File: base.py

package info (click to toggle)
python-mne 0.19.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 100,440 kB
  • sloc: python: 120,243; pascal: 1,861; makefile: 225; sh: 15
file content (2320 lines) | stat: -rw-r--r-- 94,928 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
# -*- coding: utf-8 -*-
# Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr>
#          Matti Hamalainen <msh@nmr.mgh.harvard.edu>
#          Martin Luessi <mluessi@nmr.mgh.harvard.edu>
#          Denis Engemann <denis.engemann@gmail.com>
#          Teon Brooks <teon.brooks@gmail.com>
#          Marijn van Vliet <w.m.vanvliet@gmail.com>
#          Stefan Appelhoff <stefan.appelhoff@mailbox.org>
#
# License: BSD (3-clause)

from copy import deepcopy
import os
import os.path as op

import numpy as np

from .constants import FIFF
from .utils import _construct_bids_filename, _check_orig_units
from .pick import (pick_types, channel_type, pick_channels, pick_info,
                   _picks_to_idx)
from .meas_info import write_meas_info
from .proj import setup_proj, activate_proj, _proj_equal, ProjMixin
from ..channels.channels import (ContainsMixin, UpdateChannelsMixin,
                                 SetChannelsMixin, InterpolationMixin)
from .compensator import set_current_comp, make_compensator
from .write import (start_file, end_file, start_block, end_block,
                    write_dau_pack16, write_float, write_double,
                    write_complex64, write_complex128, write_int,
                    write_id, write_string, _get_split_size)

from ..annotations import (_annotations_starts_stops, _write_annotations,
                           _handle_meas_date)
from ..filter import (FilterMixin, notch_filter, resample,
                      _resample_stim_channels, _check_fun)
from ..parallel import parallel_func
from ..utils import (_check_fname, _check_pandas_installed, sizeof_fmt,
                     _check_pandas_index_arguments, fill_doc, copy_doc,
                     check_fname, _get_stim_channel, deprecated,
                     logger, verbose, _time_mask, warn, SizeMixin,
                     copy_function_doc_to_method_doc, _validate_type,
                     _check_preload, _get_argvalues, _check_option)
from ..viz import plot_raw, plot_raw_psd, plot_raw_psd_topo
from ..defaults import _handle_default
from ..event import find_events, concatenate_events
from ..annotations import Annotations, _combine_annotations, _sync_onset
from ..annotations import _ensure_annotation_object


def _set_pandas_dtype(df, columns, dtype):
    """Try to set the right columns to dtype."""
    for column in columns:
        df[column] = df[column].astype(dtype)
        logger.info('Converting "%s" to "%s"...' % (column, dtype))


class ToDataFrameMixin(object):
    """Class to add to_data_frame capabilities to certain classes."""

    @fill_doc
    def to_data_frame(self, picks=None, index=None, scaling_time=1e3,
                      scalings=None, copy=True, start=None, stop=None,
                      long_format=False):
        """Export data in tabular structure as a pandas DataFrame.

        Columns and indices will depend on the object being converted.
        Generally this will include as much relevant information as
        possible for the data type being converted. This makes it easy
        to convert data for use in packages that utilize dataframes,
        such as statsmodels or seaborn.

        Parameters
        ----------
        %(picks_all)s
        index : tuple of str | None
            Column to be used as index for the data. Valid string options
            are 'epoch', 'time' and 'condition'. If None, all three info
            columns will be included in the table as categorial data.
        scaling_time : float
            Scaling to be applied to time units.
        scalings : dict | None
            Scaling to be applied to the channels picked. If None, defaults to
            ``scalings=dict(eeg=1e6, grad=1e13, mag=1e15, misc=1.0)``.
        copy : bool
            If true, data will be copied. Else data may be modified in place.
        start : int | None
            If it is a Raw object, this defines a starting index for creating
            the dataframe from a slice. The times will be interpolated from the
            index and the sampling rate of the signal.
        stop : int | None
            If it is a Raw object, this defines a stop index for creating
            the dataframe from a slice. The times will be interpolated from the
            index and the sampling rate of the signal.
        long_format : bool
            If True, the dataframe is returned in long format where each row
            is one observation of the signal at a unique coordinate of
            channels, time points, epochs and conditions. The number of
            factors depends on the data container. For convenience,
            a `ch_type` column is added when using this option that will
            facilitate subsetting the resulting dataframe.
            Defaults to False.

        Returns
        -------
        df : instance of pandas.DataFrame
            A dataframe suitable for usage with other
            statistical/plotting/analysis packages. Column/Index values will
            depend on the object type being converted, but should be
            human-readable.
        """
        from ..epochs import BaseEpochs
        from ..evoked import Evoked
        from ..source_estimate import _BaseSourceEstimate

        pd = _check_pandas_installed()
        mindex = list()
        ch_map = None
        # Treat SourceEstimates special because they don't have the same info
        if isinstance(self, _BaseSourceEstimate):
            if self.subject is None:
                default_index = ['time']
            else:
                default_index = ['subject', 'time']
            data = self.data.T
            times = self.times
            shape = data.shape
            mindex.append(('subject', np.repeat(self.subject, shape[0])))

            if isinstance(self.vertices, list):
                # surface source estimates
                col_names = [i for e in [
                    ['{} {}'.format('LH' if ii < 1 else 'RH', vert)
                     for vert in vertno]
                    for ii, vertno in enumerate(self.vertices)]
                    for i in e]
            else:
                # volume source estimates
                col_names = ['VOL {}'.format(vert) for vert in self.vertices]
        elif isinstance(self, (BaseEpochs, BaseRaw, Evoked)):
            picks = _picks_to_idx(self.info, picks, 'all', exclude=())
            if isinstance(self, BaseEpochs):
                default_index = ['condition', 'epoch', 'time']
                data = self.get_data()[:, picks, :]
                times = self.times
                n_epochs, n_picks, n_times = data.shape
                data = np.hstack(data).T  # (time*epochs) x signals

                # Multi-index creation
                times = np.tile(times, n_epochs)
                id_swapped = {v: k for k, v in self.event_id.items()}
                names = [id_swapped[k] for k in self.events[:, 2]]
                mindex.append(('condition', np.repeat(names, n_times)))
                mindex.append(('epoch',
                               np.repeat(np.arange(n_epochs), n_times)))
                col_names = [self.ch_names[k] for k in picks]

            elif isinstance(self, (BaseRaw, Evoked)):
                default_index = ['time']
                if isinstance(self, BaseRaw):
                    data, times = self[picks, start:stop]
                elif isinstance(self, Evoked):
                    data = self.data[picks, :]
                    times = self.times
                data = data.T
                col_names = [self.ch_names[k] for k in picks]

            ch_types = [channel_type(self.info, idx) for idx in picks]
            ch_map = dict(
                zip([self.info['ch_names'][pp] for pp in picks],
                    ch_types))

            ch_types_used = list()
            scalings = _handle_default('scalings', scalings)
            for tt in scalings.keys():
                if tt in ch_types:
                    ch_types_used.append(tt)

            for tt in ch_types_used:
                scaling = scalings[tt]
                idx = [ii for ii in range(len(picks)) if ch_types[ii] == tt]
                if len(idx) > 0:
                    data[:, idx] *= scaling
        else:
            # In case some other object gets this mixin w/o an explicit check
            raise NameError('Object must be one of Raw, Epochs, Evoked,  or ' +
                            'SourceEstimate. This is {}'.format(type(self)))

        # Make sure that the time index is scaled correctly
        times = np.round(times * scaling_time)
        mindex.append(('time', times))

        if index is not None:
            _check_pandas_index_arguments(index, default_index)
        else:
            index = default_index

        if copy is True:
            data = data.copy()

        assert all(len(mdx) == len(mindex[0]) for mdx in mindex)

        df = pd.DataFrame(data, columns=col_names)
        for i, (k, v) in enumerate(mindex):
            df.insert(i, k, v)
        if index is not None:
            if 'time' in index and not long_format:
                _set_pandas_dtype(df, ['time'], np.int64)
            df.set_index(index, inplace=True)
        if all(i in default_index for i in index):
            if isinstance(self, _BaseSourceEstimate):
                df.columns.name = 'source'
            else:
                df.columns.name = 'channel'

        if long_format:
            df = df.stack().reset_index()
            columns = list(df.columns)
            sig_idx = columns.index(0)
            columns[sig_idx] = 'observation'
            df.columns = columns

            if not isinstance(self, _BaseSourceEstimate):
                df['ch_type'] = df.channel.map(ch_map)

            columns = list(df.columns)
            to_factor = [
                cc for cc in columns if cc not in ['observation', 'time']]
            _set_pandas_dtype(df, to_factor, 'category')

        return df


class TimeMixin(object):
    """Class to add sfreq and time_as_index capabilities to certain classes."""

    # Overridden method signature does not match call...
    def time_as_index(self, times, use_rounding=False):  # lgtm
        """Convert time to indices.

        Parameters
        ----------
        times : list-like | float | int
            List of numbers or a number representing points in time.
        use_rounding : boolean
            If True, use rounding (instead of truncation) when converting
            times to indices. This can help avoid non-unique indices.

        Returns
        -------
        index : ndarray
            Indices corresponding to the times supplied.
        """
        from ..source_estimate import _BaseSourceEstimate
        if isinstance(self, _BaseSourceEstimate):
            sfreq = 1. / self.tstep
        else:
            sfreq = self.info['sfreq']
        index = (np.atleast_1d(times) - self.times[0]) * sfreq
        if use_rounding:
            index = np.round(index)
        return index.astype(int)


@fill_doc
class BaseRaw(ProjMixin, ContainsMixin, UpdateChannelsMixin, SetChannelsMixin,
              InterpolationMixin, ToDataFrameMixin, TimeMixin, SizeMixin,
              FilterMixin):
    """Base class for Raw data.

