File: brainvision.py

package info (click to toggle)
python-mne 0.19.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 100,440 kB
  • sloc: python: 120,243; pascal: 1,861; makefile: 225; sh: 15
file content (859 lines) | stat: -rw-r--r-- 34,982 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
# -*- coding: utf-8 -*-
"""Conversion tool from Brain Vision EEG to FIF."""
# Authors: Teon Brooks <teon.brooks@gmail.com>
#          Christian Brodbeck <christianbrodbeck@nyu.edu>
#          Eric Larson <larson.eric.d@gmail.com>
#          Jona Sassenhagen <jona.sassenhagen@gmail.com>
#          Phillip Alday <phillip.alday@unisa.edu.au>
#          Okba Bekhelifi <okba.bekhelifi@gmail.com>
#          Stefan Appelhoff <stefan.appelhoff@mailbox.org>
#
# License: BSD (3-clause)

import configparser
import os
import os.path as op
import re
from datetime import datetime
from math import modf
from io import StringIO

import numpy as np

from ...utils import verbose, logger, warn, fill_doc, _DefaultEventParser
from ..constants import FIFF
from ..meas_info import _empty_info
from ..base import BaseRaw
from ..utils import _read_segments_file, _mult_cal_one, _deprecate_montage
from ...annotations import Annotations, read_annotations
from ...channels import make_dig_montage


@fill_doc
class RawBrainVision(BaseRaw):
    """Raw object from Brain Vision EEG file.

    Parameters
    ----------
    vhdr_fname : str
        Path to the EEG header file.
    %(montage_deprecated)s
    eog : list or tuple
        Names of channels or list of indices that should be designated
        EOG channels. Values should correspond to the vhdr file.
        Default is ``('HEOGL', 'HEOGR', 'VEOGb')``.
    misc : list or tuple of str | 'auto'
        Names of channels or list of indices that should be designated
        MISC channels. Values should correspond to the electrodes
        in the vhdr file. If 'auto', units in vhdr file are used for inferring
        misc channels. Default is ``'auto'``.
    scale : float
        The scaling factor for EEG data. Unless specified otherwise by
        header file, units are in microvolts. Default scale factor is 1.
    %(preload)s
    %(verbose)s

    See Also
    --------
    mne.io.Raw : Documentation of attribute and methods.
    """

    @verbose
    def __init__(self, vhdr_fname, montage='deprecated',
                 eog=('HEOGL', 'HEOGR', 'VEOGb'), misc='auto',
                 scale=1., preload=False, verbose=None):  # noqa: D107
        # Channel info and events
        logger.info('Extracting parameters from %s...' % vhdr_fname)
        vhdr_fname = op.abspath(vhdr_fname)
        (info, data_fname, fmt, order, n_samples, mrk_fname, montage,
         orig_units) = _get_vhdr_info(vhdr_fname, eog, misc, scale, montage)
        self._order = order
        self._n_samples = n_samples

        with open(data_fname, 'rb') as f:
            if isinstance(fmt, dict):  # ASCII, this will be slow :(
                if self._order == 'F':  # multiplexed, channels in columns
                    n_skip = 0
                    for ii in range(int(fmt['skiplines'])):
                        n_skip += len(f.readline())
                    offsets = np.cumsum([n_skip] + [len(line) for line in f])
                    n_samples = len(offsets) - 1
                elif self._order == 'C':  # vectorized, channels, in rows
                    raise NotImplementedError()
            else:
                n_data_ch = int(info['nchan'])
                f.seek(0, os.SEEK_END)
                n_samples = f.tell()
                dtype_bytes = _fmt_byte_dict[fmt]
                offsets = None
                n_samples = n_samples // (dtype_bytes * n_data_ch)

        super(RawBrainVision, self).__init__(
            info, last_samps=[n_samples - 1], filenames=[data_fname],
            orig_format=fmt, preload=preload, verbose=verbose,
            raw_extras=[offsets], orig_units=orig_units)

        # Get annotations from vmrk file
        annots = read_annotations(mrk_fname, info['sfreq'])
        self.set_annotations(annots)

