File: test_brainvision.py

package info (click to toggle)
python-mne 0.19.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 100,440 kB
  • sloc: python: 120,243; pascal: 1,861; makefile: 225; sh: 15
file content (611 lines) | stat: -rw-r--r-- 24,339 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
# -*- coding: utf-8 -*-
"""Test reading of BrainVision format."""
# Author: Teon Brooks <teon.brooks@gmail.com>
#         Stefan Appelhoff <stefan.appelhoff@mailbox.org>
#
# License: BSD (3-clause)
import os.path as op
from os import unlink
import shutil

import numpy as np
from numpy.testing import (assert_array_almost_equal, assert_array_equal,
                           assert_allclose, assert_equal)
import pytest
from tempfile import NamedTemporaryFile

from mne.utils import _TempDir, run_tests_if_main
from mne import pick_types, read_annotations, concatenate_raws
from mne.io.constants import FIFF
from mne.io import read_raw_fif, read_raw_brainvision
from mne.io.tests.test_raw import _test_raw_reader
from mne.datasets import testing
from mne.annotations import events_from_annotations

data_dir = op.join(op.dirname(__file__), 'data')
vhdr_path = op.join(data_dir, 'test.vhdr')
vmrk_path = op.join(data_dir, 'test.vmrk')
eeg_path = op.join(data_dir, 'test.eeg')

vhdr_partially_disabled_hw_filter_path = op.join(data_dir,
                                                 'test_partially_disabled'
                                                 '_hw_filter.vhdr')

vhdr_old_path = op.join(data_dir,
                        'test_old_layout_latin1_software_filter.vhdr')

vhdr_v2_path = op.join(data_dir, 'testv2.vhdr')

vhdr_highpass_path = op.join(data_dir, 'test_highpass.vhdr')
vhdr_mixed_highpass_path = op.join(data_dir, 'test_mixed_highpass.vhdr')
vhdr_highpass_hz_path = op.join(data_dir, 'test_highpass_hz.vhdr')
vhdr_mixed_highpass_hz_path = op.join(data_dir, 'test_mixed_highpass_hz.vhdr')

# Not a typo: we can reuse the highpass file for the lowpass (Hz) test
vhdr_lowpass_path = op.join(data_dir, 'test_highpass.vhdr')
vhdr_mixed_lowpass_path = op.join(data_dir, 'test_mixed_lowpass.vhdr')
vhdr_lowpass_s_path = op.join(data_dir, 'test_lowpass_s.vhdr')
vhdr_mixed_lowpass_s_path = op.join(data_dir, 'test_mixed_lowpass_s.vhdr')

# VHDR exported with neuroone
data_path = testing.data_path(download=False)
neuroone_vhdr = op.join(data_path, 'Brainvision', 'test_NO.vhdr')

# Test for nanovolts as unit
vhdr_nV_path = op.join(data_dir, 'test_nV.vhdr')

# Test bad date
vhdr_bad_date = op.join(data_dir, 'test_bad_date.vhdr')

eeg_bin = op.join(data_dir, 'test_bin_raw.fif')
eog = ['HL', 'HR', 'Vb']

# XXX: BUG we cannot parse test.hpts FastSCAN file to create a DigMontage
#      (plus I've removed montage from all the read_raw_brainvision and nothing
#       broke, so we were not testing that set_montage in brainvision was
#       working)
#      This should be amend in its own PR.
montage = op.join(data_dir, 'test.hpts')


def test_orig_units(recwarn):
    """Test exposure of original channel units."""
    raw = read_raw_brainvision(vhdr_path)
    orig_units = raw._orig_units
    assert len(orig_units) == 32
    assert orig_units['FP1'] == u'µV'
    assert orig_units['CP5'] == 'n/a'  # originally BS, not a valid unit
    assert orig_units['CP6'] == u'µS'
    assert orig_units['HL'] == 'n/a'  # originally ARU, not a valid unit
    assert orig_units['HR'] == 'n/a'  # originally uS ...
    assert orig_units['Vb'] == 'S'
    assert orig_units['ReRef'] == 'C'