    Parameters
    ----------
    info : dict
        A dict passed from the subclass.
    preload : bool | str | ndarray
        Preload data into memory for data manipulation and faster indexing.
        If True, the data will be preloaded into memory (fast, requires
        large amount of memory). If preload is a string, preload is the
        file name of a memory-mapped file which is used to store the data
        on the hard drive (slower, requires less memory). If preload is an
        ndarray, the data are taken from that array. If False, data are not
        read until save.
    first_samps : iterable
        Iterable of the first sample number from each raw file. For unsplit raw
        files this should be a length-one list or tuple.
    last_samps : iterable | None
        Iterable of the last sample number from each raw file. For unsplit raw
        files this should be a length-one list or tuple. If None, then preload
        must be an ndarray.
    filenames : tuple
        Tuple of length one (for unsplit raw files) or length > 1 (for split
        raw files).
    raw_extras : list
        Whatever data is necessary for on-demand reads for the given
        reader format.
    orig_format : str
        The data format of the original raw file (e.g., ``'double'``).
    dtype : dtype | None
        The dtype of the raw data. If preload is an ndarray, its dtype must
        match what is passed here.
    buffer_size_sec : float
        The buffer size in seconds that should be written by default using
        :meth:`mne.io.Raw.save`.
    orig_units : dict | None
        Dictionary mapping channel names to their units as specified in
        the header file. Example: {'FC1': 'nV'}

        .. versionadded:: 0.17
    %(verbose)s

    Notes
    -----
    This class is public to allow for stable type-checking in user
    code (i.e., ``isinstance(my_raw_object, BaseRaw)``) but should not be used
    as a constructor for `Raw` objects (use instead one of the subclass
    constructors, or one of the ``mne.io.read_raw_*`` functions).

    Subclasses must provide the following methods:

        * _read_segment_file(self, data, idx, fi, start, stop, cals, mult)
          (only needed for types that support on-demand disk reads)

    See Also
    --------
    mne.io.Raw : Documentation of attribute and methods.
    """

    @verbose
    def __init__(self, info, preload=False,
                 first_samps=(0,), last_samps=None,
                 filenames=(None,), raw_extras=(None,),
                 orig_format='double', dtype=np.float64,
                 buffer_size_sec=1., orig_units=None,
                 verbose=None):  # noqa: D102
        # wait until the end to preload data, but triage here
        if isinstance(preload, np.ndarray):
            # some functions (e.g., filtering) only work w/64-bit data
            if preload.dtype not in (np.float64, np.complex128):
                raise RuntimeError('datatype must be float64 or complex128, '
                                   'not %s' % preload.dtype)
            if preload.dtype != dtype:
                raise ValueError('preload and dtype must match')
            self._data = preload
            self.preload = True
            assert len(first_samps) == 1
            last_samps = [first_samps[0] + self._data.shape[1] - 1]
            load_from_disk = False
        else:
            if last_samps is None:
                raise ValueError('last_samps must be given unless preload is '
                                 'an ndarray')
            if not preload:
                self.preload = False
                load_from_disk = False
            else:
                load_from_disk = True
        self._last_samps = np.array(last_samps)
        self._first_samps = np.array(first_samps)
        orig_ch_names = info['ch_names']
        info._check_consistency()  # make sure subclass did a good job
        self.info = info
        self.buffer_size_sec = float(buffer_size_sec)
        cals = np.empty(info['nchan'])
        for k in range(info['nchan']):
            cals[k] = info['chs'][k]['range'] * info['chs'][k]['cal']
        bad = np.where(cals == 0)[0]
        if len(bad) > 0:
            raise ValueError('Bad cals for channels %s'
                             % {ii: self.ch_names[ii] for ii in bad})
        self.verbose = verbose
        self._cals = cals
        self._raw_extras = list(raw_extras)
        # deal with compensation (only relevant for CTF data, either CTF
        # reader or MNE-C converted CTF->FIF files)
        self._read_comp_grade = self.compensation_grade  # read property
        if self._read_comp_grade is not None:
            logger.info('Current compensation grade : %d'
                        % self._read_comp_grade)
        self._comp = None
        self._filenames = list(filenames)
        self.orig_format = orig_format
        # Sanity check and set original units, if provided by the reader:

        if orig_units:
            if not isinstance(orig_units, dict):
                raise ValueError('orig_units must be of type dict, but got '
                                 ' {}'.format(type(orig_units)))

            # original units need to be truncated to 15 chars or renamed
            # to match MNE conventions (channel name unique and less than
            # 15 characters).
            orig_units = deepcopy(orig_units)
            for old_ch, new_ch in zip(orig_ch_names, info['ch_names']):
                if old_ch in orig_units:
                    this_unit = orig_units[old_ch]
                    del orig_units[old_ch]
                    orig_units[new_ch] = this_unit

            # STI 014 channel is native only to fif ... for all other formats
            # this was artificially added by the IO procedure, so remove it
            ch_names = list(info['ch_names'])
            if ('STI 014' in ch_names) and not \
               (self.filenames[0].endswith('.fif')):
                ch_names.remove('STI 014')

            # Each channel in the data must have a corresponding channel in
            # the original units.
            ch_correspond = [ch in orig_units for ch in ch_names]
            if not all(ch_correspond):
                ch_without_orig_unit = ch_names[ch_correspond.index(False)]
                raise ValueError('Channel {} has no associated original '
                                 'unit.'.format(ch_without_orig_unit))

            # Final check of orig_units, editing a unit if it is not a valid
            # unit
            orig_units = _check_orig_units(orig_units)
        self._orig_units = orig_units
        self._projectors = list()
        self._projector = None
        self._dtype_ = dtype
        self.set_annotations(None)
        # If we have True or a string, actually do the preloading
        self._update_times()
        if load_from_disk:
            self._preload_data(preload)
        self._init_kwargs = _get_argvalues()

    @verbose
    def apply_gradient_compensation(self, grade, verbose=None):
        """Apply CTF gradient compensation.

        .. warning:: The compensation matrices are stored with single
                     precision, so repeatedly switching between different
                     of compensation (e.g., 0->1->3->2) can increase
                     numerical noise, especially if data are saved to
                     disk in between changing grades. It is thus best to
                     only use a single gradient compensation level in
                     final analyses.

        Parameters
        ----------
        grade : int
            CTF gradient compensation level.
        %(verbose_meth)s

        Returns
        -------
        raw : instance of Raw
            The modified Raw instance. Works in-place.
        """
        grade = int(grade)
        current_comp = self.compensation_grade
        if current_comp != grade:
            if self.proj:
                raise RuntimeError('Cannot change compensation on data where '
                                   'projectors have been applied')
            # Figure out what operator to use (varies depending on preload)
            from_comp = current_comp if self.preload else self._read_comp_grade
            comp = make_compensator(self.info, from_comp, grade)
            logger.info('Compensator constructed to change %d -> %d'
                        % (current_comp, grade))
            set_current_comp(self.info, grade)
            # We might need to apply it to our data now
            if self.preload:
                logger.info('Applying compensator to loaded data')
                lims = np.concatenate([np.arange(0, len(self.times), 10000),
                                       [len(self.times)]])
                for start, stop in zip(lims[:-1], lims[1:]):
                    self._data[:, start:stop] = np.dot(
                        comp, self._data[:, start:stop])
            else:
                self._comp = comp  # store it for later use
        return self

    @property
    def _dtype(self):
        """Datatype for loading data (property so subclasses can override)."""
        # most classes only store real data, they won't need anything special
        return self._dtype_

    def _read_segment(self, start=0, stop=None, sel=None, data_buffer=None,
                      projector=None, verbose=None):
        """Read a chunk of raw data.

        Parameters
        ----------
        start : int, (optional)
            first sample to include (first is 0). If omitted, defaults to the
            first sample in data.
        stop : int, (optional)
            First sample to not include.
            If omitted, data is included to the end.
        sel : array, optional
            Indices of channels to select.
        data_buffer : array or str, optional
            numpy array to fill with data read, must have the correct shape.
            If str, a np.memmap with the correct data type will be used
            to store the data.
        projector : array
            SSP operator to apply to the data.
        %(verbose_meth)s

        Returns
        -------
        data : array, [channels x samples]
           the data matrix (channels x samples).
        """
        #  Initial checks
        start = int(start)
        stop = self.n_times if stop is None else min([int(stop), self.n_times])

        if start >= stop:
            raise ValueError('No data in this range')

        #  Initialize the data and calibration vector
        n_sel_channels = self.info['nchan'] if sel is None else len(sel)
        assert n_sel_channels <= self.info['nchan']
        # convert sel to a slice if possible for efficiency
        if sel is not None and len(sel) > 1 and np.all(np.diff(sel) == 1):
            sel = slice(sel[0], sel[-1] + 1)
        idx = slice(None, None, None) if sel is None else sel
        data_shape = (n_sel_channels, stop - start)
        dtype = self._dtype
        if isinstance(data_buffer, np.ndarray):
            if data_buffer.shape != data_shape:
                raise ValueError('data_buffer has incorrect shape: %s != %s'
                                 % (data_buffer.shape, data_shape))
            data = data_buffer
        else:
            data = _allocate_data(data_buffer, data_shape, dtype)

        # deal with having multiple files accessed by the raw object
        cumul_lens = np.concatenate(([0], np.array(self._raw_lengths,
                                                   dtype='int')))
        cumul_lens = np.cumsum(cumul_lens)
        files_used = np.logical_and(np.less(start, cumul_lens[1:]),
                                    np.greater_equal(stop - 1,
                                                     cumul_lens[:-1]))

        # set up cals and mult (cals, compensation, and projector)
        cals = self._cals.ravel()[np.newaxis, :]
        if self._comp is not None:
            if projector is not None:
                mult = self._comp * cals
                mult = np.dot(projector[idx], mult)
            else:
                mult = self._comp[idx] * cals
        elif projector is not None:
            mult = projector[idx] * cals
        else:
            mult = None
        cals = cals.T[idx]

        # read from necessary files
        offset = 0
        for fi in np.nonzero(files_used)[0]:
            start_file = self._first_samps[fi]
            # first iteration (only) could start in the middle somewhere
            if offset == 0:
                start_file += start - cumul_lens[fi]
            stop_file = np.min([stop - cumul_lens[fi] + self._first_samps[fi],
                                self._last_samps[fi] + 1])
            if start_file < self._first_samps[fi] or stop_file < start_file:
                raise ValueError('Bad array indexing, could be a bug')
            n_read = stop_file - start_file
            this_sl = slice(offset, offset + n_read)
            self._read_segment_file(data[:, this_sl], idx, fi,
                                    int(start_file), int(stop_file),
                                    cals, mult)
            offset += n_read
        return data

    def _read_segment_file(self, data, idx, fi, start, stop, cals, mult):
        """Read a segment of data from a file.