        _deprecate_montage(self, "read_raw_brainvision", montage)

    def _read_segment_file(self, data, idx, fi, start, stop, cals, mult):
        """Read a chunk of raw data."""
        # read data
        n_data_ch = len(self.ch_names)
        if self._order == 'C':
            _read_segments_c(self, data, idx, fi, start, stop, cals, mult)
        elif isinstance(self.orig_format, str):
            dtype = _fmt_dtype_dict[self.orig_format]
            _read_segments_file(self, data, idx, fi, start, stop, cals, mult,
                                dtype=dtype, n_channels=n_data_ch)
        else:
            offsets = self._raw_extras[fi]
            with open(self._filenames[fi], 'rb') as fid:
                fid.seek(offsets[start])
                block = np.empty((len(self.ch_names), stop - start))
                for ii in range(stop - start):
                    line = fid.readline().decode('ASCII')
                    line = line.strip().replace(',', '.').split()
                    block[:n_data_ch, ii] = [float(l) for l in line]
            _mult_cal_one(data, block, idx, cals, mult)


def _read_segments_c(raw, data, idx, fi, start, stop, cals, mult):
    """Read chunk of vectorized raw data."""
    n_samples = raw._n_samples
    dtype = _fmt_dtype_dict[raw.orig_format]
    n_bytes = _fmt_byte_dict[raw.orig_format]
    n_channels = len(raw.ch_names)
    block = np.zeros((n_channels, stop - start))
    with open(raw._filenames[fi], 'rb', buffering=0) as fid:
        for ch_id in np.arange(n_channels)[idx]:
            fid.seek(start * n_bytes + ch_id * n_bytes * n_samples)
            block[ch_id] = np.fromfile(fid, dtype, stop - start)

        _mult_cal_one(data, block, idx, cals, mult)


def _read_vmrk(fname):
    """Read annotations from a vmrk file.

    Parameters
    ----------
    fname : str
        vmrk file to be read.

    Returns
    -------
    onset : array, shape (n_annots,)
        The onsets in seconds.
    duration : array, shape (n_annots,)
        The onsets in seconds.
    description : array, shape (n_annots,)
        The description of each annotation.
    date_str : str
        The recording time as a string. Defaults to empty string if no
        recording time is found.
    """
    # read vmrk file
    with open(fname, 'rb') as fid:
        txt = fid.read()

    # we don't actually need to know the coding for the header line.
    # the characters in it all belong to ASCII and are thus the
    # same in Latin-1 and UTF-8
    header = txt.decode('ascii', 'ignore').split('\n')[0].strip()
    _check_mrk_version(header)

    # although the markers themselves are guaranteed to be ASCII (they
    # consist of numbers and a few reserved words), we should still
    # decode the file properly here because other (currently unused)
    # blocks, such as that the filename are specifying are not
    # guaranteed to be ASCII.

    try:
        # if there is an explicit codepage set, use it
        # we pretend like it's ascii when searching for the codepage
        cp_setting = re.search('Codepage=(.+)',
                               txt.decode('ascii', 'ignore'),
                               re.IGNORECASE & re.MULTILINE)
        codepage = 'utf-8'
        if cp_setting:
            codepage = cp_setting.group(1).strip()
        # BrainAmp Recorder also uses ANSI codepage
        # an ANSI codepage raises a LookupError exception
        # python recognize ANSI decoding as cp1252
        if codepage == 'ANSI':
            codepage = 'cp1252'
        txt = txt.decode(codepage)
    except UnicodeDecodeError:
        # if UTF-8 (new standard) or explicit codepage setting fails,
        # fallback to Latin-1, which is Windows default and implicit
        # standard in older recordings
        txt = txt.decode('latin-1')

    # extract Marker Infos block
    m = re.search(r"\[Marker Infos\]", txt, re.IGNORECASE)
    if not m:
        return np.array(list()), np.array(list()), np.array(list()), ''

    mk_txt = txt[m.end():]
    m = re.search(r"^\[.*\]$", mk_txt)
    if m:
        mk_txt = mk_txt[:m.start()]

    # extract event information
    items = re.findall(r"^Mk\d+=(.*)", mk_txt, re.MULTILINE)
    onset, duration, description = list(), list(), list()
    date_str = ''
    for info in items:
        info_data = info.split(',')
        mtype, mdesc, this_onset, this_duration = info_data[:4]
        if date_str == '' and len(info_data) == 5 and mtype == 'New Segment':
            # to handle the origin of time and handle the presence of multiple
            # New Segment annotations. We only keep the first one that is
            # different from an empty string for date_str.
            date_str = info_data[-1]

        this_duration = (int(this_duration)
                         if this_duration.isdigit() else 0)
        duration.append(this_duration)
        onset.append(int(this_onset) - 1)  # BV is 1-indexed, not 0-indexed
        description.append(mtype + '/' + mdesc)

    return np.array(onset), np.array(duration), np.array(description), date_str


def _read_annotations_brainvision(fname, sfreq='auto'):
    """Create Annotations from BrainVision vrmk.