DATE_TEST_CASES = np.array([
    ('Mk1=New Segment,,1,1,0,20131113161403794232\n',  # content
     [1384359243, 794231],  # meas_date internal representation
     '2013-11-13 16:14:03 GMT'),  # meas_date representation

    (('Mk1=New Segment,,1,1,0,20070716122240937454\n'
      'Mk2=New Segment,,2,1,0,20070716122240937455\n'),
     [1184588560, 937453],
     '2007-07-16 12:22:40 GMT'),

    ('Mk1=New Segment,,1,1,0,\nMk2=New Segment,,2,1,0,20070716122240937454\n',
     [1184588560, 937453],
     '2007-07-16 12:22:40 GMT'),

    ('Mk1=STATUS,,1,1,0\n', None, 'unspecified'),
    ('Mk1=New Segment,,1,1,0,\n', None, 'unspecified'),
    ('Mk1=New Segment,,1,1,0\n', None, 'unspecified'),
    ('Mk1=New Segment,,1,1,0,00000000000304125000', None, 'unspecified'),

], dtype=np.dtype({
    'names': ['content', 'meas_date', 'meas_date_repr'],
    'formats': [object, object, 'U22']
}))


@pytest.fixture(scope='session')
def _mocked_meas_date_data(tmpdir_factory):
    """Prepare files for mocked_meas_date_file fixture."""
    # Prepare the files
    tmpdir = str(tmpdir_factory.mktemp('brainvision_mocked_meas_date'))
    vhdr_fname, vmrk_fname, eeg_fname = [
        op.join(tmpdir, op.basename(ff))
        for ff in [vhdr_path, vmrk_path, eeg_path]
    ]
    for orig, dest in zip([vhdr_path, eeg_path], [vhdr_fname, eeg_fname]):
        shutil.copyfile(orig, dest)

    # Get the marker information
    with open(vmrk_path, 'r') as fin:
        lines = fin.readlines()

    return vhdr_fname, vmrk_fname, lines


@pytest.fixture(scope='session', params=[tt for tt in DATE_TEST_CASES])
def mocked_meas_date_file(_mocked_meas_date_data, request):
    """Prepare a generator for use in test_meas_date."""
    MEAS_DATE_LINE = 11  # see test.vmrk file
    vhdr_fname, vmrk_fname, lines = _mocked_meas_date_data

    lines[MEAS_DATE_LINE] = request.param['content']
    with open(vmrk_fname, 'w') as fout:
        fout.writelines(lines)

    yield (
        vhdr_fname, request.param['meas_date'], request.param['meas_date_repr']
    )


def test_meas_date(mocked_meas_date_file):
    """Test successful extraction of measurement date."""
    vhdr_f, expected_meas, expected_meas_repr = mocked_meas_date_file
    raw = read_raw_brainvision(vhdr_f)
    assert expected_meas_repr in repr(raw.info)
    if expected_meas is None:
        assert raw.info['meas_date'] is None
    else:
        assert_allclose(raw.info['meas_date'], expected_meas)


def test_vhdr_codepage_ansi():
    """Test BV reading with ANSI codepage."""
    raw_init = read_raw_brainvision(vhdr_path)
    data_expected, times_expected = raw_init[:]
    tempdir = _TempDir()
    ansi_vhdr_path = op.join(tempdir, op.split(vhdr_path)[-1])
    ansi_vmrk_path = op.join(tempdir, op.split(vmrk_path)[-1])
    ansi_eeg_path = op.join(tempdir, op.split(eeg_path)[-1])
    # copy data file
    shutil.copy(eeg_path, ansi_eeg_path)
    # modify header file
    with open(ansi_vhdr_path, 'wb') as fout:
        with open(vhdr_path, 'rb') as fin:
            for line in fin:
                # Common Infos section
                if line.startswith(b'Codepage'):
                    line = b'Codepage=ANSI\n'
                fout.write(line)
    # modify marker file
    with open(ansi_vmrk_path, 'wb') as fout:
        with open(vmrk_path, 'rb') as fin:
            for line in fin:
                # Common Infos section
                if line.startswith(b'Codepage'):
                    line = b'Codepage=ANSI\n'
                fout.write(line)

