File: edf.py

package info (click to toggle)
python-mne 0.19.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 100,440 kB
  • sloc: python: 120,243; pascal: 1,861; makefile: 225; sh: 15
file content (1387 lines) | stat: -rw-r--r-- 58,691 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
# -*- coding: utf-8 -*-
"""Reading tools from EDF, EDF+, BDF, and GDF."""

# Authors: Teon Brooks <teon.brooks@gmail.com>
#          Martin Billinger <martin.billinger@tugraz.at>
#          Nicolas Barascud <nicolas.barascud@ens.fr>
#          Stefan Appelhoff <stefan.appelhoff@mailbox.org>
#          Joan Massich <mailsik@gmail.com>
#          Clemens Brunner <clemens.brunner@gmail.com>
#
# License: BSD (3-clause)

import calendar
import datetime
import os
import re

import numpy as np

from ...utils import verbose, logger, warn
from ..utils import _blk_read_lims, _deprecate_montage
from ..base import BaseRaw
from ..meas_info import _empty_info, _unique_channel_names, DATE_NONE
from ..constants import FIFF
from ...filter import resample
from ...utils import fill_doc
from ...annotations import Annotations


@fill_doc
class RawEDF(BaseRaw):
    """Raw object from EDF, EDF+ or BDF file.

    Parameters
    ----------
    input_fname : str
        Path to the EDF, EDF+ or BDF file.
    %(montage_deprecated)s
    eog : list or tuple
        Names of channels or list of indices that should be designated EOG
        channels. Values should correspond to the electrodes in the file.
        Default is None.
    misc : list or tuple
        Names of channels or list of indices that should be designated MISC
        channels. Values should correspond to the electrodes in the file.
        Default is None.
    stim_channel : 'auto' | str | list of str | int | list of int
        Defaults to 'auto', which means that channels named 'status' or
        'trigger' (case insensitive) are set to STIM. If str (or list of str),
        all channels matching the name(s) are set to STIM. If int (or list of
        ints), the channels corresponding to the indices are set to STIM.

        .. warning:: 0.18 does not allow for stim channel synthesis from TAL
                     channels called 'EDF Annotations' or 'BDF Annotations'
                     anymore. Instead, TAL channels are parsed and extracted
                     annotations are stored in raw.annotations. Use
                     :func:`mne.events_from_annotations` to obtain events from
                     these annotations.

    exclude : list of str
        Channel names to exclude. This can help when reading data with
        different sampling rates to avoid unnecessary resampling.
    %(preload)s
    %(verbose)s

    Notes
    -----
    Biosemi devices trigger codes are encoded in 16-bit format, whereas system
    codes (CMS in/out-of range, battery low, etc.) are coded in bits 16-23 of
    the status channel (see http://www.biosemi.com/faq/trigger_signals.htm).
    To retrieve correct event values (bits 1-16), one could do:

        >>> events = mne.find_events(...)  # doctest:+SKIP
        >>> events[:, 2] &= (2**16 - 1)  # doctest:+SKIP

    The above operation can be carried out directly in :func:`mne.find_events`
    using the ``mask`` and ``mask_type`` parameters (see
    :func:`mne.find_events` for more details).

    It is also possible to retrieve system codes, but no particular effort has
    been made to decode these in MNE. In case it is necessary, for instance to
    check the CMS bit, the following operation can be carried out:

        >>> cms_bit = 20  # doctest:+SKIP
        >>> cms_high = (events[:, 2] & (1 << cms_bit)) != 0  # doctest:+SKIP

    It is worth noting that in some special cases, it may be necessary to shift
    event values in order to retrieve correct event triggers. This depends on
    the triggering device used to perform the synchronization. For instance, in
    some files events need to be shifted by 8 bits:

        >>> events[:, 2] >>= 8  # doctest:+SKIP

    TAL channels called 'EDF Annotations' or 'BDF Annotations' are parsed and
    extracted annotations are stored in raw.annotations. Use
    :func:`mne.events_from_annotations` to obtain events from these
    annotations.

    If channels named 'status' or 'trigger' are present, they are considered as
    STIM channels by default. Use func:`mne.find_events` to parse events
    encoded in such analog stim channels.

