File: test_ctf.py

package info (click to toggle)
python-mne 0.19.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 100,440 kB
  • sloc: python: 120,243; pascal: 1,861; makefile: 225; sh: 15
file content (375 lines) | stat: -rw-r--r-- 17,551 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
# Authors: Eric Larson <larson.eric.d@gmail.com>
#
# License: BSD (3-clause)

import copy
import os
from os import path as op
import shutil

import numpy as np
from numpy import array_equal
from numpy.testing import assert_allclose, assert_array_equal
import pytest

from mne import (pick_types, read_annotations, create_info,
                 events_from_annotations)
from mne.transforms import apply_trans
from mne.io import read_raw_fif, read_raw_ctf, RawArray
from mne.io.compensator import get_current_comp
from mne.io.tests.test_raw import _test_raw_reader
from mne.tests.test_annotations import _assert_annotations_equal
from mne.utils import run_tests_if_main, _clean_names, catch_logging
from mne.datasets import testing, spm_face, brainstorm
from mne.io.constants import FIFF

ctf_dir = op.join(testing.data_path(download=False), 'CTF')
ctf_fname_continuous = 'testdata_ctf.ds'
ctf_fname_1_trial = 'testdata_ctf_short.ds'
ctf_fname_2_trials = 'testdata_ctf_pseudocontinuous.ds'
ctf_fname_discont = 'testdata_ctf_short_discontinuous.ds'
ctf_fname_somato = 'somMDYO-18av.ds'
ctf_fname_catch = 'catch-alp-good-f.ds'
somato_fname = op.join(
    brainstorm.bst_raw.data_path(download=False), 'MEG', 'bst_raw',
    'subj001_somatosensory_20111109_01_AUX-f.ds'
)

block_sizes = {
    ctf_fname_continuous: 12000,
    ctf_fname_1_trial: 4801,
    ctf_fname_2_trials: 12000,
    ctf_fname_discont: 1201,
    ctf_fname_somato: 313,
    ctf_fname_catch: 2500,
}
single_trials = (
    ctf_fname_continuous,
    ctf_fname_1_trial,
)

ctf_fnames = tuple(sorted(block_sizes.keys()))


@pytest.mark.slowtest
@testing.requires_testing_data
def test_read_ctf(tmpdir):
    """Test CTF reader."""
    temp_dir = str(tmpdir)
    out_fname = op.join(temp_dir, 'test_py_raw.fif')

    # Create a dummy .eeg file so we can test our reading/application of it
    os.mkdir(op.join(temp_dir, 'randpos'))
    ctf_eeg_fname = op.join(temp_dir, 'randpos', ctf_fname_catch)
    shutil.copytree(op.join(ctf_dir, ctf_fname_catch), ctf_eeg_fname)
    with pytest.warns(RuntimeWarning, match='RMSP .* changed to a MISC ch'):
        raw = _test_raw_reader(read_raw_ctf, directory=ctf_eeg_fname)
    picks = pick_types(raw.info, meg=False, eeg=True)
    pos = np.random.RandomState(42).randn(len(picks), 3)
    fake_eeg_fname = op.join(ctf_eeg_fname, 'catch-alp-good-f.eeg')
    # Create a bad file
    with open(fake_eeg_fname, 'wb') as fid:
        fid.write('foo\n'.encode('ascii'))
    pytest.raises(RuntimeError, read_raw_ctf, ctf_eeg_fname)
    # Create a good file
    with open(fake_eeg_fname, 'wb') as fid:
        for ii, ch_num in enumerate(picks):
            args = (str(ch_num + 1), raw.ch_names[ch_num],) + tuple(
                '%0.5f' % x for x in 100 * pos[ii])  # convert to cm
            fid.write(('\t'.join(args) + '\n').encode('ascii'))
    pos_read_old = np.array([raw.info['chs'][p]['loc'][:3] for p in picks])
    with pytest.warns(RuntimeWarning, match='RMSP .* changed to a MISC ch'):
        raw = read_raw_ctf(ctf_eeg_fname)  # read modified data
    pos_read = np.array([raw.info['chs'][p]['loc'][:3] for p in picks])
    assert_allclose(apply_trans(raw.info['ctf_head_t'], pos), pos_read,
                    rtol=1e-5, atol=1e-5)
    assert (pos_read == pos_read_old).mean() < 0.1
    shutil.copy(op.join(ctf_dir, 'catch-alp-good-f.ds_randpos_raw.fif'),
                op.join(temp_dir, 'randpos', 'catch-alp-good-f.ds_raw.fif'))

