1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
|
# -*- coding: UTF-8 -*-
#
# Authors: Dirk Gütlin <dirk.guetlin@stud.sbg.ac.at>
#
#
# License: BSD (3-clause)
import os.path as op
from collections import namedtuple
import re
import numpy as np
from ..base import BaseRaw
from ..meas_info import create_info
from ..utils import _read_segments_file, _mult_cal_one, warn
from ..constants import FIFF
from ...utils import check_fname, check_version, logger, verbose
from ...annotations import Annotations
FILE_EXTENSIONS = {"Curry 7": {"info": ".dap",
"data": ".dat",
"labels": ".rs3",
"events": ".cef"},
"Curry 8": {"info": ".cdt.dpa",
"data": ".cdt",
"labels": ".cdt.dpa",
"events": ".cdt.cef"}}
CHANTYPES = {"meg": "_MAG1", "eeg": "", "misc": "_OTHERS"}
FIFFV_CHANTYPES = {"meg": FIFF.FIFFV_MEG_CH, "eeg": FIFF.FIFFV_EEG_CH,
"misc": FIFF.FIFFV_MISC_CH}
SI_UNITS = dict(V=FIFF.FIFF_UNIT_V, T=FIFF.FIFF_UNIT_T)
SI_UNIT_SCALE = dict(c=1e-2, m=1e-3, u=1e-6, μ=1e-6, n=1e-9, p=1e-12, f=1e-15)
CurryFileStructure = namedtuple('CurryFileStructure',
'info, data, labels, events')
CurryParameters = namedtuple('CurryParameters',
'n_samples, sfreq, is_ascii, unit_dict')
def _get_curry_version(file_extension):
"""Check out the curry file version."""
return "Curry 8" if "cdt" in file_extension else "Curry 7"
def _get_curry_file_structure(fname, required=[]):
"""Store paths to a CurryFileStructure and check for required files."""
_msg = "The following required files cannot be found: {0}.\nPlease make " \
"sure all required files are located in the same directory as {1}."
# we don't use os.path.splitext to also handle extensions like .cdt.dpa
fname_base, ext = fname.split(".", maxsplit=1)
version = _get_curry_version(ext)
info = fname_base + FILE_EXTENSIONS[version]["info"]
data = fname_base + FILE_EXTENSIONS[version]["data"]
labels = fname_base + FILE_EXTENSIONS[version]["labels"]
events = fname_base + FILE_EXTENSIONS[version]["events"]
my_curry = CurryFileStructure(
info=info if op.isfile(info) else None,
data=data if op.isfile(data) else None,
labels=labels if op.isfile(labels) else None,
events=events if op.isfile(events) else None)
missing = [fname_base + FILE_EXTENSIONS[version][field]
for field in required if getattr(my_curry, field) is None]
if missing:
raise FileNotFoundError(_msg.format(np.unique(missing), fname))
return my_curry
def _read_curry_lines(fname, regex_list):
"""Read through the lines of a curry parameter files and save data.
Parameters
----------
fname : str
Path to a curry file.
regex_list : list of str
A list of strings or regular expressions to search within the file.
Each element `regex` in `regex_list` must be formulated so that
`regex + " START_LIST"` initiates the start and `regex + " END_LIST"`
initiates the end of the elements that should be saved.
Returns
-------
data_dict : dict
A dictionary containing the extracted data. For each element `regex`
in `regex_list` a dictionary key `data_dict[regex]` is created, which
contains a list of the according data.
"""
save_lines = {}
data_dict = {}
for regex in regex_list:
save_lines[regex] = False
data_dict[regex] = []
with open(fname) as fid:
for line in fid:
for regex in regex_list:
if re.match(regex + " END_LIST", line):
save_lines[regex] = False
if save_lines[regex] and line != "\n":
result = line.replace("\n", "")
if "\t" in result:
result = result.split("\t")
data_dict[regex].append(result)
if re.match(regex + " START_LIST", line):
save_lines[regex] = True
return data_dict
def _read_curry_parameters(fname):
"""Extract Curry params from a Curry info file."""
_msg_match = "The sampling frequency and the time steps extracted from " \
"the parameter file do not match."
_msg_invalid = "sfreq must be greater than 0. Got sfreq = {0}"
var_names = ['NumSamples', 'SampleFreqHz',
'DataFormat', 'SampleTimeUsec',
'NUM_SAMPLES', 'SAMPLE_FREQ_HZ',
'DATA_FORMAT', 'SAMPLE_TIME_USEC']
param_dict = dict()
unit_dict = dict()
with open(fname) as fid:
for line in iter(fid):
if any(var_name in line for var_name in var_names):
key, val = line.replace(" ", "").replace("\n", "").split("=")
param_dict[key.lower().replace("_", "")] = val
for type in CHANTYPES:
if "DEVICE_PARAMETERS" + CHANTYPES[type] + " START" in line:
data_unit = next(fid)
unit_dict[type] = data_unit.replace(" ", "") \
.replace("\n", "").split("=")[-1]
n_samples = int(param_dict["numsamples"])
sfreq = float(param_dict["samplefreqhz"])
time_step = float(param_dict["sampletimeusec"]) * 1e-6
is_ascii = param_dict["dataformat"] == "ASCII"
if time_step == 0:
true_sfreq = sfreq
elif sfreq == 0:
true_sfreq = 1 / time_step
elif not np.isclose(sfreq, 1 / time_step):
raise ValueError(_msg_match)
else: # they're equal and != 0
true_sfreq = sfreq
if true_sfreq <= 0:
raise ValueError(_msg_invalid.format(true_sfreq))
return CurryParameters(n_samples, true_sfreq, is_ascii, unit_dict)
def _read_curry_info(info_fname, label_fname):
"""Extract info from curry parameter files."""