    See Also
    --------
    mne.io.Raw : Documentation of attributes and methods.
    mne.io.read_raw_edf : Recommended way to read EDF/EDF+ files.
    mne.io.read_raw_bdf : Recommended way to read BDF files.
    """

    @verbose
    def __init__(self, input_fname, montage, eog=None, misc=None,
                 stim_channel='auto', exclude=(), preload=False, verbose=None):
        logger.info('Extracting EDF parameters from {}...'.format(input_fname))
        input_fname = os.path.abspath(input_fname)
        info, edf_info, orig_units = _get_info(input_fname,
                                               stim_channel, eog, misc,
                                               exclude, preload)
        logger.info('Creating raw.info structure...')

        # Raw attributes
        last_samps = [edf_info['nsamples'] - 1]
        super().__init__(info, preload, filenames=[input_fname],
                         raw_extras=[edf_info], last_samps=last_samps,
                         orig_format='int', orig_units=orig_units,
                         verbose=verbose)

        # Read annotations from file and set it
        onset, duration, desc = list(), list(), list()
        if len(edf_info['tal_idx']) > 0:
            # Read TAL data exploiting the header info (no regexp)
            tal_data = self._read_segment_file([], [], 0, 0, int(self.n_times),
                                               None, None)
            onset, duration, desc = _read_annotations_edf(tal_data[0])

        self.set_annotations(Annotations(onset=onset, duration=duration,
                                         description=desc, orig_time=None))

        _deprecate_montage(self, "read_raw_edf", montage)

    @verbose
    def _read_segment_file(self, data, idx, fi, start, stop, cals, mult):
        """Read a chunk of raw data."""
        return _read_segment_file(data, idx, fi, start, stop,
                                  self._raw_extras[fi], self.info['chs'],
                                  self._filenames[fi])


@fill_doc
class RawGDF(BaseRaw):
    """Raw object from GDF file.

    Parameters
    ----------
    input_fname : str
        Path to the GDF file.
    %(montage_deprecated)s
    eog : list or tuple
        Names of channels or list of indices that should be designated EOG
        channels. Values should correspond to the electrodes in the file.
        Default is None.
    misc : list or tuple
        Names of channels or list of indices that should be designated MISC
        channels. Values should correspond to the electrodes in the file.
        Default is None.
    stim_channel : 'auto' | str | list of str | int | list of int
        Defaults to 'auto', which means that channels named 'status' or
        'trigger' (case insensitive) are set to STIM. If str (or list of str),
        all channels matching the name(s) are set to STIM. If int (or list of
        ints), channels corresponding to the indices are set to STIM.
    exclude : list of str
        Channel names to exclude. This can help when reading data with
        different sampling rates to avoid unnecessary resampling.
    %(preload)s
    %(verbose)s

    Notes
    -----
    If channels named 'status' or 'trigger' are present, they are considered as
    STIM channels by default. Use func:`mne.find_events` to parse events
    encoded in such analog stim channels.

    See Also
    --------
    mne.io.Raw : Documentation of attributes and methods.
    mne.io.read_raw_gdf : Recommended way to read GDF files.
    """

    @verbose
    def __init__(self, input_fname, montage, eog=None, misc=None,
                 stim_channel='auto', exclude=(), preload=False, verbose=None):
        logger.info('Extracting EDF parameters from {}...'.format(input_fname))
        input_fname = os.path.abspath(input_fname)
        info, edf_info, orig_units = _get_info(input_fname,
                                               stim_channel, eog, misc,
                                               exclude, preload)
        logger.info('Creating raw.info structure...')

        # Raw attributes
        last_samps = [edf_info['nsamples'] - 1]
        super().__init__(info, preload, filenames=[input_fname],
                         raw_extras=[edf_info], last_samps=last_samps,
                         orig_format='int', orig_units=orig_units,
                         verbose=verbose)

        # Read annotations from file and set it
        onset, duration, desc = _get_annotations_gdf(edf_info,
                                                     self.info['sfreq'])

        self.set_annotations(Annotations(onset=onset, duration=duration,
                                         description=desc, orig_time=None))

        _deprecate_montage(self, "read_raw_gdf", montage)