    # Create a version with no hc, starting out *with* EEG pos (error)
    os.mkdir(op.join(temp_dir, 'nohc'))
    ctf_no_hc_fname = op.join(temp_dir, 'no_hc', ctf_fname_catch)
    shutil.copytree(ctf_eeg_fname, ctf_no_hc_fname)
    remove_base = op.join(ctf_no_hc_fname, op.basename(ctf_fname_catch[:-3]))
    os.remove(remove_base + '.hc')
    with pytest.warns(RuntimeWarning, match='MISC channel'):
        pytest.raises(RuntimeError, read_raw_ctf, ctf_no_hc_fname)
    os.remove(remove_base + '.eeg')
    shutil.copy(op.join(ctf_dir, 'catch-alp-good-f.ds_nohc_raw.fif'),
                op.join(temp_dir, 'no_hc', 'catch-alp-good-f.ds_raw.fif'))

    # All our files
    use_fnames = [op.join(ctf_dir, c) for c in ctf_fnames]
    for fname in use_fnames:
        raw_c = read_raw_fif(fname + '_raw.fif', preload=True)
        with pytest.warns(None):  # sometimes matches "MISC channel"
            raw = read_raw_ctf(fname)

        # check info match
        assert_array_equal(raw.ch_names, raw_c.ch_names)
        assert_allclose(raw.times, raw_c.times)
        assert_allclose(raw._cals, raw_c._cals)
        assert (raw.info['meas_id']['version'] ==
                raw_c.info['meas_id']['version'] + 1)
        for t in ('dev_head_t', 'dev_ctf_t', 'ctf_head_t'):
            assert_allclose(raw.info[t]['trans'], raw_c.info[t]['trans'],
                            rtol=1e-4, atol=1e-7)
        for key in ('acq_pars', 'acq_stim', 'bads',
                    'ch_names', 'custom_ref_applied', 'description',
                    'events', 'experimenter', 'highpass', 'line_freq',
                    'lowpass', 'nchan', 'proj_id', 'proj_name',
                    'projs', 'sfreq', 'subject_info'):
            assert raw.info[key] == raw_c.info[key], key
        if op.basename(fname) not in single_trials:
            # We don't force buffer size to be smaller like MNE-C
            assert raw.buffer_size_sec == raw_c.buffer_size_sec
        assert len(raw.info['comps']) == len(raw_c.info['comps'])
        for c1, c2 in zip(raw.info['comps'], raw_c.info['comps']):
            for key in ('colcals', 'rowcals'):
                assert_allclose(c1[key], c2[key])
            assert c1['save_calibrated'] == c2['save_calibrated']
            for key in ('row_names', 'col_names', 'nrow', 'ncol'):
                assert_array_equal(c1['data'][key], c2['data'][key])
            assert_allclose(c1['data']['data'], c2['data']['data'], atol=1e-7,
                            rtol=1e-5)
        assert_allclose(raw.info['hpi_results'][0]['coord_trans']['trans'],
                        raw_c.info['hpi_results'][0]['coord_trans']['trans'],
                        rtol=1e-5, atol=1e-7)
        assert len(raw.info['chs']) == len(raw_c.info['chs'])
        for ii, (c1, c2) in enumerate(zip(raw.info['chs'], raw_c.info['chs'])):
            for key in ('kind', 'scanno', 'unit', 'ch_name', 'unit_mul',
                        'range', 'coord_frame', 'coil_type', 'logno'):
                if c1['ch_name'] == 'RMSP' and \
                        'catch-alp-good-f' in fname and \
                        key in ('kind', 'unit', 'coord_frame', 'coil_type',
                                'logno'):
                    continue  # XXX see below...
                assert c1[key] == c2[key], key
            for key in ('cal',):
                assert_allclose(c1[key], c2[key], atol=1e-6, rtol=1e-4,
                                err_msg='raw.info["chs"][%d][%s]' % (ii, key))
            # XXX 2016/02/24: fixed bug with normal computation that used
            # to exist, once mne-C tools are updated we should update our FIF
            # conversion files, then the slices can go away (and the check
            # can be combined with that for "cal")
            for key in ('loc',):
                if c1['ch_name'] == 'RMSP' and 'catch-alp-good-f' in fname:
                    continue
                if (c2[key][:3] == 0.).all():
                    check = [np.nan] * 3
                else:
                    check = c2[key][:3]
                assert_allclose(c1[key][:3], check, atol=1e-6, rtol=1e-4,
                                err_msg='raw.info["chs"][%d][%s]' % (ii, key))
                if (c2[key][3:] == 0.).all():
                    check = [np.nan] * 3
                else:
                    check = c2[key][9:12]
                assert_allclose(c1[key][9:12], check, atol=1e-6, rtol=1e-4,
                                err_msg='raw.info["chs"][%d][%s]' % (ii, key))