    This function reads a .vrmk file and makes an
    :class:`mne.Annotations` object.

    Parameters
    ----------
    fname : str | object
        The path to the .vmrk file.
    sfreq : float | 'auto'
        The sampling frequency in the file. It's necessary
        as Annotations are expressed in seconds and vmrk
        files are in samples. If set to 'auto' then
        the sfreq is taken from the .vhdr file that
        has the same name (without file extension). So
        data.vrmk looks for sfreq in data.vhdr.

    Returns
    -------
    annotations : instance of Annotations
        The annotations present in the file.
    """
    onset, duration, description, date_str = _read_vmrk(fname)
    orig_time = _str_to_meas_date(date_str)

    if sfreq == 'auto':
        vhdr_fname = op.splitext(fname)[0] + '.vhdr'
        logger.info("Finding 'sfreq' from header file: %s" % vhdr_fname)
        _, _, _, info = _aux_vhdr_info(vhdr_fname)
        sfreq = info['sfreq']

    onset = np.array(onset, dtype=float) / sfreq
    duration = np.array(duration, dtype=float) / sfreq
    annotations = Annotations(onset=onset, duration=duration,
                              description=description,
                              orig_time=orig_time)
    return annotations


def _check_hdr_version(header):
    """Check the header version."""
    if header == 'Brain Vision Data Exchange Header File Version 1.0':
        return 1
    elif header == 'BrainVision Data Exchange Header File Version 1.0':
        return 1
    elif header == 'Brain Vision Data Exchange Header File Version 2.0':
        return 2
    elif header == 'BrainVision Data Exchange Header File Version 2.0':
        return 2
    else:
        raise ValueError("Currently only support versions 1.0 and 2.0, not %r "
                         "Contact MNE-Developers for support." % header)


def _check_mrk_version(header):
    """Check the marker version."""
    tags = ['Brain Vision Data Exchange Marker File, Version 1.0',
            'BrainVision Data Exchange Marker File, Version 1.0',
            'Brain Vision Data Exchange Marker File Version 1.0',
            'Brain Vision Data Exchange Marker File, Version 2.0',
            'BrainVision Data Exchange Marker File Version 1.0',
            'Brain Vision Data Exchange Marker File, Version 2.0',
            'BrainVision Data Exchange Marker File, Version 1.0']
    if header not in tags:
        raise ValueError("Currently, MNE-Python only supports %r, not %r"
                         "Contact MNE-Developers for support."
                         % (str(tags), header))


_orientation_dict = dict(MULTIPLEXED='F', VECTORIZED='C')
_fmt_dict = dict(INT_16='short', INT_32='int', IEEE_FLOAT_32='single')
_fmt_byte_dict = dict(short=2, int=4, single=4)
_fmt_dtype_dict = dict(short='<i2', int='<i4', single='<f4')
_unit_dict = {'V': 1.,  # V stands for Volt
              u'µV': 1e-6,
              'uV': 1e-6,
              'nV': 1e-9,
              'C': 1,  # C stands for celsius
              u'µS': 1e-6,  # S stands for Siemens
              u'uS': 1e-6,
              u'ARU': 1,  # ARU is the unity for the breathing data
              'S': 1,
              'N': 1}  # Newton


def _str_to_meas_date(date_str):
    date_str = date_str.strip()

    if date_str in ['', '0', '00000000000000000000']:
        return None

    try:
        meas_date = datetime.strptime(date_str, '%Y%m%d%H%M%S%f')
    except ValueError as e:
        if 'does not match format' in str(e):
            return None
        else:
            raise