    @verbose
    def _read_segment_file(self, data, idx, fi, start, stop, cals, mult):
        """Read a chunk of raw data."""
        return _read_segment_file(data, idx, fi, start, stop,
                                  self._raw_extras[fi], self.info['chs'],
                                  self._filenames[fi])


def _read_ch(fid, subtype, samp, dtype_byte, dtype=None):
    """Read a number of samples for a single channel."""
    # BDF
    if subtype == 'bdf':
        ch_data = np.fromfile(fid, dtype=dtype, count=samp * dtype_byte)
        ch_data = ch_data.reshape(-1, 3).astype(np.int32)
        ch_data = ((ch_data[:, 0]) +
                   (ch_data[:, 1] << 8) +
                   (ch_data[:, 2] << 16))
        # 24th bit determines the sign
        ch_data[ch_data >= (1 << 23)] -= (1 << 24)

    # GDF data and EDF data
    else:
        ch_data = np.fromfile(fid, dtype=dtype, count=samp)

    return ch_data


def _read_segment_file(data, idx, fi, start, stop, raw_extras, chs, filenames):
    """Read a chunk of raw data."""
    from scipy.interpolate import interp1d

    n_samps = raw_extras['n_samps']
    buf_len = int(raw_extras['max_samp'])
    dtype = raw_extras['dtype_np']
    dtype_byte = raw_extras['dtype_byte']
    data_offset = raw_extras['data_offset']
    stim_channel = raw_extras['stim_channel']
    orig_sel = raw_extras['sel']
    tal_idx = raw_extras.get('tal_idx', [])
    subtype = raw_extras['subtype']

    # gain constructor
    physical_range = np.array([ch['range'] for ch in chs])
    cal = np.array([ch['cal'] for ch in chs])
    cal = np.atleast_2d(physical_range / cal)  # physical / digital
    gains = np.atleast_2d(raw_extras['units'])

    # physical dimension in uV
    physical_min = raw_extras['physical_min']
    digital_min = raw_extras['digital_min']

    offsets = np.atleast_2d(physical_min - (digital_min * cal)).T
    this_sel = orig_sel[idx]
    if len(tal_idx):
        this_sel = np.concatenate([this_sel, tal_idx])
    tal_data = []

    # We could read this one EDF block at a time, which would be this:
    ch_offsets = np.cumsum(np.concatenate([[0], n_samps]), dtype=np.int64)
    block_start_idx, r_lims, d_lims = _blk_read_lims(start, stop, buf_len)
    # But to speed it up, we really need to read multiple blocks at once,
    # Otherwise we can end up with e.g. 18,181 chunks for a 20 MB file!
    # Let's do ~10 MB chunks:
    n_per = max(10 * 1024 * 1024 // (ch_offsets[-1] * dtype_byte), 1)
    with open(filenames, 'rb', buffering=0) as fid:

        # Extract data
        start_offset = (data_offset +
                        block_start_idx * ch_offsets[-1] * dtype_byte)
        for ai in range(0, len(r_lims), n_per):
            block_offset = ai * ch_offsets[-1] * dtype_byte
            n_read = min(len(r_lims) - ai, n_per)
            fid.seek(start_offset + block_offset, 0)
            # Read and reshape to (n_chunks_read, ch0_ch1_ch2_ch3...)
            many_chunk = _read_ch(fid, subtype, ch_offsets[-1] * n_read,
                                  dtype_byte, dtype).reshape(n_read, -1)
            for ii, ci in enumerate(this_sel):
                # This now has size (n_chunks_read, n_samp[ci])
                ch_data = many_chunk[:, ch_offsets[ci]:ch_offsets[ci + 1]]

                if len(tal_idx) and ci == tal_idx[0]:
                    tal_data.append(ch_data)
                    continue

                r_sidx = r_lims[ai][0]
                r_eidx = (buf_len * (n_read - 1) +
                          r_lims[ai + n_read - 1][1])
                d_sidx = d_lims[ai][0]
                d_eidx = d_lims[ai + n_read - 1][1]
                if n_samps[ci] != buf_len:
                    if stim_channel is not None and ci in stim_channel:
                        # Stim channel will be interpolated
                        old = np.linspace(0, 1, n_samps[ci] + 1, True)
                        new = np.linspace(0, 1, buf_len, False)
                        ch_data = np.append(
                            ch_data, np.zeros((len(ch_data), 1)), -1)
                        ch_data = interp1d(old, ch_data,
                                           kind='zero', axis=-1)(new)
                    else:
                        # XXX resampling each chunk isn't great,
                        # it forces edge artifacts to appear at
                        # each buffer boundary :(
                        # it can also be very slow...
                        ch_data = resample(
                            ch_data.astype(np.float64), buf_len, n_samps[ci],
                            npad=0, axis=-1)
                assert ch_data.shape == (len(ch_data), buf_len)
                data[ii, d_sidx:d_eidx] = ch_data.ravel()[r_sidx:r_eidx]