        # Make sure all digitization points are in the MNE head coord frame
        for p in raw.info['dig']:
            assert p['coord_frame'] == FIFF.FIFFV_COORD_HEAD, \
                'dig points must be in FIFF.FIFFV_COORD_HEAD'

        if fname.endswith('catch-alp-good-f.ds'):  # omit points from .pos file
            raw.info['dig'] = raw.info['dig'][:-10]

        # XXX: Next test would fail because c-tools assign the fiducials from
        # CTF data as HPI. Should eventually clarify/unify with Matti.
        # assert_dig_allclose(raw.info, raw_c.info)

        # check data match
        raw_c.save(out_fname, overwrite=True, buffer_size_sec=1.)
        raw_read = read_raw_fif(out_fname)

        # so let's check tricky cases based on sample boundaries
        rng = np.random.RandomState(0)
        pick_ch = rng.permutation(np.arange(len(raw.ch_names)))[:10]
        bnd = int(round(raw.info['sfreq'] * raw.buffer_size_sec))
        assert bnd == raw._raw_extras[0]['block_size']
        assert bnd == block_sizes[op.basename(fname)]
        slices = (slice(0, bnd), slice(bnd - 1, bnd), slice(3, bnd),
                  slice(3, 300), slice(None))
        if len(raw.times) >= 2 * bnd:  # at least two complete blocks
            slices = slices + (slice(bnd, 2 * bnd), slice(bnd, bnd + 1),
                               slice(0, bnd + 100))
        for sl_time in slices:
            assert_allclose(raw[pick_ch, sl_time][0],
                            raw_c[pick_ch, sl_time][0])
            assert_allclose(raw_read[pick_ch, sl_time][0],
                            raw_c[pick_ch, sl_time][0])
        # all data / preload
        with pytest.warns(None):  # sometimes MISC
            raw = read_raw_ctf(fname, preload=True)
        assert_allclose(raw[:][0], raw_c[:][0], atol=1e-15)
        # test bad segment annotations
        if 'testdata_ctf_short.ds' in fname:
            assert 'bad' in raw.annotations.description[0]
            assert_allclose(raw.annotations.onset, [2.15])
            assert_allclose(raw.annotations.duration, [0.0225])

    pytest.raises(TypeError, read_raw_ctf, 1)
    pytest.raises(ValueError, read_raw_ctf, ctf_fname_continuous + 'foo.ds')
    # test ignoring of system clock
    read_raw_ctf(op.join(ctf_dir, ctf_fname_continuous), 'ignore')
    pytest.raises(ValueError, read_raw_ctf,
                  op.join(ctf_dir, ctf_fname_continuous), 'foo')


@testing.requires_testing_data
def test_rawctf_clean_names():
    """Test RawCTF _clean_names method."""
    # read test data
    with pytest.warns(RuntimeWarning, match='ref channel RMSP did not'):
        raw = read_raw_ctf(op.join(ctf_dir, ctf_fname_catch))
        raw_cleaned = read_raw_ctf(op.join(ctf_dir, ctf_fname_catch),
                                   clean_names=True)
    test_channel_names = _clean_names(raw.ch_names)
    test_info_comps = copy.deepcopy(raw.info['comps'])