    # We need list of unix time in milliseconds and as second entry
    # the additional amount of microseconds
    epoch = datetime.utcfromtimestamp(0)
    unix_time = (meas_date - epoch).total_seconds()
    unix_secs = int(modf(unix_time)[1])
    microsecs = int(modf(unix_time)[0] * 1e6)
    return unix_secs, microsecs


def _aux_vhdr_info(vhdr_fname):
    """Aux function for _get_vhdr_info."""
    with open(vhdr_fname, 'rb') as f:
        # extract the first section to resemble a cfg
        header = f.readline()
        codepage = 'utf-8'
        # we don't actually need to know the coding for the header line.
        # the characters in it all belong to ASCII and are thus the
        # same in Latin-1 and UTF-8
        header = header.decode('ascii', 'ignore').strip()
        _check_hdr_version(header)

        settings = f.read()
        try:
            # if there is an explicit codepage set, use it
            # we pretend like it's ascii when searching for the codepage
            cp_setting = re.search('Codepage=(.+)',
                                   settings.decode('ascii', 'ignore'),
                                   re.IGNORECASE & re.MULTILINE)
            if cp_setting:
                codepage = cp_setting.group(1).strip()
            # BrainAmp Recorder also uses ANSI codepage
            # an ANSI codepage raises a LookupError exception
            # python recognize ANSI decoding as cp1252
            if codepage == 'ANSI':
                codepage = 'cp1252'
            settings = settings.decode(codepage)
        except UnicodeDecodeError:
            # if UTF-8 (new standard) or explicit codepage setting fails,
            # fallback to Latin-1, which is Windows default and implicit
            # standard in older recordings
            settings = settings.decode('latin-1')

    if settings.find('[Comment]') != -1:
        params, settings = settings.split('[Comment]')
    else:
        params, settings = settings, ''
    cfg = configparser.ConfigParser()
    cfg.read_file(StringIO(params))

    # get sampling info
    # Sampling interval is given in microsec
    cinfostr = 'Common Infos'
    if not cfg.has_section(cinfostr):
        cinfostr = 'Common infos'  # NeurOne BrainVision export workaround

    # get sampling info
    # Sampling interval is given in microsec
    sfreq = 1e6 / cfg.getfloat(cinfostr, 'SamplingInterval')
    info = _empty_info(sfreq)
    return settings, cfg, cinfostr, info


def _get_vhdr_info(vhdr_fname, eog, misc, scale, montage):
    """Extract all the information from the header file.

    Parameters
    ----------
    vhdr_fname : str
        Raw EEG header to be read.
    eog : list of str
        Names of channels that should be designated EOG channels. Names should
        correspond to the vhdr file.
    misc : list or tuple of str | 'auto'
        Names of channels or list of indices that should be designated
        MISC channels. Values should correspond to the electrodes
        in the vhdr file. If 'auto', units in vhdr file are used for inferring
        misc channels. Default is ``'auto'``.
    scale : float
        The scaling factor for EEG data. Unless specified otherwise by
        header file, units are in microvolts. Default scale factor is 1.
    montage : str | None | instance of Montage
        Path or instance of montage containing electrode positions. If None,
        read sensor locations from header file if present, otherwise (0, 0, 0).
        See the documentation of :func:`mne.channels.read_dig_captrack` for
        more information.

    Returns
    -------
    info : Info
        The measurement info.
    data_fname : str
        Path to the binary data file.
    fmt : str
        The format of the binary data file.
    order : str
        Orientation of the binary data.
    n_samples : int
        Number of data points in the binary data file.
    mrk_fname : str
        Path to the marker file.
    montage : Montage
        Coordinates of the channels, if present in the header file.
    orig_units : dict
        Dictionary mapping channel names to their units as specified in
        the header file. Example: {'FC1': 'nV'}
    """
    scale = float(scale)
    ext = op.splitext(vhdr_fname)[-1]
    if ext != '.vhdr':
        raise IOError("The header file must be given to read the data, "
                      "not a file with extension '%s'." % ext)

    settings, cfg, cinfostr, info = _aux_vhdr_info(vhdr_fname)

    order = cfg.get(cinfostr, 'DataOrientation')
    if order not in _orientation_dict:
        raise NotImplementedError('Data Orientation %s is not supported'
                                  % order)
    order = _orientation_dict[order]

    data_format = cfg.get(cinfostr, 'DataFormat')
    if data_format == 'BINARY':
        fmt = cfg.get('Binary Infos', 'BinaryFormat')
        if fmt not in _fmt_dict:
            raise NotImplementedError('Datatype %s is not supported' % fmt)
        fmt = _fmt_dict[fmt]
    else:
        if order == 'C':  # channels in rows
            raise NotImplementedError('BrainVision files with ASCII data in '
                                      'vectorized order (i.e. channels in rows'
                                      ') are not supported yet.')
        fmt = {key: cfg.get('ASCII Infos', key)
               for key in cfg.options('ASCII Infos')}