    # only try to read the stim channel if it's not None and it's
    # actually one of the requested channels
    if stim_channel is None:  # avoid NumPy comparison to None
        stim_channel_idx = np.array([], int)
    else:
        _idx = np.arange(len(chs))[idx]  # slice -> ints
        stim_channel_idx = list()
        for stim_ch in stim_channel:
            stim_ch_idx = np.where(_idx == stim_ch)[0].tolist()
            if len(stim_ch_idx):
                stim_channel_idx.append(stim_ch_idx)
        stim_channel_idx = np.array(stim_channel_idx).ravel()

    if subtype == 'bdf' and len(stim_channel_idx) > 0:
        cal[0, stim_channel_idx] = 1
        offsets[stim_channel_idx, 0] = 0
        gains[0, stim_channel_idx] = 1
    data *= cal.T[idx]
    data += offsets[idx]
    data *= gains.T[idx]

    if stim_channel is not None and len(stim_channel_idx) > 0:
        stim = np.bitwise_and(data[stim_channel_idx].astype(int),
                              2**17 - 1)
        data[stim_channel_idx, :] = stim

    if len(tal_data) > 1:
        tal_data = np.concatenate([tal.ravel() for tal in tal_data])
        tal_data = tal_data[np.newaxis, :]
    return tal_data


def _read_header(fname, exclude):
    """Unify edf, bdf and gdf _read_header call.

    Parameters
    ----------
    fname : str
        Path to the EDF+, BDF, or GDF file.
    exclude : list of str
        Channel names to exclude. This can help when reading data with
        different sampling rates to avoid unnecessary resampling.

    Returns
    -------
    (edf_info, orig_units) : tuple
    """
    ext = os.path.splitext(fname)[1][1:].lower()
    logger.info('%s file detected' % ext.upper())
    if ext in ('bdf', 'edf'):
        return _read_edf_header(fname, exclude)
    elif ext in ('gdf'):
        return _read_gdf_header(fname, exclude), None
    else:
        raise NotImplementedError(
            'Only GDF, EDF, and BDF files are supported, got %s.' % ext)


def _get_info(fname, stim_channel, eog, misc, exclude, preload):
    """Extract all the information from the EDF+, BDF or GDF file."""
    eog = eog if eog is not None else []
    misc = misc if misc is not None else []

    edf_info, orig_units = _read_header(fname, exclude)

    # XXX: `tal_ch_names` to pass to `_check_stim_channel` should be computed
    #      from `edf_info['ch_names']` and `edf_info['tal_idx']` but 'tal_idx'
    #      contains stim channels that are not TAL.
    stim_ch_idxs, stim_ch_names = _check_stim_channel(stim_channel,
                                                      edf_info['ch_names'])

    sel = edf_info['sel']  # selection of channels not excluded
    ch_names = edf_info['ch_names']  # of length len(sel)
    n_samps = edf_info['n_samps'][sel]
    nchan = edf_info['nchan']
    physical_ranges = edf_info['physical_max'] - edf_info['physical_min']
    cals = edf_info['digital_max'] - edf_info['digital_min']
    bad_idx = np.where((~np.isfinite(cals)) | (cals == 0))[0]
    if len(bad_idx) > 0:
        warn('Scaling factor is not defined in following channels:\n' +
             ', '.join(ch_names[i] for i in bad_idx))
        cals[bad_idx] = 1
    bad_idx = np.where(physical_ranges == 0)[0]
    if len(bad_idx) > 0:
        warn('Physical range is not defined in following channels:\n' +
             ', '.join(ch_names[i] for i in bad_idx))
        physical_ranges[bad_idx] = 1