        Only needs to be implemented for readers that support
        ``preload=False``.

        Parameters
        ----------
        data : ndarray, shape (len(idx), stop - start + 1)
            The data array. Should be modified inplace.
        idx : ndarray | slice
            The requested channel indices.
        fi : int
            The file index that must be read from.
        start : int
            The start sample in the given file.
        stop : int
            The stop sample in the given file (inclusive).
        cals : ndarray, shape (len(idx), 1)
            Channel calibrations (already sub-indexed).
        mult : ndarray, shape (len(idx), len(info['chs']) | None
            The compensation + projection + cals matrix, if applicable.
        """
        raise NotImplementedError

    def _check_bad_segment(self, start, stop, picks,
                           reject_by_annotation=False):
        """Check if data segment is bad.

        If the slice is good, returns the data in desired range.
        If rejected based on annotation, returns description of the
        bad segment as a string.

        Parameters
        ----------
        start : int
            First sample of the slice.
        stop : int
            End of the slice.
        picks : array of int
            Channel picks.
        reject_by_annotation : bool
            Whether to perform rejection based on annotations.
            False by default.

        Returns
        -------
        data : array | str
            Data in the desired range (good segment) or description of the bad
            segment.
        """
        if start < 0:
            return None
        if reject_by_annotation and len(self.annotations) > 0:
            annot = self.annotations
            sfreq = self.info['sfreq']
            onset = _sync_onset(self, annot.onset)
            overlaps = np.where(onset < stop / sfreq)
            overlaps = np.where(onset[overlaps] + annot.duration[overlaps] >
                                start / sfreq)
            for descr in annot.description[overlaps]:
                if descr.lower().startswith('bad'):
                    return descr
        return self[picks, start:stop][0]

    @verbose
    def load_data(self, verbose=None):
        """Load raw data.

        Parameters
        ----------
        %(verbose_meth)s

        Returns
        -------
        raw : instance of Raw
            The raw object with data.

        Notes
        -----
        This function will load raw data if it was not already preloaded.
        If data were already preloaded, it will do nothing.

        .. versionadded:: 0.10.0
        """
        if not self.preload:
            self._preload_data(True)
        return self

    @verbose
    def _preload_data(self, preload, verbose=None):
        """Actually preload the data."""
        data_buffer = preload
        if isinstance(preload, (bool, np.bool_)) and not preload:
            data_buffer = None
        logger.info('Reading %d ... %d  =  %9.3f ... %9.3f secs...' %
                    (0, len(self.times) - 1, 0., self.times[-1]))
        self._data = self._read_segment(data_buffer=data_buffer)
        assert len(self._data) == self.info['nchan']
        self.preload = True
        self._comp = None  # no longer needed
        self.close()

    def _update_times(self):
        """Update times."""
        self._times = np.arange(self.n_times) / float(self.info['sfreq'])
        # make it immutable
        self._times.flags.writeable = False

    @property
    def _first_time(self):
        return self.first_samp / float(self.info['sfreq'])

    @property
    def first_samp(self):
        """The first data sample."""
        return self._first_samps[0]

    @property
    def last_samp(self):
        """The last data sample."""
        return self.first_samp + sum(self._raw_lengths) - 1

    @property
    def _last_time(self):
        return self.last_samp / float(self.info['sfreq'])

    # "Overridden method signature does not match call..." in LGTM
    def time_as_index(self, times, use_rounding=False, origin=None):  # lgtm
        """Convert time to indices.

        Parameters
        ----------
        times : list-like | float | int
            List of numbers or a number representing points in time.
        use_rounding : boolean
            If True, use rounding (instead of truncation) when converting
            times to indices. This can help avoid non-unique indices.
        origin: time-like | float | int | None
            Time reference for times. If None, ``times`` are assumed to be
            relative to ``first_samp``.

            .. versionadded:: 0.17.0

        Returns
        -------
        index : ndarray
            Indices relative to ``first_samp`` corresponding to the times
            supplied.
        """
        first_samp_in_abs_time = (_handle_meas_date(self.info['meas_date']) +
                                  self._first_time)
        if origin is None:
            origin = first_samp_in_abs_time

        absolute_time = np.atleast_1d(times) + _handle_meas_date(origin)
        times = (absolute_time - first_samp_in_abs_time)

        return super(BaseRaw, self).time_as_index(times, use_rounding)

    @property
    def _raw_lengths(self):
        return [l - f + 1 for f, l in zip(self._first_samps, self._last_samps)]

    @property
    def annotations(self):  # noqa: D401
        """:class:`~mne.Annotations` for marking segments of data."""
        return self._annotations

    @property
    def filenames(self):
        """The filenames used."""
        return tuple(self._filenames)

    def set_annotations(self, annotations, emit_warning=True):
        """Setter for annotations.

        This setter checks if they are inside the data range.

        Parameters
        ----------
        annotations : instance of mne.Annotations | None
            Annotations to set. If None, the annotations is defined
            but empty.
        emit_warning : bool
            Whether to emit warnings when limiting or omitting annotations.

        Returns
        -------
        self : instance of Raw
            The raw object with annotations.
        """
        meas_date = _handle_meas_date(self.info['meas_date'])
        if annotations is None:
            if self.info['meas_date'] is not None:
                orig_time = meas_date
            else:
                orig_time = None
            self._annotations = Annotations([], [], [], orig_time)
        else:
            _ensure_annotation_object(annotations)

            if self.info['meas_date'] is None and \
               annotations.orig_time is not None:
                raise RuntimeError('Ambiguous operation. Setting an Annotation'
                                   ' object with known ``orig_time`` to a raw'
                                   ' object which has ``meas_date`` set to'
                                   ' None is ambiguous. Please, either set a'
                                   ' meaningful ``meas_date`` to the raw'
                                   ' object; or set ``orig_time`` to None in'
                                   ' which case the annotation onsets would be'
                                   ' taken in reference to the first sample of'
                                   ' the raw object.')

            delta = 1. / self.info['sfreq']
            time_of_first_sample = meas_date + self.first_samp * delta
            new_annotations = annotations.copy()
            if annotations.orig_time is None:
                # Assume annotations to be relative to the data
                new_annotations.orig_time = time_of_first_sample

            tmin = time_of_first_sample
            tmax = tmin + self.times[-1] + delta
            new_annotations.crop(tmin=tmin, tmax=tmax,
                                 emit_warning=emit_warning)

            if self.info['meas_date'] is None:
                new_annotations.orig_time = None
            elif annotations.orig_time != meas_date:
                # XXX, TODO: this should be a function, method or something.
                # maybe orig_time should have a setter
                # new_annotations.orig_time = xxxxx # resets onset based on x
                # new_annotations._update_orig(xxxx)
                orig_time = new_annotations.orig_time
                new_annotations.orig_time = meas_date
                new_annotations.onset -= (meas_date - orig_time)

            self._annotations = new_annotations

        return self

    def __del__(self):  # noqa: D105
        # remove file for memmap
        if hasattr(self, '_data') and \
                getattr(self._data, 'filename', None) is not None:
            # First, close the file out; happens automatically on del
            filename = self._data.filename
            del self._data
            # Now file can be removed
            try:
                os.remove(filename)
            except OSError:
                pass  # ignore file that no longer exists

    def __enter__(self):
        """Entering with block."""
        return self

    def __exit__(self, exception_type, exception_val, trace):
        """Exit with block."""
        try:
            self.close()
        except Exception:
            return exception_type, exception_val, trace

    def _parse_get_set_params(self, item):
        """Parse the __getitem__ / __setitem__ tuples."""
        # make sure item is a tuple
        if not isinstance(item, tuple):  # only channel selection passed
            item = (item, slice(None, None, None))

        if len(item) != 2:  # should be channels and time instants
            raise RuntimeError("Unable to access raw data (need both channels "
                               "and time)")

        sel = _picks_to_idx(self.info, item[0])

        if isinstance(item[1], slice):
            time_slice = item[1]
            start, stop, step = (time_slice.start, time_slice.stop,
                                 time_slice.step)
        else:
            item1 = item[1]
            # Let's do automated type conversion to integer here
            if np.array(item[1]).dtype.kind == 'i':
                item1 = int(item1)
            if isinstance(item1, (int, np.integer)):
                start, stop, step = item1, item1 + 1, 1
            else:
                raise ValueError('Must pass int or slice to __getitem__')

        if start is None:
            start = 0
        if step is not None and step != 1:
            raise ValueError('step needs to be 1 : %d given' % step)

        if isinstance(sel, (int, np.integer)):
            sel = np.array([sel])

        if sel is not None and len(sel) == 0:
            raise ValueError("Empty channel list")

        return sel, start, stop

    def __getitem__(self, item):
        """Get raw data and times.

        Parameters
        ----------
        item : tuple or array-like
            See below for use cases.

        Returns
        -------
        data : ndarray, shape (n_channels, n_times)
            The raw data.
        times : ndarray, shape (n_times,)
            The times associated with the data.

        Examples
        --------
        Generally raw data is accessed as::

            >>> data, times = raw[picks, time_slice]  # doctest: +SKIP

        To get all data, you can thus do either of::

            >>> data, times = raw[:]  # doctest: +SKIP

        Which will be equivalent to:

            >>> data, times = raw[:, :]  # doctest: +SKIP

        To get only the good MEG data from 10-20 seconds, you could do::

            >>> picks = mne.pick_types(raw.info, meg=True, exclude='bads')  # doctest: +SKIP
            >>> t_idx = raw.time_as_index([10., 20.])  # doctest: +SKIP
            >>> data, times = raw[picks, t_idx[0]:t_idx[1]]  # doctest: +SKIP

        """  # noqa: E501
        sel, start, stop = self._parse_get_set_params(item)
        if self.preload:
            data = self._data[sel, start:stop]
        else:
            data = self._read_segment(start=start, stop=stop, sel=sel,
                                      projector=self._projector,
                                      verbose=self.verbose)
        times = self.times[start:stop]
        return data, times

    def __setitem__(self, item, value):
        """Set raw data content."""
        _check_preload(self, 'Modifying data of Raw')
        sel, start, stop = self._parse_get_set_params(item)
        # set the data
        self._data[sel, start:stop] = value

    @verbose
    def get_data(self, picks=None, start=0, stop=None,
                 reject_by_annotation=None, return_times=False, verbose=None):
        """Get data in the given range.