    # locate EEG binary file and marker file for the stim channel
    path = op.dirname(vhdr_fname)
    data_fname = op.join(path, cfg.get(cinfostr, 'DataFile'))
    mrk_fname = op.join(path, cfg.get(cinfostr, 'MarkerFile'))

    # Try to get measurement date from marker file
    # Usually saved with a marker "New Segment", see BrainVision documentation
    regexp = r'^Mk\d+=New Segment,.*,\d+,\d+,-?\d+,(\d{20})$'
    with open(mrk_fname, 'r') as tmp_mrk_f:
        lines = tmp_mrk_f.readlines()

    for line in lines:
        match = re.findall(regexp, line.strip())

        # Always take first measurement date we find
        if match:
            date_str = match[0]
            info['meas_date'] = _str_to_meas_date(date_str)
            break

    else:
        info['meas_date'] = None

    # load channel labels
    nchan = cfg.getint(cinfostr, 'NumberOfChannels')
    n_samples = None
    if order == 'C':
        try:
            n_samples = cfg.getint(cinfostr, 'DataPoints')
        except configparser.NoOptionError:
            logger.warning('No info on DataPoints found. Inferring number of '
                           'samples from the data file size.')
            with open(data_fname, 'rb') as fid:
                fid.seek(0, 2)
                n_bytes = fid.tell()
                n_samples = n_bytes // _fmt_byte_dict[fmt] // nchan

    ch_names = [''] * nchan
    cals = np.empty(nchan)
    ranges = np.empty(nchan)
    cals.fill(np.nan)
    ch_dict = dict()
    misc_chs = dict()
    orig_units = dict()
    for chan, props in cfg.items('Channel Infos'):
        n = int(re.findall(r'ch(\d+)', chan)[0]) - 1
        props = props.split(',')
        # default to microvolts because that's what the older brainvision
        # standard explicitly assumed; the unit is only allowed to be
        # something else if explicitly stated (cf. EEGLAB export below)
        if len(props) < 4:
            props += (u'µV',)
        name, _, resolution, unit = props[:4]
        ch_dict[chan] = name
        ch_names[n] = name
        if resolution == "":
            if not(unit):  # For truncated vhdrs (e.g. EEGLAB export)
                resolution = 0.000001
            else:
                resolution = 1.  # for files with units specified, but not res
        unit = unit.replace(u'\xc2', u'')  # Remove unwanted control characters
        orig_units[name] = unit  # Save the original units to expose later
        cals[n] = float(resolution)
        ranges[n] = _unit_dict.get(unit, 1) * scale
        if unit not in ('V', 'nV', u'µV', 'uV'):
            misc_chs[name] = (FIFF.FIFF_UNIT_CEL if unit == 'C'
                              else FIFF.FIFF_UNIT_NONE)
    misc = list(misc_chs.keys()) if misc == 'auto' else misc