    raw = read_raw_brainvision(ansi_vhdr_path)
    data_new, times_new = raw[:]

    assert_equal(raw_init.ch_names, raw.ch_names)
    assert_allclose(data_new, data_expected, atol=1e-15)
    assert_allclose(times_new, times_expected, atol=1e-15)


def test_ascii():
    """Test ASCII BV reading."""
    raw = read_raw_brainvision(vhdr_path)
    tempdir = _TempDir()
    ascii_vhdr_path = op.join(tempdir, op.split(vhdr_path)[-1])
    # copy marker file
    shutil.copy(vhdr_path.replace('.vhdr', '.vmrk'),
                ascii_vhdr_path.replace('.vhdr', '.vmrk'))
    # modify header file
    skipping = False
    with open(ascii_vhdr_path, 'wb') as fout:
        with open(vhdr_path, 'rb') as fin:
            for line in fin:
                # Common Infos section
                if line.startswith(b'DataFormat'):
                    line = b'DataFormat=ASCII\n'
                elif line.startswith(b'DataFile='):
                    line = b'DataFile=test.dat\n'
                # Replace the "'Binary Infos'" section
                elif line.startswith(b'[Binary Infos]'):
                    skipping = True
                    fout.write(b'[ASCII Infos]\nDecimalSymbol=.\nSkipLines=1\n'
                               b'SkipColumns=0\n\n')
                elif skipping and line.startswith(b'['):
                    skipping = False
                if not skipping:
                    fout.write(line)
    # create the .dat file
    data, times = raw[:]
    with open(ascii_vhdr_path.replace('.vhdr', '.dat'), 'wb') as fid:
        fid.write(b' '.join(ch_name.encode('ASCII')
                            for ch_name in raw.ch_names) + b'\n')
        fid.write(b'\n'.join(b' '.join(b'%.3f' % dd for dd in d)
                             for d in data.T / raw._cals))
    raw = read_raw_brainvision(ascii_vhdr_path)
    data_new, times_new = raw[:]
    assert_allclose(data_new, data, atol=1e-15)
    assert_allclose(times_new, times)


def test_brainvision_data_highpass_filters():
    """Test reading raw Brain Vision files with amplifier filter settings."""
    # Homogeneous highpass in seconds (default measurement unit)
    raw = _test_raw_reader(
        read_raw_brainvision, vhdr_fname=vhdr_highpass_path, eog=eog
    )

    assert_equal(raw.info['highpass'], 1. / (2 * np.pi * 10))
    assert_equal(raw.info['lowpass'], 250.)

    # Heterogeneous highpass in seconds (default measurement unit)
    with pytest.warns(RuntimeWarning, match='different .*pass filters') as w:
        raw = _test_raw_reader(
            read_raw_brainvision, vhdr_fname=vhdr_mixed_highpass_path,
            eog=eog)

    lowpass_warning = ['different lowpass filters' in str(ww.message)
                       for ww in w]
    highpass_warning = ['different highpass filters' in str(ww.message)
                        for ww in w]

    expected_warnings = zip(lowpass_warning, highpass_warning)

    assert (all(any([lp, hp]) for lp, hp in expected_warnings))

    assert_equal(raw.info['highpass'], 1. / (2 * np.pi * 10))
    assert_equal(raw.info['lowpass'], 250.)