        Parameters
        ----------
        %(picks_all)s
        start : int
            The first sample to include. Defaults to 0.
        stop : int | None
            End sample (first not to include). If None (default), the end of
            the data is  used.
        reject_by_annotation : None | 'omit' | 'NaN'
            Whether to reject by annotation. If None (default), no rejection is
            done. If 'omit', segments annotated with description starting with
            'bad' are omitted. If 'NaN', the bad samples are filled with NaNs.
        return_times : bool
            Whether to return times as well. Defaults to False.
        %(verbose_meth)s

        Returns
        -------
        data : ndarray, shape (n_channels, n_times)
            Copy of the data in the given range.
        times : ndarray, shape (n_times,)
            Times associated with the data samples. Only returned if
            return_times=True.

        Notes
        -----
        .. versionadded:: 0.14.0
        """
        picks = _picks_to_idx(self.info, picks, 'all', exclude=())
        # convert to ints
        picks = np.atleast_1d(np.arange(self.info['nchan'])[picks])
        start = 0 if start is None else start
        stop = min(self.n_times if stop is None else stop, self.n_times)
        if len(self.annotations) == 0 or reject_by_annotation is None:
            data, times = self[picks, start:stop]
            return (data, times) if return_times else data
        _check_option('reject_by_annotation', reject_by_annotation.lower(),
                      ['omit', 'nan'])
        onsets, ends = _annotations_starts_stops(self, ['BAD'])
        keep = (onsets < stop) & (ends > start)
        onsets = np.maximum(onsets[keep], start)
        ends = np.minimum(ends[keep], stop)
        if len(onsets) == 0:
            data, times = self[picks, start:stop]
            if return_times:
                return data, times
            return data
        n_samples = stop - start  # total number of samples
        used = np.ones(n_samples, bool)
        for onset, end in zip(onsets, ends):
            if onset >= end:
                continue
            used[onset - start: end - start] = False
        used = np.concatenate([[False], used, [False]])
        starts = np.where(~used[:-1] & used[1:])[0] + start
        stops = np.where(used[:-1] & ~used[1:])[0] + start
        n_kept = (stops - starts).sum()  # kept samples
        n_rejected = n_samples - n_kept  # rejected samples
        if n_rejected > 0:
            if reject_by_annotation == 'omit':
                msg = ("Omitting {} of {} ({:.2%}) samples, retaining {}"
                       " ({:.2%}) samples.")
                logger.info(msg.format(n_rejected, n_samples,
                                       n_rejected / n_samples,
                                       n_kept, n_kept / n_samples))
                data = np.zeros((len(picks), n_kept))
                times = np.zeros(data.shape[1])
                idx = 0
                for start, stop in zip(starts, stops):  # get the data
                    if start == stop:
                        continue
                    end = idx + stop - start
                    data[:, idx:end], times[idx:end] = self[picks, start:stop]
                    idx = end
            else:
                msg = ("Setting {} of {} ({:.2%}) samples to NaN, retaining {}"
                       " ({:.2%}) samples.")
                logger.info(msg.format(n_rejected, n_samples,
                                       n_rejected / n_samples,
                                       n_kept, n_kept / n_samples))
                data, times = self[picks, start:stop]
                data[:, ~used[1:-1]] = np.nan
        else:
            data, times = self[picks, start:stop]

        if return_times:
            return data, times
        return data

    @verbose
    def apply_function(self, fun, picks=None, dtype=None, n_jobs=1,
                       channel_wise=True, *args, **kwargs):
        """Apply a function to a subset of channels.

        The function "fun" is applied to the channels defined in "picks". The
        data of the Raw object is modified inplace. If the function returns
        a different data type (e.g. numpy.complex) it must be specified using
        the dtype parameter, which causes the data type used for representing
        the raw data to change.

        The Raw object has to have the data loaded e.g. with ``preload=True``
        or ``self.load_data()``.

        .. note:: If n_jobs > 1, more memory is required as
                  ``len(picks) * n_times`` additional time points need to
                  be temporaily stored in memory.

        .. note:: If the data type changes (dtype != None), more memory is
                  required since the original and the converted data needs
                  to be stored in memory.

        Parameters
        ----------
        fun : callable
            A function to be applied to the channels. The first argument of
            fun has to be a timeseries (numpy.ndarray). The function must
            operate on an array of shape ``(n_times,)`` if
            ``channel_wise=True`` and ``(len(picks), n_times)`` otherwise.
            The function must return an ndarray shaped like its input.
        %(picks_all_data_noref)s
        dtype : numpy.dtype (default: None)
            Data type to use for raw data after applying the function. If None
            the data type is not modified.
        n_jobs: int (default: 1)
            Number of jobs to run in parallel. Ignored if `channel_wise` is
            False.
        channel_wise: bool (default: True)
            Whether to apply the function to each channel individually. If
            False, the function will be applied to all channels at once.

            .. versionadded:: 0.18
        *args :
            Additional positional arguments to pass to fun (first pos. argument
            of fun is the timeseries of a channel).
        **kwargs :
            Keyword arguments to pass to fun. Note that if "verbose" is passed
            as a member of ``kwargs``, it will be consumed and will override
            the default mne-python verbose level (see :func:`mne.verbose` and
            :ref:`Logging documentation <tut_logging>` for more).

        Returns
        -------
        self : instance of Raw
            The raw object with transformed data.
        """
        _check_preload(self, 'raw.apply_function')
        picks = _picks_to_idx(self.info, picks, exclude=(), with_ref_meg=False)

        if not callable(fun):
            raise ValueError('fun needs to be a function')

        data_in = self._data
        if dtype is not None and dtype != self._data.dtype:
            self._data = self._data.astype(dtype)

        if channel_wise:
            if n_jobs == 1:
                # modify data inplace to save memory
                for idx in picks:
                    self._data[idx, :] = _check_fun(fun, data_in[idx, :],
                                                    *args, **kwargs)
            else:
                # use parallel function
                parallel, p_fun, _ = parallel_func(_check_fun, n_jobs)
                data_picks_new = parallel(
                    p_fun(fun, data_in[p], *args, **kwargs) for p in picks)
                for pp, p in enumerate(picks):
                    self._data[p, :] = data_picks_new[pp]
        else:
            self._data[picks, :] = _check_fun(
                fun, data_in[picks, :], *args, **kwargs)

        return self

    # Need a separate method because the default pad is different for raw
    @copy_doc(FilterMixin.filter)
    def filter(self, l_freq, h_freq, picks=None, filter_length='auto',
               l_trans_bandwidth='auto', h_trans_bandwidth='auto', n_jobs=1,
               method='fir', iir_params=None, phase='zero',
               fir_window='hamming', fir_design='firwin',
               skip_by_annotation=('edge', 'bad_acq_skip'),
               pad='reflect_limited', verbose=None):  # noqa: D102
        return super().filter(
            l_freq, h_freq, picks, filter_length, l_trans_bandwidth,
            h_trans_bandwidth, n_jobs, method, iir_params, phase,
            fir_window, fir_design, skip_by_annotation, pad, verbose)

    @verbose
    def notch_filter(self, freqs, picks=None, filter_length='auto',
                     notch_widths=None, trans_bandwidth=1.0, n_jobs=1,
                     method='fir', iir_params=None, mt_bandwidth=None,
                     p_value=0.05, phase='zero', fir_window='hamming',
                     fir_design='firwin', pad='reflect_limited', verbose=None):
        """Notch filter a subset of channels.

        Parameters
        ----------
        freqs : float | array of float | None
            Specific frequencies to filter out from data, e.g.,
            np.arange(60, 241, 60) in the US or np.arange(50, 251, 50) in
            Europe. None can only be used with the mode 'spectrum_fit',
            where an F test is used to find sinusoidal components.
        %(picks_all_data)s
        %(filter_length)s
        notch_widths : float | array of float | None
            Width of each stop band (centred at each freq in freqs) in Hz.
            If None, freqs / 200 is used.
        trans_bandwidth : float
            Width of the transition band in Hz.
            Only used for ``method='fir'``.
        %(n_jobs-fir)s
        %(method-fir)s
        %(iir_params)s
        mt_bandwidth : float | None
            The bandwidth of the multitaper windowing function in Hz.
            Only used in 'spectrum_fit' mode.
        p_value : float
            p-value to use in F-test thresholding to determine significant
            sinusoidal components to remove when method='spectrum_fit' and
            freqs=None. Note that this will be Bonferroni corrected for the
            number of frequencies, so large p-values may be justified.
        %(phase)s
        %(fir_window)s
        %(fir_design)s
        %(pad-fir)s
            The default is ``'reflect_limited'``.

            .. versionadded:: 0.15
        %(verbose_meth)s

        Returns
        -------
        raw : instance of Raw
            The raw instance with filtered data.

        See Also
        --------
        mne.filter.notch_filter
        mne.io.Raw.filter

        Notes
        -----
        Applies a zero-phase notch filter to the channels selected by
        "picks". By default the data of the Raw object is modified inplace.

        The Raw object has to have the data loaded e.g. with ``preload=True``
        or ``self.load_data()``.

        .. note:: If n_jobs > 1, more memory is required as
                  ``len(picks) * n_times`` additional time points need to
                  be temporaily stored in memory.