    # create montage: 'Coordinates' section in VHDR file corresponds to "BVEF"
    # BrainVision Electrode File. The data are based on BrainVision Analyzer
    # coordinate system: Defined between standard electrode positions: X-axis
    # from T7 to T8, Y-axis from Oz to Fpz, Z-axis orthogonal from XY-plane
    # through Cz, fit to a sphere if idealized (when radius=1), specified in mm
    if cfg.has_section('Coordinates') and montage in (None, 'deprecated'):
        from ...transforms import _sph_to_cart
        montage_pos = list()
        montage_names = list()
        to_misc = list()
        # Go through channels
        for ch in cfg.items('Coordinates'):
            ch_name = ch_dict[ch[0]]
            montage_names.append(ch_name)
            # 1: radius, 2: theta, 3: phi
            rad, theta, phi = [float(c) for c in ch[1].split(',')]
            pol = np.deg2rad(theta)
            az = np.deg2rad(phi)
            # Coordinates could be "idealized" (spherical head model)
            if rad == 1:
                # scale up to realistic head radius (8.5cm == 85mm)
                rad *= 85.
            pos = _sph_to_cart(np.array([[rad, az, pol]]))[0]
            if (pos == 0).all() and ch_name not in list(eog) + misc:
                to_misc.append(ch_name)
            montage_pos.append(pos)
        # Make a montage, normalizing from BrainVision units "mm" to "m", the
        # unit used for montages in MNE
        montage_pos = np.array(montage_pos) / 1e3
        montage = make_dig_montage(
            ch_pos=dict(zip(montage_names, montage_pos)),
            coord_frame='head'
        )
        if len(to_misc) > 0:
            misc += to_misc
            warn('No coordinate information found for channels {}. '
                 'Setting channel types to misc. To avoid this warning, set '
                 'channel types explicitly.'.format(to_misc))

    if np.isnan(cals).any():
        raise RuntimeError('Missing channel units')

    # Attempts to extract filtering info from header. If not found, both are
    # set to zero.
    settings = settings.splitlines()
    idx = None

    if 'Channels' in settings:
        idx = settings.index('Channels')
        settings = settings[idx + 1:]
        hp_col, lp_col = 4, 5
        for idx, setting in enumerate(settings):
            if re.match(r'#\s+Name', setting):
                break
            else:
                idx = None

    # If software filters are active, then they override the hardware setup
    # But we still want to be able to double check the channel names
    # for alignment purposes, we keep track of the hardware setting idx
    idx_amp = idx

    if 'S o f t w a r e  F i l t e r s' in settings:
        idx = settings.index('S o f t w a r e  F i l t e r s')
        for idx, setting in enumerate(settings[idx + 1:], idx + 1):
            if re.match(r'#\s+Low Cutoff', setting):
                hp_col, lp_col = 1, 2
                warn('Online software filter detected. Using software '
                     'filter settings and ignoring hardware values')
                break
            else:
                idx = idx_amp

    if idx:
        lowpass = []
        highpass = []

        # for newer BV files, the unit is specified for every channel
        # separated by a single space, while for older files, the unit is
        # specified in the column headers
        divider = r'\s+'
        if 'Resolution / Unit' in settings[idx]:
            shift = 1  # shift for unit
        else:
            shift = 0

        # Extract filter units and convert from seconds to Hz if necessary.
        # this cannot be done as post-processing as the inverse t-f
        # relationship means that the min/max comparisons don't make sense
        # unless we know the units.
        #
        # For reasoning about the s to Hz conversion, see this reference:
        # `Ebersole, J. S., & Pedley, T. A. (Eds.). (2003).
        # Current practice of clinical electroencephalography.
        # Lippincott Williams & Wilkins.`, page 40-41
        header = re.split(r'\s\s+', settings[idx])
        hp_s = '[s]' in header[hp_col]
        lp_s = '[s]' in header[lp_col]

        for i, ch in enumerate(ch_names, 1):
            line = re.split(divider, settings[idx + i])
            # double check alignment with channel by using the hw settings
            if idx == idx_amp:
                line_amp = line
            else:
                line_amp = re.split(divider, settings[idx_amp + i])
            assert ch in line_amp

            highpass.append(line[hp_col + shift])
            lowpass.append(line[lp_col + shift])
        if len(highpass) == 0:
            pass
        elif len(set(highpass)) == 1:
            if highpass[0] in ('NaN', 'Off'):
                pass  # Placeholder for future use. Highpass set in _empty_info
            elif highpass[0] == 'DC':
                info['highpass'] = 0.
            else:
                info['highpass'] = float(highpass[0])
                if hp_s:
                    # filter time constant t [secs] to Hz conversion: 1/2*pi*t
                    info['highpass'] = 1. / (2 * np.pi * info['highpass'])

        else:
            heterogeneous_hp_filter = True
            if hp_s:
                # We convert channels with disabled filters to having
                # highpass relaxed / no filters
                highpass = [float(filt) if filt not in ('NaN', 'Off', 'DC')
                            else np.Inf for filt in highpass]
                info['highpass'] = np.max(np.array(highpass, dtype=np.float))
                # Coveniently enough 1 / np.Inf = 0.0, so this works for
                # DC / no highpass filter
                # filter time constant t [secs] to Hz conversion: 1/2*pi*t
                info['highpass'] = 1. / (2 * np.pi * info['highpass'])