    # Creates a list of dicts of eeg channels for raw.info
    logger.info('Setting channel info structure...')
    chs = list()
    pick_mask = np.ones(len(ch_names))

    for idx, ch_info in enumerate(zip(ch_names, physical_ranges, cals)):
        ch_name, physical_range, cal = ch_info
        chan_info = {}
        logger.debug('  %s: range=%s cal=%s' % (ch_name, physical_range, cal))
        chan_info['cal'] = cal
        chan_info['logno'] = idx + 1
        chan_info['scanno'] = idx + 1
        chan_info['range'] = physical_range
        chan_info['unit_mul'] = 0.
        chan_info['ch_name'] = ch_name
        chan_info['unit'] = FIFF.FIFF_UNIT_V
        chan_info['coord_frame'] = FIFF.FIFFV_COORD_HEAD
        chan_info['coil_type'] = FIFF.FIFFV_COIL_EEG
        chan_info['kind'] = FIFF.FIFFV_EEG_CH
        chan_info['loc'] = np.zeros(12)
        if ch_name in eog or idx in eog or idx - nchan in eog:
            chan_info['coil_type'] = FIFF.FIFFV_COIL_NONE
            chan_info['kind'] = FIFF.FIFFV_EOG_CH
            pick_mask[idx] = False
        elif ch_name in misc or idx in misc or idx - nchan in misc:
            chan_info['coil_type'] = FIFF.FIFFV_COIL_NONE
            chan_info['kind'] = FIFF.FIFFV_MISC_CH
            pick_mask[idx] = False
        elif idx in stim_ch_idxs:
            chan_info['coil_type'] = FIFF.FIFFV_COIL_NONE
            chan_info['unit'] = FIFF.FIFF_UNIT_NONE
            chan_info['kind'] = FIFF.FIFFV_STIM_CH
            pick_mask[idx] = False
            chan_info['ch_name'] = ch_name
            ch_names[idx] = chan_info['ch_name']
            edf_info['units'][idx] = 1
        chs.append(chan_info)

    edf_info['stim_channel'] = stim_ch_idxs if len(stim_ch_idxs) else None

    if any(pick_mask):
        picks = [item for item, mask in zip(range(nchan), pick_mask) if mask]
        edf_info['max_samp'] = max_samp = n_samps[picks].max()
    else:
        edf_info['max_samp'] = max_samp = n_samps.max()

    # Info structure
    # -------------------------------------------------------------------------

    not_stim_ch = [x for x in range(n_samps.shape[0])
                   if x not in stim_ch_idxs]
    sfreq = np.take(n_samps, not_stim_ch).max() * \
        edf_info['record_length'][1] / edf_info['record_length'][0]
    info = _empty_info(sfreq)
    info['meas_date'] = edf_info['meas_date']
    info['chs'] = chs
    info['ch_names'] = ch_names

    # Filter settings
    highpass = edf_info['highpass']
    lowpass = edf_info['lowpass']
    if highpass.size == 0:
        pass
    elif all(highpass):
        if highpass[0] == 'NaN':
            pass  # Placeholder for future use. Highpass set in _empty_info.
        elif highpass[0] == 'DC':
            info['highpass'] = 0.
        else:
            hp = highpass[0]
            try:
                hp = float(hp)
            except Exception:
                hp = 0.
            info['highpass'] = hp
    else:
        info['highpass'] = float(np.max(highpass))
        warn('Channels contain different highpass filters. Highest filter '
             'setting will be stored.')
    if np.isnan(info['highpass']):
        info['highpass'] = 0.
    if lowpass.size == 0:
        pass  # Placeholder for future use. Lowpass set in _empty_info.
    elif all(lowpass):
        if lowpass[0] == 'NaN':
            pass  # Placeholder for future use. Lowpass set in _empty_info.
        else:
            info['lowpass'] = float(lowpass[0])
    else:
        info['lowpass'] = float(np.min(lowpass))
        warn('Channels contain different lowpass filters. Lowest filter '
             'setting will be stored.')
    if np.isnan(info['lowpass']):
        info['lowpass'] = info['sfreq'] / 2.