        For details, see :func:`mne.filter.notch_filter`.
        """
        fs = float(self.info['sfreq'])
        picks = _picks_to_idx(self.info, picks, exclude=(), none='data_or_ica')
        _check_preload(self, 'raw.notch_filter')
        self._data = notch_filter(
            self._data, fs, freqs, filter_length=filter_length,
            notch_widths=notch_widths, trans_bandwidth=trans_bandwidth,
            method=method, iir_params=iir_params, mt_bandwidth=mt_bandwidth,
            p_value=p_value, picks=picks, n_jobs=n_jobs, copy=False,
            phase=phase, fir_window=fir_window, fir_design=fir_design,
            pad=pad)
        return self

    @verbose
    def resample(self, sfreq, npad='auto', window='boxcar', stim_picks=None,
                 n_jobs=1, events=None, pad='reflect_limited',
                 verbose=None):  # lgtm
        """Resample all channels.

        The Raw object has to have the data loaded e.g. with ``preload=True``
        or ``self.load_data()``.

        .. warning:: The intended purpose of this function is primarily to
                     speed up computations (e.g., projection calculation) when
                     precise timing of events is not required, as downsampling
                     raw data effectively jitters trigger timings. It is
                     generally recommended not to epoch downsampled data,
                     but instead epoch and then downsample, as epoching
                     downsampled data jitters triggers.
                     For more, see
                     `this illustrative gist
                     <https://gist.github.com/larsoner/01642cb3789992fbca59>`_.

                     If resampling the continuous data is desired, it is
                     recommended to construct events using the original data.
                     The event onsets can be jointly resampled with the raw
                     data using the 'events' parameter (a resampled copy is
                     returned).

        Parameters
        ----------
        sfreq : float
            New sample rate to use.
        %(npad)s
        %(window-resample)s
        stim_picks : list of int | None
            Stim channels. These channels are simply subsampled or
            supersampled (without applying any filtering). This reduces
            resampling artifacts in stim channels, but may lead to missing
            triggers. If None, stim channels are automatically chosen using
            :func:`mne.pick_types`.
        %(n_jobs-cuda)s
        events : 2D array, shape (n_events, 3) | None
            An optional event matrix. When specified, the onsets of the events
            are resampled jointly with the data. NB: The input events are not
            modified, but a new array is returned with the raw instead.
        %(pad-fir)s
            The default is ``'reflect_limited'``.

            .. versionadded:: 0.15
        %(verbose_meth)s

        Returns
        -------
        raw : instance of Raw
            The resampled version of the raw object.
        events : array, shape (n_events, 3) | None
            If events are jointly resampled, these are returned with the raw.

        See Also
        --------
        mne.io.Raw.filter
        mne.Epochs.resample

        Notes
        -----
        For some data, it may be more accurate to use ``npad=0`` to reduce
        artifacts. This is dataset dependent -- check your data!
        """
        _check_preload(self, 'raw.resample')

        # When no event object is supplied, some basic detection of dropped
        # events is performed to generate a warning. Finding events can fail
        # for a variety of reasons, e.g. if no stim channel is present or it is
        # corrupted. This should not stop the resampling from working. The
        # warning should simply not be generated in this case.
        if events is None:
            try:
                original_events = find_events(self)
            except Exception:
                pass

        sfreq = float(sfreq)
        o_sfreq = float(self.info['sfreq'])

        offsets = np.concatenate(([0], np.cumsum(self._raw_lengths)))
        new_data = list()

        ratio = sfreq / o_sfreq

        # set up stim channel processing
        if stim_picks is None:
            stim_picks = pick_types(self.info, meg=False, ref_meg=False,
                                    stim=True, exclude=[])
        stim_picks = np.asanyarray(stim_picks)

        for ri in range(len(self._raw_lengths)):
            data_chunk = self._data[:, offsets[ri]:offsets[ri + 1]]
            new_data.append(resample(data_chunk, sfreq, o_sfreq, npad,
                                     window=window, n_jobs=n_jobs, pad=pad))
            new_ntimes = new_data[ri].shape[1]

            # In empirical testing, it was faster to resample all channels
            # (above) and then replace the stim channels than it was to only
            # resample the proper subset of channels and then use np.insert()
            # to restore the stims.
            if len(stim_picks) > 0:
                stim_resampled = _resample_stim_channels(
                    data_chunk[stim_picks], new_data[ri].shape[1],
                    data_chunk.shape[1])
                new_data[ri][stim_picks] = stim_resampled

            self._first_samps[ri] = int(self._first_samps[ri] * ratio)
            self._last_samps[ri] = self._first_samps[ri] + new_ntimes - 1
            self._raw_lengths[ri] = new_ntimes

        self._data = np.concatenate(new_data, axis=1)
        self.info['sfreq'] = sfreq
        lowpass = self.info.get('lowpass')
        lowpass = np.inf if lowpass is None else lowpass
        self.info['lowpass'] = min(lowpass, sfreq / 2.)
        self._update_times()

        # See the comment above why we ignore all errors here.
        if events is None:
            try:
                # Did we loose events?
                resampled_events = find_events(self)
                if len(resampled_events) != len(original_events):
                    warn('Resampling of the stim channels caused event '
                         'information to become unreliable. Consider finding '
                         'events on the original data and passing the event '
                         'matrix as a parameter.')
            except Exception:
                pass

            return self
        else:
            # always make a copy of events
            events = events.copy()

            events[:, 0] = np.minimum(
                np.round(events[:, 0] * ratio).astype(int),
                self._data.shape[1] + self.first_samp - 1
            )
            return self, events

    @fill_doc
    def crop(self, tmin=0.0, tmax=None, include_tmax=True):
        """Crop raw data file.

        Limit the data from the raw file to go between specific times. Note
        that the new tmin is assumed to be t=0 for all subsequently called
        functions (e.g., time_as_index, or Epochs). New first_samp and
        last_samp are set accordingly.

        Thus function operates in-place on the instance.
        Use :meth:`mne.io.Raw.copy` if operation on a copy is desired.

        Parameters
        ----------
        tmin : float
            New start time in seconds (must be >= 0).
        tmax : float | None
            New end time in seconds of the data (cannot exceed data duration).
        %(include_tmax)s

        Returns
        -------
        raw : instance of Raw
            The cropped raw object, modified in-place.
        """
        max_time = (self.n_times - 1) / self.info['sfreq']
        if tmax is None:
            tmax = max_time

        if tmin > tmax:
            raise ValueError('tmin (%s) must be less than tmax (%s)'
                             % (tmin, tmax))
        if tmin < 0.0:
            raise ValueError('tmin (%s) must be >= 0' % (tmin,))
        elif tmax > max_time:
            raise ValueError('tmax (%s) must be less than or equal to the max '
                             'time (%0.4f sec)' % (tmax, max_time))

        smin, smax = np.where(_time_mask(
            self.times, tmin, tmax, sfreq=self.info['sfreq'],
            include_tmax=include_tmax))[0][[0, -1]]
        cumul_lens = np.concatenate(([0], np.array(self._raw_lengths,
                                                   dtype='int')))
        cumul_lens = np.cumsum(cumul_lens)
        keepers = np.logical_and(np.less(smin, cumul_lens[1:]),
                                 np.greater_equal(smax, cumul_lens[:-1]))
        keepers = np.where(keepers)[0]
        self._first_samps = np.atleast_1d(self._first_samps[keepers])
        # Adjust first_samp of first used file!
        self._first_samps[0] += smin - cumul_lens[keepers[0]]
        self._last_samps = np.atleast_1d(self._last_samps[keepers])
        self._last_samps[-1] -= cumul_lens[keepers[-1] + 1] - 1 - smax
        self._raw_extras = [r for ri, r in enumerate(self._raw_extras)
                            if ri in keepers]
        self._filenames = [r for ri, r in enumerate(self._filenames)
                           if ri in keepers]
        if self.preload:
            # slice and copy to avoid the reference to large array
            self._data = self._data[:, smin:smax + 1].copy()
        self._update_times()

        if self.annotations.orig_time is None:
            self.annotations.onset -= tmin
        # now call setter to filter out annotations outside of interval
        self.set_annotations(self.annotations, False)

        return self

    @verbose
    def save(self, fname, picks=None, tmin=0, tmax=None, buffer_size_sec=None,
             drop_small_buffer=False, proj=False, fmt='single',
             overwrite=False, split_size='2GB', split_naming='neuromag',
             verbose=None):
        """Save raw data to file.

        Parameters
        ----------
        fname : string
            File name of the new dataset. This has to be a new filename
            unless data have been preloaded. Filenames should end with
            raw.fif, raw.fif.gz, raw_sss.fif, raw_sss.fif.gz, raw_tsss.fif,
            raw_tsss.fif.gz, or _meg.fif.
        %(picks_all)s
        tmin : float | None
            Time in seconds of first sample to save. If None first sample
            is used.
        tmax : float | None
            Time in seconds of last sample to save. If None last sample
            is used.
        buffer_size_sec : float | None
            Size of data chunks in seconds. If None (default), the buffer
            size of the original file is used.
        drop_small_buffer : bool
            Drop or not the last buffer. It is required by maxfilter (SSS)
            that only accepts raw files with buffers of the same size.
        proj : bool
            If True the data is saved with the projections applied (active).

            .. note:: If ``apply_proj()`` was used to apply the projections,
                      the projectons will be active even if ``proj`` is False.

        fmt : 'single' | 'double' | 'int' | 'short'
            Format to use to save raw data. Valid options are 'double',
            'single', 'int', and 'short' for 64- or 32-bit float, or 32- or
            16-bit integers, respectively. It is **strongly** recommended to
            use 'single', as this is backward-compatible, and is standard for
            maintaining precision. Note that using 'short' or 'int' may result
            in loss of precision, complex data cannot be saved as 'short',
            and neither complex data types nor real data stored as 'double'
            can be loaded with the MNE command-line tools. See raw.orig_format
            to determine the format the original data were stored in.
        overwrite : bool
            If True, the destination file (if it exists) will be overwritten.
            If False (default), an error will be raised if the file exists.
            To overwrite original file (the same one that was loaded),
            data must be preloaded upon reading.
        split_size : string | int
            Large raw files are automatically split into multiple pieces. This
            parameter specifies the maximum size of each piece. If the
            parameter is an integer, it specifies the size in Bytes. It is
            also possible to pass a human-readable string, e.g., 100MB.