                # not exactly the cleanest use of FP, but this makes us
                # more conservative in *not* warning.
                if info['highpass'] == 0.0 and len(set(highpass)) == 1:
                    # not actually heterogeneous in effect
                    # ... just heterogeneously disabled
                    heterogeneous_hp_filter = False
            else:
                highpass = [float(filt) if filt not in ('NaN', 'Off', 'DC')
                            else 0.0 for filt in highpass]
                info['highpass'] = np.min(np.array(highpass, dtype=np.float))
                if info['highpass'] == 0.0 and len(set(highpass)) == 1:
                    # not actually heterogeneous in effect
                    # ... just heterogeneously disabled
                    heterogeneous_hp_filter = False

            if heterogeneous_hp_filter:
                warn('Channels contain different highpass filters. '
                     'Lowest (weakest) filter setting (%0.2f Hz) '
                     'will be stored.' % info['highpass'])

        if len(lowpass) == 0:
            pass
        elif len(set(lowpass)) == 1:
            if lowpass[0] in ('NaN', 'Off'):
                pass  # Placeholder for future use. Lowpass set in _empty_info
            else:
                info['lowpass'] = float(lowpass[0])
                if lp_s:
                    # filter time constant t [secs] to Hz conversion: 1/2*pi*t
                    info['lowpass'] = 1. / (2 * np.pi * info['lowpass'])

        else:
            heterogeneous_lp_filter = True
            if lp_s:
                # We convert channels with disabled filters to having
                # infinitely relaxed / no filters
                lowpass = [float(filt) if filt not in ('NaN', 'Off')
                           else 0.0 for filt in lowpass]
                info['lowpass'] = np.min(np.array(lowpass, dtype=np.float))
                try:
                    # filter time constant t [secs] to Hz conversion: 1/2*pi*t
                    info['lowpass'] = 1. / (2 * np.pi * info['lowpass'])

                except ZeroDivisionError:
                    if len(set(lowpass)) == 1:
                        # No lowpass actually set for the weakest setting
                        # so we set lowpass to the Nyquist frequency
                        info['lowpass'] = info['sfreq'] / 2.
                        # not actually heterogeneous in effect
                        # ... just heterogeneously disabled
                        heterogeneous_lp_filter = False
                    else:
                        # no lowpass filter is the weakest filter,
                        # but it wasn't the only filter
                        pass
            else:
                # We convert channels with disabled filters to having
                # infinitely relaxed / no filters
                lowpass = [float(filt) if filt not in ('NaN', 'Off')
                           else np.Inf for filt in lowpass]
                info['lowpass'] = np.max(np.array(lowpass, dtype=np.float))

                if np.isinf(info['lowpass']):
                    # No lowpass actually set for the weakest setting
                    # so we set lowpass to the Nyquist frequency
                    info['lowpass'] = info['sfreq'] / 2.
                    if len(set(lowpass)) == 1:
                        # not actually heterogeneous in effect
                        # ... just heterogeneously disabled
                        heterogeneous_lp_filter = False

            if heterogeneous_lp_filter:
                # this isn't clean FP, but then again, we only want to provide
                # the Nyquist hint when the lowpass filter was actually
                # calculated from dividing the sampling frequency by 2, so the
                # exact/direct comparison (instead of tolerance) makes sense
                if info['lowpass'] == info['sfreq'] / 2.0:
                    nyquist = ', Nyquist limit'
                else:
                    nyquist = ""
                warn('Channels contain different lowpass filters. '
                     'Highest (weakest) filter setting (%0.2f Hz%s) '
                     'will be stored.' % (info['lowpass'], nyquist))