curry_params = _read_curry_parameters(info_fname)
# read labels from label files
labels = _read_curry_lines(label_fname,
["LABELS" + CHANTYPES[key] for key in
["meg", "eeg", "misc"]])
sensors = _read_curry_lines(label_fname,
["SENSORS" + CHANTYPES[key] for key in
["meg", "eeg", "misc"]])
all_chans = list()
for key in ["meg", "eeg", "misc"]:
for ind, chan in enumerate(labels["LABELS" + CHANTYPES[key]]):
ch = {"ch_name": chan,
"unit": curry_params.unit_dict[key],
"kind": FIFFV_CHANTYPES[key]}
if key in ("meg", "eeg"):
loc = sensors["SENSORS" + CHANTYPES[key]][ind]
ch["loc"] = np.array(loc, dtype=float)
all_chans.append(ch)
ch_names = [chan["ch_name"] for chan in all_chans]
info = create_info(ch_names, curry_params.sfreq)
for ind, ch_dict in enumerate(info["chs"]):
ch_dict["kind"] = all_chans[ind]["kind"]
ch_dict['unit'] = SI_UNITS[all_chans[ind]['unit'][1]]
ch_dict['cal'] = SI_UNIT_SCALE[all_chans[ind]['unit'][0]]
if ch_dict["kind"] in (FIFF.FIFFV_MEG_CH,
FIFF.FIFFV_EEG_CH):
ch_dict["loc"] = all_chans[ind]["loc"]
return info, curry_params.n_samples, curry_params.is_ascii
def _read_events_curry(fname):
"""Read events from Curry event files.
Parameters
----------
fname : str
Path to a curry event file with extensions .cef, .ceo,
.cdt.cef, or .cdt.ceo
Returns
-------
events : ndarray, shape (n_events, 3)
The array of events.
"""
check_fname(fname, 'curry event', ('.cef', '.cdt.cef'),
endings_err=('.cef', '.cdt.cef'))
events_dict = _read_curry_lines(fname, ["NUMBER_LIST"])
# The first 3 column seem to contain the event information
curry_events = np.array(events_dict["NUMBER_LIST"], dtype=int)[:, 0:3]
return curry_events
def _read_annotations_curry(fname, sfreq='auto'):
r"""Read events from Curry event files.
Parameters
----------
fname : str
The filename.
sfreq : float | 'auto'
The sampling frequency in the file. If set to 'auto' then the
``sfreq`` is taken from the respective info file of the same name with
according file extension (\*.dap for Curry 7; \*.cdt.dpa for Curry8).
So data.cef looks in data.dap and data.cdt.cef looks in data.cdt.dpa.
Returns
-------
annot : instance of Annotations | None
The annotations.
"""
required = ["events", "info"] if sfreq == 'auto' else ["events"]
curry_paths = _get_curry_file_structure(fname, required)
events = _read_events_curry(curry_paths.events)
if sfreq == 'auto':
sfreq = _read_curry_parameters(curry_paths.info).sfreq
onset = events[:, 0] / sfreq
duration = np.zeros(events.shape[0])
description = events[:, 2]
return Annotations(onset, duration, description)
@verbose
def read_raw_curry(fname, preload=False, verbose=None):
"""Read raw data from Curry files.
Parameters
----------
fname : str
Path to a curry file with extensions .dat, .dap, .rs3, .cdt, cdt.dpa,
.cdt.cef or .cef.
%(preload)s
%(verbose)s
Returns
-------
raw : instance of RawCurry
A Raw object containing Curry data.
"""
return RawCurry(fname, preload, verbose)
class RawCurry(BaseRaw):
"""Raw object from Curry file.
Parameters
----------
fname : str
Path to a curry file with extensions .dat, .dap, .rs3, .cdt, cdt.dpa,
.cdt.cef or .cef.
%(preload)s
%(verbose)s
See Also
--------
mne.io.Raw : Documentation of attribute and methods.
"""
@verbose
def __init__(self, fname, preload=False, verbose=None):
curry_paths = _get_curry_file_structure(fname, required=["info",
"data",
"labels"])
data_fname = op.abspath(curry_paths.data)
info, n_samples, is_ascii = _read_curry_info(curry_paths.info,
curry_paths.labels)
last_samps = [n_samples - 1]
self._is_ascii = is_ascii
super(RawCurry, self).__init__(
info, preload, filenames=[data_fname], last_samps=last_samps,
orig_format='int', verbose=verbose)
if curry_paths.events is not None:
logger.info('Event file found. Extracting Annotations from'
' %s...' % curry_paths.events)
annots = _read_annotations_curry(curry_paths.events,
sfreq=self.info["sfreq"])
self.set_annotations(annots)
else:
logger.info('Event file not found. No Annotations set.')
def _read_segment_file(self, data, idx, fi, start, stop, cals, mult):
"""Read a chunk of raw data."""
if self._is_ascii:
ch_idx = range(0, len(self.ch_names))
if check_version("numpy", "1.16.0"):
block = np.loadtxt(self.filenames[0],
skiprows=start,
usecols=ch_idx[idx],
max_rows=stop - start).T
else:
warn("Data reading might take longer for ASCII files. Update "
"numpy to version 1.16.0 or greater for more efficient "
"data reading.")
block = np.loadtxt(self.filenames[0],
skiprows=start,
usecols=ch_idx[idx]).T
block = block[:, :stop - start]
data_view = data[:, :block.shape[1]]
_mult_cal_one(data_view, block, idx, cals, mult)
else:
_read_segments_file(self, data, idx, fi, start, stop, cals,
mult, dtype="<f4")
|