    # Homogeneous highpass in Hertz
    raw = _test_raw_reader(
        read_raw_brainvision, vhdr_fname=vhdr_highpass_hz_path,
        eog=eog)

    assert_equal(raw.info['highpass'], 10.)
    assert_equal(raw.info['lowpass'], 250.)

    # Heterogeneous highpass in Hertz
    with pytest.warns(RuntimeWarning, match='different .*pass filters') as w:
        raw = _test_raw_reader(
            read_raw_brainvision, vhdr_fname=vhdr_mixed_highpass_hz_path,
            eog=eog)

    trigger_warning = ['will be dropped' in str(ww.message)
                       for ww in w]
    lowpass_warning = ['different lowpass filters' in str(ww.message)
                       for ww in w]
    highpass_warning = ['different highpass filters' in str(ww.message)
                        for ww in w]

    expected_warnings = zip(trigger_warning, lowpass_warning, highpass_warning)

    assert (all(any([trg, lp, hp]) for trg, lp, hp in expected_warnings))

    assert_equal(raw.info['highpass'], 5.)
    assert_equal(raw.info['lowpass'], 250.)


def test_brainvision_data_lowpass_filters():
    """Test files with amplifier LP filter settings."""
    # Homogeneous lowpass in Hertz (default measurement unit)
    raw = _test_raw_reader(
        read_raw_brainvision, vhdr_fname=vhdr_lowpass_path, eog=eog
    )

    assert_equal(raw.info['highpass'], 1. / (2 * np.pi * 10))
    assert_equal(raw.info['lowpass'], 250.)

    # Heterogeneous lowpass in Hertz (default measurement unit)
    with pytest.warns(RuntimeWarning) as w:  # event parsing
        raw = _test_raw_reader(
            read_raw_brainvision, vhdr_fname=vhdr_mixed_lowpass_path, eog=eog
        )

    lowpass_warning = ['different lowpass filters' in str(ww.message)
                       for ww in w]
    highpass_warning = ['different highpass filters' in str(ww.message)
                        for ww in w]

    expected_warnings = zip(lowpass_warning, highpass_warning)

    assert (all(any([lp, hp]) for lp, hp in expected_warnings))

    assert_equal(raw.info['highpass'], 1. / (2 * np.pi * 10))
    assert_equal(raw.info['lowpass'], 250.)

    # Homogeneous lowpass in seconds
    raw = _test_raw_reader(
        read_raw_brainvision, vhdr_fname=vhdr_lowpass_s_path, eog=eog
    )

    assert_equal(raw.info['highpass'], 1. / (2 * np.pi * 10))
    assert_equal(raw.info['lowpass'], 1. / (2 * np.pi * 0.004))

    # Heterogeneous lowpass in seconds
    with pytest.warns(RuntimeWarning) as w:  # filter settings
        raw = _test_raw_reader(
            read_raw_brainvision, vhdr_fname=vhdr_mixed_lowpass_s_path, eog=eog
        )

    lowpass_warning = ['different lowpass filters' in str(ww.message)
                       for ww in w]
    highpass_warning = ['different highpass filters' in str(ww.message)
                        for ww in w]

    expected_warnings = zip(lowpass_warning, highpass_warning)

    assert (all(any([lp, hp]) for lp, hp in expected_warnings))

    assert_equal(raw.info['highpass'], 1. / (2 * np.pi * 10))
    assert_equal(raw.info['lowpass'], 1. / (2 * np.pi * 0.004))


def test_brainvision_data_partially_disabled_hw_filters():
    """Test heterogeneous filter settings including non-numeric values."""
    with pytest.warns(RuntimeWarning) as w:  # event parsing
        raw = _test_raw_reader(
            read_raw_brainvision,
            vhdr_fname=vhdr_partially_disabled_hw_filter_path, eog=eog
        )

    trigger_warning = ['will be dropped' in str(ww.message)
                       for ww in w]
    lowpass_warning = ['different lowpass filters' in str(ww.message)
                       for ww in w]
    highpass_warning = ['different highpass filters' in str(ww.message)
                        for ww in w]

    expected_warnings = zip(trigger_warning, lowpass_warning, highpass_warning)

    assert (all(any([trg, lp, hp]) for trg, lp, hp in expected_warnings))

    assert_equal(raw.info['highpass'], 0.)
    assert_equal(raw.info['lowpass'], 500.)


