hp_data, _ = raw_hp[picks, :]
    bp_data, _ = raw_bp[picks, :]
    bs_data, _ = raw_bs[picks, :]
    sig_dec = 15
    assert_array_almost_equal(data, lp_data + bp_data + hp_data, sig_dec)
    assert_array_almost_equal(data, bp_data + bs_data, sig_dec)

    # plotting
    raw2.plot()
    raw2.plot_psd(tmax=2., average=True, n_fft=1024, spatial_colors=False)
    plt.close('all')

    # epoching
    events = find_events(raw2, stim_channel='STI 014')
    events[:, 2] = 1
    assert len(events) > 2
    epochs = Epochs(raw2, events, 1, -0.2, 0.4, preload=True)
    evoked = epochs.average()
    assert_equal(evoked.nave, len(events) - 1)

    # complex data
    rng = np.random.RandomState(0)
    data = rng.randn(1, 100) + 1j * rng.randn(1, 100)
    raw = RawArray(data, create_info(1, 1000., 'eeg'))
    assert_allclose(raw._data, data)

    # Using digital montage to give MNI electrode coordinates
    n_elec = 10
    ts_size = 10000
    Fs = 512.
    ch_names = [str(i) for i in range(n_elec)]
    ch_pos_loc = np.random.randint(60, size=(n_elec, 3)).tolist()

    data = np.random.rand(n_elec, ts_size)
    montage = make_dig_montage(
        ch_pos=dict(zip(ch_names, ch_pos_loc)),
        coord_frame='head'
    )
    info = create_info(ch_names, Fs, 'ecog', montage=montage)

    raw = RawArray(data, info)
    raw.plot_psd(average=False)  # looking for inexistent layout
    raw.plot_psd_topo()


run_tests_if_main()