    # channel names should not be cleaned by default
    assert raw.ch_names != test_channel_names

    chs_ch_names = [ch['ch_name'] for ch in raw.info['chs']]

    assert chs_ch_names != test_channel_names

    for test_comp, comp in zip(test_info_comps, raw.info['comps']):
        for key in ('row_names', 'col_names'):
            assert not array_equal(_clean_names(test_comp['data'][key]),
                                   comp['data'][key])

    # channel names should be cleaned if clean_names=True
    assert raw_cleaned.ch_names == test_channel_names

    for ch, test_ch_name in zip(raw_cleaned.info['chs'], test_channel_names):
        assert ch['ch_name'] == test_ch_name

    for test_comp, comp in zip(test_info_comps, raw_cleaned.info['comps']):
        for key in ('row_names', 'col_names'):
            assert _clean_names(test_comp['data'][key]) == comp['data'][key]


@spm_face.requires_spm_data
def test_read_spm_ctf():
    """Test CTF reader with omitted samples."""
    data_path = spm_face.data_path()
    raw_fname = op.join(data_path, 'MEG', 'spm',
                        'SPM_CTF_MEG_example_faces1_3D.ds')
    raw = read_raw_ctf(raw_fname)
    extras = raw._raw_extras[0]
    assert extras['n_samp'] == raw.n_times
    assert extras['n_samp'] != extras['n_samp_tot']

    # Test that LPA, nasion and RPA are correct.
    coord_frames = np.array([d['coord_frame'] for d in raw.info['dig']])
    assert np.all(coord_frames == FIFF.FIFFV_COORD_HEAD)
    cardinals = {d['ident']: d['r'] for d in raw.info['dig']}
    assert cardinals[1][0] < cardinals[2][0] < cardinals[3][0]  # x coord
    assert cardinals[1][1] < cardinals[2][1]  # y coord
    assert cardinals[3][1] < cardinals[2][1]  # y coord
    for key in cardinals.keys():
        assert_allclose(cardinals[key][2], 0, atol=1e-6)  # z coord


@testing.requires_testing_data
@pytest.mark.parametrize('comp_grade', [0, 1])
def test_saving_picked(tmpdir, comp_grade):
    """Test saving picked CTF instances."""
    temp_dir = str(tmpdir)
    out_fname = op.join(temp_dir, 'test_py_raw.fif')
    raw = read_raw_ctf(op.join(ctf_dir, ctf_fname_1_trial))
    raw.crop(0, 1).load_data()
    assert raw.compensation_grade == get_current_comp(raw.info) == 0
    assert len(raw.info['comps']) == 5
    pick_kwargs = dict(meg=True, ref_meg=False, verbose=True)

    raw.apply_gradient_compensation(comp_grade)
    with catch_logging() as log:
        raw_pick = raw.copy().pick_types(**pick_kwargs)
    assert len(raw.info['comps']) == 5
    assert len(raw_pick.info['comps']) == 0
    log = log.getvalue()
    assert 'Removing 5 compensators' in log
    raw_pick.save(out_fname, overwrite=True)  # should work
    raw2 = read_raw_fif(out_fname)
    assert (raw_pick.ch_names == raw2.ch_names)
    assert_array_equal(raw_pick.times, raw2.times)
    assert_allclose(raw2[0:20][0], raw_pick[0:20][0], rtol=1e-6,
                    atol=1e-20)  # atol is very small but > 0

    raw2 = read_raw_fif(out_fname, preload=True)
    assert (raw_pick.ch_names == raw2.ch_names)
    assert_array_equal(raw_pick.times, raw2.times)
    assert_allclose(raw2[0:20][0], raw_pick[0:20][0], rtol=1e-6,
                    atol=1e-20)  # atol is very small but > 0