def test_brainvision_data_software_filters_latin1_global_units():
    """Test reading raw Brain Vision files."""
    with pytest.warns(RuntimeWarning, match='software filter'):
        raw = _test_raw_reader(
            read_raw_brainvision, vhdr_fname=vhdr_old_path,
            eog=("VEOGo", "VEOGu", "HEOGli", "HEOGre"), misc=("A2",))

    assert_equal(raw.info['highpass'], 1. / (2 * np.pi * 0.9))
    assert_equal(raw.info['lowpass'], 50.)


def test_brainvision_data():
    """Test reading raw Brain Vision files."""
    pytest.raises(IOError, read_raw_brainvision, vmrk_path)
    pytest.raises(ValueError, read_raw_brainvision, vhdr_path,
                  preload=True, scale="foo")

    raw_py = _test_raw_reader(
        read_raw_brainvision, vhdr_fname=vhdr_path, eog=eog, misc='auto'
    )

    assert ('RawBrainVision' in repr(raw_py))

    assert_equal(raw_py.info['highpass'], 0.)
    assert_equal(raw_py.info['lowpass'], 250.)

    picks = pick_types(raw_py.info, meg=False, eeg=True, exclude='bads')
    data_py, times_py = raw_py[picks]

    # compare with a file that was generated using MNE-C
    raw_bin = read_raw_fif(eeg_bin, preload=True)
    picks = pick_types(raw_py.info, meg=False, eeg=True, exclude='bads')
    data_bin, times_bin = raw_bin[picks]

    assert_array_almost_equal(data_py, data_bin)
    assert_array_almost_equal(times_py, times_bin)

    # Make sure EOG channels are marked correctly
    for ch in raw_py.info['chs']:
        if ch['ch_name'] in eog:
            assert_equal(ch['kind'], FIFF.FIFFV_EOG_CH)
        elif ch['ch_name'] == 'STI 014':
            assert_equal(ch['kind'], FIFF.FIFFV_STIM_CH)
        elif ch['ch_name'] in ('CP5', 'CP6'):
            assert_equal(ch['kind'], FIFF.FIFFV_MISC_CH)
            assert_equal(ch['unit'], FIFF.FIFF_UNIT_NONE)
        elif ch['ch_name'] == 'ReRef':
            assert_equal(ch['kind'], FIFF.FIFFV_MISC_CH)
            assert_equal(ch['unit'], FIFF.FIFF_UNIT_CEL)
        elif ch['ch_name'] in raw_py.info['ch_names']:
            assert_equal(ch['kind'], FIFF.FIFFV_EEG_CH)
            assert_equal(ch['unit'], FIFF.FIFF_UNIT_V)
        else:
            raise RuntimeError("Unknown Channel: %s" % ch['ch_name'])

    # test loading v2
    read_raw_brainvision(vhdr_v2_path, eog=eog, preload=True,
                         verbose='error')
    # For the nanovolt unit test we use the same data file with a different
    # header file.
    raw_nV = _test_raw_reader(
        read_raw_brainvision, vhdr_fname=vhdr_nV_path, eog=eog, misc='auto'
    )
    assert_equal(raw_nV.info['chs'][0]['ch_name'], 'FP1')
    assert_equal(raw_nV.info['chs'][0]['kind'], FIFF.FIFFV_EEG_CH)
    data_nanovolt, _ = raw_nV[0]
    assert_array_almost_equal(data_py[0, :], data_nanovolt[0, :])