            .. note:: Due to FIFF file limitations, the maximum split
                      size is 2GB.

        split_naming : {'neuromag' | 'bids'}
            Add the filename partition with the appropriate naming schema.

            .. versionadded:: 0.17

        %(verbose_meth)s

        Notes
        -----
        If Raw is a concatenation of several raw files, **be warned** that
        only the measurement information from the first raw file is stored.
        This likely means that certain operations with external tools may not
        work properly on a saved concatenated file (e.g., probably some
        or all forms of SSS). It is recommended not to concatenate and
        then save raw files for this reason.
        """
        fname = op.realpath(fname)
        check_fname(fname, 'raw', ('raw.fif', 'raw_sss.fif', 'raw_tsss.fif',
                                   'raw.fif.gz', 'raw_sss.fif.gz',
                                   'raw_tsss.fif.gz', '_meg.fif'))

        split_size = _get_split_size(split_size)
        if not self.preload and fname in self._filenames:
            raise ValueError('You cannot save data to the same file.'
                             ' Please use a different filename.')

        if self.preload:
            if np.iscomplexobj(self._data):
                warn('Saving raw file with complex data. Loading with '
                     'command-line MNE tools will not work.')

        type_dict = dict(short=FIFF.FIFFT_DAU_PACK16,
                         int=FIFF.FIFFT_INT,
                         single=FIFF.FIFFT_FLOAT,
                         double=FIFF.FIFFT_DOUBLE)
        _check_option('fmt', fmt, type_dict.keys())
        reset_dict = dict(short=False, int=False, single=True, double=True)
        reset_range = reset_dict[fmt]
        data_type = type_dict[fmt]

        data_test = self[0, 0][0]
        if fmt == 'short' and np.iscomplexobj(data_test):
            raise ValueError('Complex data must be saved as "single" or '
                             '"double", not "short"')

        # check for file existence
        _check_fname(fname, overwrite)

        if proj:
            info = deepcopy(self.info)
            projector, info = setup_proj(info)
            activate_proj(info['projs'], copy=False)
        else:
            info = self.info
            projector = None

        #
        #   Set up the reading parameters
        #

        #   Convert to samples
        start = int(np.floor(tmin * self.info['sfreq']))

        # "stop" is the first sample *not* to save, so we need +1's here
        if tmax is None:
            stop = np.inf
        else:
            stop = self.time_as_index(float(tmax), use_rounding=True)[0] + 1
        stop = min(stop, self.last_samp - self.first_samp + 1)
        buffer_size = self._get_buffer_size(buffer_size_sec)

        # write the raw file
        if split_naming == 'neuromag':
            part_idx = 0
        elif split_naming == 'bids':
            part_idx = 1
        else:
            raise ValueError(
                "split_naming must be either 'neuromag' or 'bids' instead "
                "of '{}'.".format(split_naming))
        _write_raw(fname, self, info, picks, fmt, data_type, reset_range,
                   start, stop, buffer_size, projector, drop_small_buffer,
                   split_size, split_naming, part_idx, None, overwrite)

    @copy_function_doc_to_method_doc(plot_raw)
    def plot(self, events=None, duration=10.0, start=0.0, n_channels=20,
             bgcolor='w', color=None, bad_color=(0.8, 0.8, 0.8),
             event_color='cyan', scalings=None, remove_dc=True, order=None,
             show_options=False, title=None, show=True, block=False,
             highpass=None, lowpass=None, filtorder=4, clipping=None,
             show_first_samp=False, proj=True, group_by='type',
             butterfly=False, decim='auto', noise_cov=None, event_id=None,
             show_scrollbars=True, verbose=None):
        return plot_raw(self, events, duration, start, n_channels, bgcolor,
                        color, bad_color, event_color, scalings, remove_dc,
                        order, show_options, title, show, block, highpass,
                        lowpass, filtorder, clipping, show_first_samp, proj,
                        group_by, butterfly, decim, noise_cov=noise_cov,
                        event_id=event_id, show_scrollbars=show_scrollbars,
                        verbose=verbose)

    @verbose
    @copy_function_doc_to_method_doc(plot_raw_psd)
    def plot_psd(self, fmin=0, fmax=np.inf, tmin=None, tmax=None, proj=False,
                 n_fft=None, n_overlap=0, reject_by_annotation=True,
                 picks=None, ax=None, color='black', xscale='linear',
                 area_mode='std', area_alpha=0.33, dB=True, estimate='auto',
                 show=True, n_jobs=1, average=False, line_alpha=None,
                 spatial_colors=True, verbose=None):
        return plot_raw_psd(self, fmin=fmin, fmax=fmax, tmin=tmin, tmax=tmax,
                            proj=proj, n_fft=n_fft, n_overlap=n_overlap,
                            reject_by_annotation=reject_by_annotation,
                            picks=picks, ax=ax, color=color, xscale=xscale,
                            area_mode=area_mode, area_alpha=area_alpha,
                            dB=dB, estimate=estimate, show=show, n_jobs=n_jobs,
                            average=average, line_alpha=line_alpha,
                            spatial_colors=spatial_colors, verbose=verbose)

    @copy_function_doc_to_method_doc(plot_raw_psd_topo)
    def plot_psd_topo(self, tmin=0., tmax=None, fmin=0, fmax=100, proj=False,
                      n_fft=2048, n_overlap=0, layout=None, color='w',
                      fig_facecolor='k', axis_facecolor='k', dB=True,
                      show=True, block=False, n_jobs=1, axes=None,
                      verbose=None):
        return plot_raw_psd_topo(self, tmin=tmin, tmax=tmax, fmin=fmin,
                                 fmax=fmax, proj=proj, n_fft=n_fft,
                                 n_overlap=n_overlap, layout=layout,
                                 color=color, fig_facecolor=fig_facecolor,
                                 axis_facecolor=axis_facecolor, dB=dB,
                                 show=show, block=block, n_jobs=n_jobs,
                                 axes=axes, verbose=verbose)

    @deprecated('raw.estimate_rank is deprecated and will be removed in 0.19, '
                'use mne.compute_rank instead.')
    @verbose
    def estimate_rank(self, tstart=0.0, tstop=30.0, tol=1e-4,
                      return_singular=False, picks=None, scalings='norm',
                      verbose=None):
        """Estimate rank of the raw data.

        This function is meant to provide a reasonable estimate of the rank.
        The true rank of the data depends on many factors, so use at your
        own risk.

        Parameters
        ----------
        tstart : float
            Start time to use for rank estimation. Default is 0.0.
        tstop : float | None
            End time to use for rank estimation. Default is 30.0.
            If None, the end time of the raw file is used.
        tol : float
            Tolerance for singular values to consider non-zero in
            calculating the rank. The singular values are calculated
            in this method such that independent data are expected to
            have singular value around one.
        return_singular : bool
            If True, also return the singular values that were used
            to determine the rank.
        %(picks_good_data)s
        scalings : dict | 'norm' | None
            To achieve reliable rank estimation on multiple sensors,
            sensors have to be rescaled. This parameter controls the
            rescaling. If dict, it will update the
            following dict of defaults:

                dict(mag=1e11, grad=1e9, eeg=1e5)

            If 'norm' data will be scaled by internally computed
            channel-wise norms. None will perform no scaling.
            Defaults to 'norm'.
        %(verbose)s

        Returns
        -------
        rank : int
            Estimated rank of the data.
        s : array
            If return_singular is True, the singular values that were
            thresholded to determine the rank are also returned.

        Notes
        -----
        If data are not pre-loaded, the appropriate data will be loaded
        by this function (can be memory intensive).

        Projectors are not taken into account unless they have been applied
        to the data using apply_proj(), since it is not always possible
        to tell whether or not projectors have been applied previously.

        Bad channels will be excluded from calculations.
        """
        from ..rank import _estimate_rank_meeg_signals

        start = max(0, self.time_as_index(tstart)[0])
        if tstop is None:
            stop = self.n_times - 1
        else:
            stop = min(self.n_times - 1, self.time_as_index(tstop)[0])
        tslice = slice(start, stop + 1)
        picks = _picks_to_idx(self.info, picks, with_ref_meg=False)
        # ensure we don't get a view of data
        if len(picks) == 1:
            return 1.0, 1.0
        # this should already be a copy, so we can overwrite it
        data = self[picks, tslice][0]
        out = _estimate_rank_meeg_signals(
            data, pick_info(self.info, picks),
            scalings=scalings, tol=tol, return_singular=return_singular)
        return out

    @property
    def ch_names(self):
        """Channel names."""
        return self.info['ch_names']

    @property
    def times(self):
        """Time points."""
        return self._times

    @property
    def n_times(self):
        """Number of time points."""
        return self.last_samp - self.first_samp + 1

    def __len__(self):
        """Return the number of time points.

        Returns
        -------
        len : int
            The number of time points.

        Examples
        --------
        This can be used as::

            >>> len(raw)  # doctest: +SKIP
            1000

        """
        return self.n_times

    def load_bad_channels(self, bad_file=None, force=False):
        """Mark channels as bad from a text file.

        This function operates mostly in the style of the C function
        ``mne_mark_bad_channels``.

        Parameters
        ----------
        bad_file : string
            File name of the text file containing bad channels
            If bad_file = None, bad channels are cleared, but this
            is more easily done directly as raw.info['bads'] = [].
        force : boolean
            Whether or not to force bad channel marking (of those
            that exist) if channels are not found, instead of
            raising an error.
        """
        if bad_file is not None:
            # Check to make sure bad channels are there
            names = frozenset(self.info['ch_names'])
            with open(bad_file) as fid:
                bad_names = [l for l in fid.read().splitlines() if l]
            names_there = [ci for ci in bad_names if ci in names]
            count_diff = len(bad_names) - len(names_there)

            if count_diff > 0:
                if not force:
                    raise ValueError('Bad channels from:\n%s\n not found '
                                     'in:\n%s' % (bad_file,
                                                  self.filenames[0]))
                else:
                    warn('%d bad channels from:\n%s\nnot found in:\n%s'
                         % (count_diff, bad_file, self.filenames[0]))
            self.info['bads'] = names_there
        else:
            self.info['bads'] = []

    def append(self, raws, preload=None):
        """Concatenate raw instances as if they were continuous.