@brainstorm.bst_raw.requires_bstraw_data
def test_read_ctf_annotations():
    """Test reading CTF marker file."""
    EXPECTED_LATENCIES = np.array([
         5640,   7950,   9990,  12253,  14171,  16557,  18896,  20846,  # noqa
        22702,  24990,  26830,  28974,  30906,  33077,  34985,  36907,  # noqa
        38922,  40760,  42881,  45222,  47457,  49618,  51802,  54227,  # noqa
        56171,  58274,  60394,  62375,  64444,  66767,  68827,  71109,  # noqa
        73499,  75807,  78146,  80415,  82554,  84508,  86403,  88426,  # noqa
        90746,  92893,  94779,  96822,  98996,  99001, 100949, 103325,  # noqa
       105322, 107678, 109667, 111844, 113682, 115817, 117691, 119663,  # noqa
       121966, 123831, 126110, 128490, 130521, 132808, 135204, 137210,  # noqa
       139130, 141390, 143660, 145748, 147889, 150205, 152528, 154646,  # noqa
       156897, 159191, 161446, 163722, 166077, 168467, 170624, 172519,  # noqa
       174719, 176886, 179062, 181405, 183709, 186034, 188454, 190330,  # noqa
       192660, 194682, 196834, 199161, 201035, 203008, 204999, 207409,  # noqa
       209661, 211895, 213957, 216005, 218040, 220178, 222137, 224305,  # noqa
       226297, 228654, 230755, 232909, 235205, 237373, 239723, 241762,  # noqa
       243748, 245762, 247801, 250055, 251886, 254252, 256441, 258354,  # noqa
       260680, 263026, 265048, 267073, 269235, 271556, 273927, 276197,  # noqa
       278436, 280536, 282691, 284933, 287061, 288936, 290941, 293183,  # noqa
       295369, 297729, 299626, 301546, 303449, 305548, 307882, 310124,  # noqa
       312374, 314509, 316815, 318789, 320981, 322879, 324878, 326959,  # noqa
       329341, 331200, 331201, 333469, 335584, 337984, 340143, 342034,  # noqa
       344360, 346309, 348544, 350970, 353052, 355227, 357449, 359603,  # noqa
       361725, 363676, 365735, 367799, 369777, 371904, 373856, 376204,  # noqa
       378391, 380800, 382859, 385161, 387093, 389434, 391624, 393785,  # noqa
       396093, 398214, 400198, 402166, 404104, 406047, 408372, 410686,  # noqa
       413029, 414975, 416850, 418797, 420824, 422959, 425026, 427215,  # noqa
       429278, 431668
    ]) - 1  # Fieldtrip has 1 sample difference with MNE

    raw = RawArray(
        data=np.empty((1, 432000), dtype=np.float64),
        info=create_info(ch_names=1, sfreq=1200.0)
    ).set_annotations(read_annotations(somato_fname))

    events, _ = events_from_annotations(raw)
    latencies = np.sort(events[:, 0])
    assert_array_equal(latencies, EXPECTED_LATENCIES)


@testing.requires_testing_data
def test_read_ctf_annotations_smoke_test():
    """Test reading CTF marker file.

    `testdata_ctf_mc.ds` has no trials or offsets therefore its a plain reading
    of whatever is in the MarkerFile.mrk.
    """
    EXPECTED_ONSET = [
        0., 0.1425, 0.285, 0.42833333, 0.57083333, 0.71416667, 0.85666667,
        0.99916667, 1.1425, 1.285, 1.4275, 1.57083333, 1.71333333, 1.85666667,
        1.99916667, 2.14166667, 2.285, 2.4275, 2.57083333, 2.71333333,
        2.85583333, 2.99916667, 3.14166667, 3.28416667, 3.4275, 3.57,
        3.71333333, 3.85583333, 3.99833333, 4.14166667, 4.28416667, 4.42666667,
        4.57, 4.7125, 4.85583333, 4.99833333
    ]
    fname = op.join(ctf_dir, 'testdata_ctf_mc.ds')
    annot = read_annotations(fname)
    assert_allclose(annot.onset, EXPECTED_ONSET)

    raw = read_raw_ctf(fname)
    _assert_annotations_equal(raw.annotations, annot)

run_tests_if_main()