def test_brainvision_vectorized_data():
    """Test reading BrainVision data files with vectorized data."""
    with pytest.warns(RuntimeWarning, match='software filter'):
        raw = read_raw_brainvision(vhdr_old_path, preload=True)

    assert_array_equal(raw._data.shape, (29, 251))

    first_two_samples_all_chs = np.array([[+5.22000008e-06, +5.10000000e-06],
                                          [+2.10000000e-06, +2.27000008e-06],
                                          [+1.15000000e-06, +1.33000002e-06],
                                          [+4.00000000e-07, +4.00000000e-07],
                                          [-3.02999992e-06, -2.82000008e-06],
                                          [+2.71000004e-06, +2.45000000e-06],
                                          [+2.41000004e-06, +2.36000004e-06],
                                          [+1.01999998e-06, +1.18000002e-06],
                                          [-1.33999996e-06, -1.25000000e-06],
                                          [-2.60000000e-06, -2.46000004e-06],
                                          [+6.80000019e-07, +8.00000000e-07],
                                          [+1.48000002e-06, +1.48999996e-06],
                                          [+1.61000004e-06, +1.51000004e-06],
                                          [+7.19999981e-07, +8.60000038e-07],
                                          [-3.00000000e-07, -4.00000006e-08],
                                          [-1.20000005e-07, +6.00000024e-08],
                                          [+8.19999981e-07, +9.89999962e-07],
                                          [+1.13000002e-06, +1.28000002e-06],
                                          [+1.08000002e-06, +1.33999996e-06],
                                          [+2.20000005e-07, +5.69999981e-07],
                                          [-4.09999990e-07, +4.00000006e-08],
                                          [+5.19999981e-07, +9.39999962e-07],
                                          [+1.01000004e-06, +1.51999998e-06],
                                          [+1.01000004e-06, +1.55000000e-06],
                                          [-1.43000002e-06, -1.13999996e-06],
                                          [+3.65000000e-06, +3.65999985e-06],
                                          [+4.15999985e-06, +3.79000015e-06],
                                          [+9.26999969e-06, +8.95999985e-06],
                                          [-7.35999985e-06, -7.18000031e-06],
                                          ])

    assert_array_almost_equal(raw._data[:, :2], first_two_samples_all_chs)


def test_coodinates_extraction():
    """Test reading of [Coordinates] section if present."""
    # vhdr 2 has a Coordinates section
    with pytest.warns(RuntimeWarning, match='coordinate information'):
        raw = read_raw_brainvision(vhdr_v2_path)

    # Basic check of extracted coordinates
    assert raw.info['dig'] is not None
    diglist = raw.info['dig']
    coords = np.array([dig['r'] for dig in diglist])
    EXPECTED_SHAPE = (
        len(raw.ch_names) - 4,  # HL, HR, Vb, ReRef are not set in dig
        3,
    )
    assert coords.shape == EXPECTED_SHAPE

    # Make sure the scaling seems right
    # a coordinate more than 20cm away from origin is implausible
    assert coords.max() < 0.2

    # vhdr 1 does not have a Coordinates section
    raw2 = read_raw_brainvision(vhdr_path)
    assert raw2.info['dig'] is None


@testing.requires_testing_data
def test_brainvision_neuroone_export():
    """Test Brainvision file exported with neuroone system."""
    raw = read_raw_brainvision(neuroone_vhdr, verbose='error')
    assert raw.info['meas_date'] is None
    assert len(raw.info['chs']) == 65
    assert raw.info['sfreq'] == 5000.