        .. note:: Boundaries of the raw files are annotated bad. If you wish to
                  use the data as continuous recording, you can remove the
                  boundary annotations after concatenation (see
                  :meth:`mne.Annotations.delete`).

        Parameters
        ----------
        raws : list, or Raw instance
            list of Raw instances to concatenate to the current instance
            (in order), or a single raw instance to concatenate.
        preload : bool, str, or None (default None)
            Preload data into memory for data manipulation and faster indexing.
            If True, the data will be preloaded into memory (fast, requires
            large amount of memory). If preload is a string, preload is the
            file name of a memory-mapped file which is used to store the data
            on the hard drive (slower, requires less memory). If preload is
            None, preload=True or False is inferred using the preload status
            of the raw files passed in.
        """
        if not isinstance(raws, list):
            raws = [raws]

        # make sure the raws are compatible
        all_raws = [self]
        all_raws += raws
        _check_raw_compatibility(all_raws)

        # deal with preloading data first (while files are separate)
        all_preloaded = self.preload and all(r.preload for r in raws)
        if preload is None:
            if all_preloaded:
                preload = True
            else:
                preload = False

        if preload is False:
            if self.preload:
                self._data = None
            self.preload = False
        else:
            # do the concatenation ourselves since preload might be a string
            nchan = self.info['nchan']
            c_ns = np.cumsum([rr.n_times for rr in ([self] + raws)])
            nsamp = c_ns[-1]

            if not self.preload:
                this_data = self._read_segment()
            else:
                this_data = self._data

            # allocate the buffer
            _data = _allocate_data(preload, (nchan, nsamp), this_data.dtype)
            _data[:, 0:c_ns[0]] = this_data

            for ri in range(len(raws)):
                if not raws[ri].preload:
                    # read the data directly into the buffer
                    data_buffer = _data[:, c_ns[ri]:c_ns[ri + 1]]
                    raws[ri]._read_segment(data_buffer=data_buffer)
                else:
                    _data[:, c_ns[ri]:c_ns[ri + 1]] = raws[ri]._data
            self._data = _data
            self.preload = True

        # now combine information from each raw file to construct new self
        annotations = self.annotations
        edge_samps = list()
        for ri, r in enumerate(raws):
            n_samples = self.last_samp - self.first_samp + 1
            r_annot = Annotations(onset=r.annotations.onset - r._first_time,
                                  duration=r.annotations.duration,
                                  description=r.annotations.description,
                                  orig_time=None)
            annotations = _combine_annotations(
                annotations, r_annot, n_samples,
                self.first_samp, r.first_samp,
                self.info['sfreq'], self.info['meas_date'])
            edge_samps.append(sum(self._last_samps) -
                              sum(self._first_samps) + (ri + 1))
            self._first_samps = np.r_[self._first_samps, r._first_samps]
            self._last_samps = np.r_[self._last_samps, r._last_samps]
            self._raw_extras += r._raw_extras
            self._filenames += r._filenames
        self._update_times()
        self.set_annotations(annotations)
        for edge_samp in edge_samps:
            onset = _sync_onset(self, (edge_samp) / self.info['sfreq'], True)
            self.annotations.append(onset, 0., 'BAD boundary')
            self.annotations.append(onset, 0., 'EDGE boundary')
        if not (len(self._first_samps) == len(self._last_samps) ==
                len(self._raw_extras) == len(self._filenames)):
            raise RuntimeError('Append error')  # should never happen

    def close(self):
        """Clean up the object.

        Does nothing for objects that close their file descriptors.
        Things like RawFIF will override this method.
        """
        pass  # noqa

    def copy(self):
        """Return copy of Raw instance."""
        return deepcopy(self)

    def __repr__(self):  # noqa: D105
        name = self.filenames[0]
        name = 'None' if name is None else op.basename(name)
        size_str = str(sizeof_fmt(self._size))  # str in case it fails -> None
        size_str += ', data%s loaded' % ('' if self.preload else ' not')
        s = ('%s, n_channels x n_times : %s x %s (%0.1f sec), ~%s'
             % (name, len(self.ch_names), self.n_times, self.times[-1],
                size_str))
        return "<%s  |  %s>" % (self.__class__.__name__, s)

    def add_events(self, events, stim_channel=None, replace=False):
        """Add events to stim channel.

        Parameters
        ----------
        events : ndarray, shape (n_events, 3)
            Events to add. The first column specifies the sample number of
            each event, the second column is ignored, and the third column
            provides the event value. If events already exist in the Raw
            instance at the given sample numbers, the event values will be
            added together.
        stim_channel : str | None
            Name of the stim channel to add to. If None, the config variable
            'MNE_STIM_CHANNEL' is used. If this is not found, it will default
            to 'STI 014'.
        replace : bool
            If True the old events on the stim channel are removed before
            adding the new ones.

        Notes
        -----
        Data must be preloaded in order to add events.
        """
        _check_preload(self, 'Adding events')
        events = np.asarray(events)
        if events.ndim != 2 or events.shape[1] != 3:
            raise ValueError('events must be shape (n_events, 3)')
        stim_channel = _get_stim_channel(stim_channel, self.info)
        pick = pick_channels(self.ch_names, stim_channel)
        if len(pick) == 0:
            raise ValueError('Channel %s not found' % stim_channel)
        pick = pick[0]
        idx = events[:, 0].astype(int)
        if np.any(idx < self.first_samp) or np.any(idx > self.last_samp):
            raise ValueError('event sample numbers must be between %s and %s'
                             % (self.first_samp, self.last_samp))
        if not all(idx == events[:, 0]):
            raise ValueError('event sample numbers must be integers')
        if replace:
            self._data[pick, :] = 0.
        self._data[pick, idx - self.first_samp] += events[:, 2]

    def _get_buffer_size(self, buffer_size_sec=None):
        """Get the buffer size."""
        if buffer_size_sec is None:
            buffer_size_sec = self.buffer_size_sec
        buffer_size_sec = float(buffer_size_sec)
        return int(np.ceil(buffer_size_sec * self.info['sfreq']))


def _allocate_data(preload, shape, dtype):
    """Allocate data in memory or in memmap for preloading."""
    if preload in (None, True):  # None comes from _read_segment
        data = np.zeros(shape, dtype)
    else:
        _validate_type(preload, 'path-like', 'preload')
        data = np.memmap(str(preload), mode='w+', dtype=dtype, shape=shape)
    return data


def _index_as_time(index, sfreq, first_samp=0, use_first_samp=False):
    """Convert indices to time.

    Parameters
    ----------
    index : list-like | int
        List of ints or int representing points in time.
    use_first_samp : boolean
        If True, the time returned is relative to the session onset, else
        relative to the recording onset.

    Returns
    -------
    times : ndarray
        Times corresponding to the index supplied.
    """
    times = np.atleast_1d(index) + (first_samp if use_first_samp else 0)
    return times / sfreq


class _RawShell(object):
    """Create a temporary raw object."""

    def __init__(self):  # noqa: D102
        self.first_samp = None
        self.last_samp = None
        self._first_time = None
        self._last_time = None
        self._cals = None
        self._rawdir = None
        self._projector = None

    @property
    def n_times(self):  # noqa: D102
        return self.last_samp - self.first_samp + 1

    @property
    def annotations(self):  # noqa: D102
        return self._annotations

    def set_annotations(self, annotations):
        if annotations is None:
            annotations = Annotations([], [], [], None)
        self._annotations = annotations


###############################################################################
# Writing
def _write_raw(fname, raw, info, picks, fmt, data_type, reset_range, start,
               stop, buffer_size, projector, drop_small_buffer,
               split_size, split_naming, part_idx, prev_fname, overwrite):
    """Write raw file with splitting."""
    # we've done something wrong if we hit this
    n_times_max = len(raw.times)
    if start >= stop or stop > n_times_max:
        raise RuntimeError('Cannot write raw file with no data: %s -> %s '
                           '(max: %s) requested' % (start, stop, n_times_max))

    if part_idx > 0:
        base, ext = op.splitext(fname)
        if split_naming == 'neuromag':
            # insert index in filename
            use_fname = '%s-%d%s' % (base, part_idx, ext)
        elif split_naming == 'bids':
            use_fname = _construct_bids_filename(base, ext, part_idx)
            # check for file existence
            _check_fname(use_fname, overwrite)

    else:
        use_fname = fname
    logger.info('Writing %s' % use_fname)

    picks = _picks_to_idx(info, picks, 'all', ())
    fid, cals = _start_writing_raw(use_fname, info, picks, data_type,
                                   reset_range, raw.annotations)

    first_samp = raw.first_samp + start
    if first_samp != 0:
        write_int(fid, FIFF.FIFF_FIRST_SAMPLE, first_samp)

    # previous file name and id
    if split_naming == 'neuromag':
        part_idx_tag = part_idx - 1
    else:
        part_idx_tag = part_idx - 2
    if part_idx > 0 and prev_fname is not None:
        start_block(fid, FIFF.FIFFB_REF)
        write_int(fid, FIFF.FIFF_REF_ROLE, FIFF.FIFFV_ROLE_PREV_FILE)
        write_string(fid, FIFF.FIFF_REF_FILE_NAME, prev_fname)
        if info['meas_id'] is not None:
            write_id(fid, FIFF.FIFF_REF_FILE_ID, info['meas_id'])
        write_int(fid, FIFF.FIFF_REF_FILE_NUM, part_idx_tag)
        end_block(fid, FIFF.FIFFB_REF)

    pos_prev = fid.tell()
    if pos_prev > split_size:
        fid.close()
        raise ValueError('file is larger than "split_size" after writing '
                         'measurement information, you must use a larger '
                         'value for split size: %s plus enough bytes for '
                         'the chosen buffer_size' % pos_prev)
    next_file_buffer = 2 ** 20  # extra cushion for last few post-data tags