    # Creates a list of dicts of eeg channels for raw.info
    logger.info('Setting channel info structure...')
    info['chs'] = []
    for idx, ch_name in enumerate(ch_names):
        if ch_name in eog or idx in eog or idx - nchan in eog:
            kind = FIFF.FIFFV_EOG_CH
            coil_type = FIFF.FIFFV_COIL_NONE
            unit = FIFF.FIFF_UNIT_V
        elif ch_name in misc or idx in misc or idx - nchan in misc:
            kind = FIFF.FIFFV_MISC_CH
            coil_type = FIFF.FIFFV_COIL_NONE
            if ch_name in misc_chs:
                unit = misc_chs[ch_name]
            else:
                unit = FIFF.FIFF_UNIT_NONE
        elif ch_name == 'STI 014':
            kind = FIFF.FIFFV_STIM_CH
            coil_type = FIFF.FIFFV_COIL_NONE
            unit = FIFF.FIFF_UNIT_NONE
        else:
            kind = FIFF.FIFFV_EEG_CH
            coil_type = FIFF.FIFFV_COIL_EEG
            unit = FIFF.FIFF_UNIT_V
        info['chs'].append(dict(
            ch_name=ch_name, coil_type=coil_type, kind=kind, logno=idx + 1,
            scanno=idx + 1, cal=cals[idx], range=ranges[idx],
            loc=np.full(12, np.nan),
            unit=unit, unit_mul=0.,  # always zero- mne manual pg. 273
            coord_frame=FIFF.FIFFV_COORD_HEAD))

    info._update_redundant()
    info._check_consistency()
    return (info, data_fname, fmt, order, n_samples, mrk_fname, montage,
            orig_units)


@fill_doc
def read_raw_brainvision(vhdr_fname, montage='deprecated',
                         eog=('HEOGL', 'HEOGR', 'VEOGb'), misc='auto',
                         scale=1., preload=False, verbose=None):
    """Reader for Brain Vision EEG file.

    Parameters
    ----------
    vhdr_fname : str
        Path to the EEG header file.
    %(montage_deprecated)s
    eog : list or tuple of str
        Names of channels or list of indices that should be designated
        EOG channels. Values should correspond to the vhdr file
        Default is ``('HEOGL', 'HEOGR', 'VEOGb')``.
    misc : list or tuple of str | 'auto'
        Names of channels or list of indices that should be designated
        MISC channels. Values should correspond to the electrodes
        in the vhdr file. If 'auto', units in vhdr file are used for inferring
        misc channels. Default is ``'auto'``.
    scale : float
        The scaling factor for EEG data. Unless specified otherwise by
        header file, units are in microvolts. Default scale factor is 1.
    %(preload)s
    %(verbose)s

    Returns
    -------
    raw : instance of RawBrainVision
        A Raw object containing BrainVision data.

    See Also
    --------
    mne.io.Raw : Documentation of attribute and methods.

    """
    return RawBrainVision(vhdr_fname=vhdr_fname, montage=montage, eog=eog,
                          misc=misc, scale=scale, preload=preload,
                          verbose=verbose)


_BV_EVENT_IO_OFFSETS = {'Event/': 0, 'Stimulus/S': 0, 'Response/R': 1000,
                        'Optic/O': 2000}
_OTHER_ACCEPTED_MARKERS = {
    'New Segment/': 99999, 'SyncStatus/Sync On': 99998
}
_OTHER_OFFSET = 10001  # where to start "unknown" event_ids


class _BVEventParser(_DefaultEventParser):
    """Parse standard brainvision events, accounting for non-standard ones."""

    def __call__(self, description):
        """Parse BrainVision event codes (like `Stimulus/S 11`) to ints."""
        offsets = _BV_EVENT_IO_OFFSETS

        maybe_digit = description[-3:].strip()
        kind = description[:-3]
        if maybe_digit.isdigit() and kind in offsets:
            code = int(maybe_digit) + offsets[kind]
        elif description in _OTHER_ACCEPTED_MARKERS:
            code = _OTHER_ACCEPTED_MARKERS[description]
        else:
            code = (super(_BVEventParser, self)
                    .__call__(description, offset=_OTHER_OFFSET))
        return code


def _check_bv_annot(descriptions):
    markers_basename = set([dd.rstrip('0123456789 ') for dd in descriptions])
    bv_markers = (set(_BV_EVENT_IO_OFFSETS.keys())
                  .union(set(_OTHER_ACCEPTED_MARKERS.keys())))
    return len(markers_basename - bv_markers) == 0