@testing.requires_testing_data
def test_read_vmrk_annotations():
    """Test load brainvision annotations."""
    sfreq = 1000.0

    # Test vmrk file without annotations
    # delete=False is for Windows compatibility
    with open(vmrk_path) as myfile:
        head = [next(myfile) for x in range(6)]
    with NamedTemporaryFile(mode='w+', suffix='.vmrk', delete=False) as temp:
        for item in head:
            temp.write(item)
        temp.seek(0)
        read_annotations(temp.name, sfreq=sfreq)
    try:
        temp.close()
        unlink(temp.name)
    except IOError:
        pass


@testing.requires_testing_data
def test_read_vhdr_annotations_and_events():
    """Test load brainvision annotations and parse them to events."""
    sfreq = 1000.0
    expected_orig_time = 1384359243.794231
    expected_onset_latency = np.array(
        [0, 486., 496., 1769., 1779., 3252., 3262., 4935., 4945., 5999., 6619.,
         6629., 7629., 7699.]
    )
    expected_annot_description = [
        'New Segment/', 'Stimulus/S253', 'Stimulus/S255', 'Event/254',
        'Stimulus/S255', 'Event/254', 'Stimulus/S255', 'Stimulus/S253',
        'Stimulus/S255', 'Response/R255', 'Event/254', 'Stimulus/S255',
        'SyncStatus/Sync On', 'Optic/O  1'
    ]
    expected_events = np.stack([
        expected_onset_latency,
        np.zeros_like(expected_onset_latency),
        [99999, 253, 255, 254, 255, 254, 255, 253, 255, 1255, 254, 255, 99998,
         2001],
    ]).astype('int64').T
    expected_event_id = {'New Segment/': 99999, 'Stimulus/S253': 253,
                         'Stimulus/S255': 255, 'Event/254': 254,
                         'Response/R255': 1255, 'SyncStatus/Sync On': 99998,
                         'Optic/O  1': 2001}

    raw = read_raw_brainvision(vhdr_path, eog=eog)

    # validate annotations
    assert raw.annotations.orig_time == expected_orig_time
    assert_allclose(raw.annotations.onset, expected_onset_latency / sfreq)
    assert_array_equal(raw.annotations.description, expected_annot_description)

    # validate event extraction
    events, event_id = events_from_annotations(raw)
    assert_array_equal(events, expected_events)
    assert event_id == expected_event_id

    # validate that None gives us a sorted list
    expected_none_event_id = {desc: idx + 1 for idx, desc in enumerate(sorted(
        event_id.keys()))}
    events, event_id = events_from_annotations(raw, event_id=None)
    assert event_id == expected_none_event_id

    # Add some custom ones, plus a 2-digit one
    s_10 = 'Stimulus/S 10'
    raw.annotations.append([1, 2, 3], 10, ['ZZZ', s_10, 'YYY'])
    expected_event_id.update(YYY=10001, ZZZ=10002)  # others starting at 10001
    expected_event_id[s_10] = 10
    _, event_id = events_from_annotations(raw)
    assert event_id == expected_event_id

    # Concatenating two shouldn't change the resulting event_id
    # (BAD and EDGE should be ignored)
    with pytest.warns(RuntimeWarning, match='expanding outside'):
        raw_concat = concatenate_raws([raw.copy(), raw.copy()])
    _, event_id = events_from_annotations(raw_concat)
    assert event_id == expected_event_id


@testing.requires_testing_data
def test_automatic_vmrk_sfreq_recovery():
    """Test proper sfreq inference by checking the onsets."""
    assert_array_equal(read_annotations(vmrk_path, sfreq='auto'),
                       read_annotations(vmrk_path, sfreq=1000.0))


@testing.requires_testing_data
def test_event_id_stability_when_save_and_fif_reload(tmpdir):
    """Test load events from brainvision annotations when read_raw_fif."""
    fname = op.join(str(tmpdir), 'bv-raw.fif')
    raw = read_raw_brainvision(vhdr_path, eog=eog)
    original_events, original_event_id = events_from_annotations(raw)

    raw.save(fname)
    raw = read_raw_fif(fname)
    events, event_id = events_from_annotations(raw)

    assert event_id == original_event_id
    assert_array_equal(events, original_events)

run_tests_if_main()