    # Check to see if this has acquisition skips and, if so, if we can
    # write out empty buffers instead of zeroes
    firsts = list(range(start, stop, buffer_size))
    lasts = np.array(firsts) + buffer_size
    if lasts[-1] > stop:
        lasts[-1] = stop
    sk_onsets, sk_ends = _annotations_starts_stops(raw, 'bad_acq_skip')
    do_skips = False
    if len(sk_onsets) > 0:
        if np.in1d(sk_onsets, firsts).all() and np.in1d(sk_ends, lasts).all():
            do_skips = True
        else:
            if part_idx == 0:
                warn('Acquisition skips detected but did not fit evenly into '
                     'output buffer_size, will be written as zeroes.')

    n_current_skip = 0
    for first, last in zip(firsts, lasts):
        if do_skips:
            if ((first >= sk_onsets) & (last <= sk_ends)).any():
                # Track how many we have
                n_current_skip += 1
                continue
            elif n_current_skip > 0:
                # Write out an empty buffer instead of data
                write_int(fid, FIFF.FIFF_DATA_SKIP, n_current_skip)
                # These two NOPs appear to be optional (MaxFilter does not do
                # it, but some acquisition machines do) so let's not bother.
                # write_nop(fid)
                # write_nop(fid)
                n_current_skip = 0
        data, times = raw[picks, first:last]
        assert len(times) == last - first

        if projector is not None:
            data = np.dot(projector, data)

        if ((drop_small_buffer and (first > start) and
             (len(times) < buffer_size))):
            logger.info('Skipping data chunk due to small buffer ... '
                        '[done]')
            break
        logger.debug('Writing ...')
        _write_raw_buffer(fid, data, cals, fmt)

        pos = fid.tell()
        this_buff_size_bytes = pos - pos_prev
        overage = pos - split_size + next_file_buffer
        if overage > 0:
            # This should occur on the first buffer write of the file, so
            # we should mention the space required for the meas info
            fid.close()
            raise ValueError(
                'buffer size (%s) is too large for the given split size (%s) '
                'by %s bytes after writing info (%s) and leaving enough space '
                'for end tags (%s): decrease "buffer_size_sec" or increase '
                '"split_size".' % (this_buff_size_bytes, split_size, overage,
                                   pos_prev, next_file_buffer))

        # Split files if necessary, leave some space for next file info
        # make sure we check to make sure we actually *need* another buffer
        # with the "and" check
        if pos >= split_size - this_buff_size_bytes - next_file_buffer and \
                first + buffer_size < stop:
            next_fname, next_idx = _write_raw(
                fname, raw, info, picks, fmt,
                data_type, reset_range, first + buffer_size, stop, buffer_size,
                projector, drop_small_buffer, split_size, split_naming,
                part_idx + 1, use_fname, overwrite)

            start_block(fid, FIFF.FIFFB_REF)
            write_int(fid, FIFF.FIFF_REF_ROLE, FIFF.FIFFV_ROLE_NEXT_FILE)
            write_string(fid, FIFF.FIFF_REF_FILE_NAME, op.basename(next_fname))
            if info['meas_id'] is not None:
                write_id(fid, FIFF.FIFF_REF_FILE_ID, info['meas_id'])
            write_int(fid, FIFF.FIFF_REF_FILE_NUM, next_idx)
            end_block(fid, FIFF.FIFFB_REF)
            break

        pos_prev = pos

    logger.info('Closing %s [done]' % use_fname)
    if info.get('maxshield', False):
        end_block(fid, FIFF.FIFFB_IAS_RAW_DATA)
    else:
        end_block(fid, FIFF.FIFFB_RAW_DATA)
    end_block(fid, FIFF.FIFFB_MEAS)
    end_file(fid)
    return use_fname, part_idx


def _start_writing_raw(name, info, sel, data_type,
                       reset_range, annotations):
    """Start write raw data in file.

    Parameters
    ----------
    name : string
        Name of the file to create.
    info : dict
        Measurement info.
    sel : array of int | None
        Indices of channels to include. If None, all channels
        are included.
    data_type : int
        The data_type in case it is necessary. Should be 4 (FIFFT_FLOAT),
        5 (FIFFT_DOUBLE), 16 (FIFFT_DAU_PACK16), or 3 (FIFFT_INT) for raw data.
    reset_range : bool
        If True, the info['chs'][k]['range'] parameter will be set to unity.
    annotations : instance of Annotations
        The annotations to write.

    Returns
    -------
    fid : file
        The file descriptor.
    cals : list
        calibration factors.
    """
    #
    # Measurement info
    #
    info = pick_info(info, sel)

    #
    # Create the file and save the essentials
    #
    fid = start_file(name)
    start_block(fid, FIFF.FIFFB_MEAS)
    write_id(fid, FIFF.FIFF_BLOCK_ID)
    # XXX do we need this?
    if info['meas_id'] is not None:
        write_id(fid, FIFF.FIFF_PARENT_BLOCK_ID, info['meas_id'])

    cals = []
    for k in range(info['nchan']):
        #
        #   Scan numbers may have been messed up
        #
        info['chs'][k]['scanno'] = k + 1  # scanno starts at 1 in FIF format
        if reset_range is True:
            info['chs'][k]['range'] = 1.0
        cals.append(info['chs'][k]['cal'] * info['chs'][k]['range'])

    write_meas_info(fid, info, data_type=data_type, reset_range=reset_range)

    #
    # Annotations
    #
    if len(annotations) > 0:  # don't save empty annot
        _write_annotations(fid, annotations)

    #
    # Start the raw data
    #
    if info.get('maxshield', False):
        start_block(fid, FIFF.FIFFB_IAS_RAW_DATA)
    else:
        start_block(fid, FIFF.FIFFB_RAW_DATA)

    return fid, cals


def _write_raw_buffer(fid, buf, cals, fmt):
    """Write raw buffer.

    Parameters
    ----------
    fid : file descriptor
        an open raw data file.
    buf : array
        The buffer to write.
    cals : array
        Calibration factors.
    fmt : str
        'short', 'int', 'single', or 'double' for 16/32 bit int or 32/64 bit
        float for each item. This will be doubled for complex datatypes. Note
        that short and int formats cannot be used for complex data.
    """
    if buf.shape[0] != len(cals):
        raise ValueError('buffer and calibration sizes do not match')

    _check_option('fmt', fmt, ['short', 'int', 'single', 'double'])

    if np.isrealobj(buf):
        if fmt == 'short':
            write_function = write_dau_pack16
        elif fmt == 'int':
            write_function = write_int
        elif fmt == 'single':
            write_function = write_float
        else:
            write_function = write_double
    else:
        if fmt == 'single':
            write_function = write_complex64
        elif fmt == 'double':
            write_function = write_complex128
        else:
            raise ValueError('only "single" and "double" supported for '
                             'writing complex data')

    buf = buf / np.ravel(cals)[:, None]
    write_function(fid, FIFF.FIFF_DATA_BUFFER, buf)


def _check_raw_compatibility(raw):
    """Ensure all instances of Raw have compatible parameters."""
    for ri in range(1, len(raw)):
        if not isinstance(raw[ri], type(raw[0])):
            raise ValueError('raw[%d] type must match' % ri)
        if not raw[ri].info['nchan'] == raw[0].info['nchan']:
            raise ValueError('raw[%d][\'info\'][\'nchan\'] must match' % ri)
        if not raw[ri].info['bads'] == raw[0].info['bads']:
            raise ValueError('raw[%d][\'info\'][\'bads\'] must match' % ri)
        if not raw[ri].info['sfreq'] == raw[0].info['sfreq']:
            raise ValueError('raw[%d][\'info\'][\'sfreq\'] must match' % ri)
        if not set(raw[ri].info['ch_names']) == set(raw[0].info['ch_names']):
            raise ValueError('raw[%d][\'info\'][\'ch_names\'] must match' % ri)
        if not all(raw[ri]._cals == raw[0]._cals):
            raise ValueError('raw[%d]._cals must match' % ri)
        if len(raw[0].info['projs']) != len(raw[ri].info['projs']):
            raise ValueError('SSP projectors in raw files must be the same')
        if not all(_proj_equal(p1, p2) for p1, p2 in
                   zip(raw[0].info['projs'], raw[ri].info['projs'])):
            raise ValueError('SSP projectors in raw files must be the same')
    if not all(r.orig_format == raw[0].orig_format for r in raw):
        warn('raw files do not all have the same data format, could result in '
             'precision mismatch. Setting raw.orig_format="unknown"')
        raw[0].orig_format = 'unknown'


@verbose
def concatenate_raws(raws, preload=None, events_list=None, verbose=None):
    """Concatenate raw instances as if they were continuous.

    .. note:: ``raws[0]`` is modified in-place to achieve the concatenation.
              Boundaries of the raw files are annotated bad. If you wish to use
              the data as continuous recording, you can remove the boundary
              annotations after concatenation (see
              :meth:`mne.Annotations.delete`).

    Parameters
    ----------
    raws : list
        list of Raw instances to concatenate (in order).
    preload : bool, or None
        If None, preload status is inferred using the preload status of the
        raw files passed in. True or False sets the resulting raw file to
        have or not have data preloaded.
    events_list : None | list
        The events to concatenate. Defaults to None.
    %(verbose)s

    Returns
    -------
    raw : instance of Raw
        The result of the concatenation (first Raw instance passed in).
    events : ndarray of int, shape (n_events, 3)
        The events. Only returned if `event_list` is not None.
    """
    if events_list is not None:
        if len(events_list) != len(raws):
            raise ValueError('`raws` and `event_list` are required '
                             'to be of the same length')
        first, last = zip(*[(r.first_samp, r.last_samp) for r in raws])
        events = concatenate_events(events_list, first, last)
    raws[0].append(raws[1:], preload)

    if events_list is None:
        return raws[0]
    else:
        return raws[0], events


def _check_maxshield(allow_maxshield):
    """Warn or error about MaxShield."""
    msg = ('This file contains raw Internal Active '
           'Shielding data. It may be distorted. Elekta '
           'recommends it be run through MaxFilter to '
           'produce reliable results. Consider closing '
           'the file and running MaxFilter on the data.')
    if allow_maxshield:
        if not (isinstance(allow_maxshield, str) and
                allow_maxshield == 'yes'):
            warn(msg)
    else:
        msg += (' Use allow_maxshield=True if you are sure you'
                ' want to load the data despite this warning.')
        raise ValueError(msg)