    # Some keys to be consistent with FIF measurement info
    info['description'] = None
    edf_info['nsamples'] = int(edf_info['n_records'] * max_samp)

    info._update_redundant()

    return info, edf_info, orig_units


def _read_edf_header(fname, exclude):
    """Read header information from EDF+ or BDF file."""
    edf_info = {'events': []}

    with open(fname, 'rb') as fid:

        fid.read(8)  # version (unused here)

        # patient ID
        pid = fid.read(80).decode('latin-1')
        pid = pid.split(' ', 2)
        patient = {}
        if len(pid) >= 2:
            patient['id'] = pid[0]
            patient['name'] = pid[1]

        # Recording ID
        meas_id = {}
        meas_id['recording_id'] = fid.read(80).decode().strip(' \x00')

        day, month, year = [int(x) for x in
                            re.findall(r'(\d+)', fid.read(8).decode())]
        hour, minute, sec = [int(x) for x in
                             re.findall(r'(\d+)', fid.read(8).decode())]
        century = 2000 if year < 50 else 1900
        date = datetime.datetime(year + century, month, day, hour, minute, sec)
        meas_date = (calendar.timegm(date.utctimetuple()), 0)

        header_nbytes = int(fid.read(8).decode())

        # The following 44 bytes sometimes identify the file type, but this is
        # not guaranteed. Therefore, we skip this field and use the file
        # extension to determine the subtype (EDF or BDF, which differ in the
        # number of bytes they use for the data records; EDF uses 2 bytes
        # whereas BDF uses 3 bytes).
        fid.read(44)
        subtype = os.path.splitext(fname)[1][1:].lower()

        n_records = int(fid.read(8).decode())
        record_length = fid.read(8).decode().strip('\x00').strip()
        record_length = np.array([float(record_length), 1.])  # in seconds
        if record_length[0] == 0:
            record_length = record_length[0] = 1.
            warn('Header information is incorrect for record length. Default '
                 'record length set to 1.')

        nchan = int(fid.read(4).decode())
        channels = list(range(nchan))
        ch_names = [fid.read(16).strip().decode('latin-1') for ch in channels]
        exclude = _find_exclude_idx(ch_names, exclude)
        tal_idx = _find_tal_idx(ch_names)
        exclude = np.concatenate([exclude, tal_idx])
        sel = np.setdiff1d(np.arange(len(ch_names)), exclude)
        for ch in channels:
            fid.read(80)  # transducer
        units = [fid.read(8).strip().decode('latin-1') for ch in channels]
        edf_info['units'] = list()
        for i, unit in enumerate(units):
            if i in exclude:
                continue
            if unit == 'uV':
                edf_info['units'].append(1e-6)
            elif unit == 'mV':
                edf_info['units'].append(1e-3)
            else:
                edf_info['units'].append(1)

        ch_names = [ch_names[idx] for idx in sel]
        units = [units[idx] for idx in sel]

        # make sure channel names are unique
        ch_names = _unique_channel_names(ch_names)
        orig_units = dict(zip(ch_names, units))

        physical_min = np.array([float(fid.read(8).decode())
                                 for ch in channels])[sel]
        physical_max = np.array([float(fid.read(8).decode())
                                 for ch in channels])[sel]
        digital_min = np.array([float(fid.read(8).decode())
                                for ch in channels])[sel]
        digital_max = np.array([float(fid.read(8).decode())
                                for ch in channels])[sel]
        prefiltering = [fid.read(80).decode().strip(' \x00')
                        for ch in channels][:-1]
        highpass = np.ravel([re.findall(r'HP:\s+(\w+)', filt)
                             for filt in prefiltering])
        lowpass = np.ravel([re.findall(r'LP:\s+(\w+)', filt)
                            for filt in prefiltering])

        # number of samples per record
        n_samps = np.array([int(fid.read(8).decode()) for ch
                            in channels])

        # Populate edf_info
        edf_info.update(
            ch_names=ch_names, data_offset=header_nbytes,
            digital_max=digital_max, digital_min=digital_min,
            highpass=highpass, sel=sel, lowpass=lowpass, meas_date=meas_date,
            n_records=n_records, n_samps=n_samps, nchan=nchan,
            subject_info=patient, physical_max=physical_max,
            physical_min=physical_min, record_length=record_length,
            subtype=subtype, tal_idx=tal_idx)

        fid.read(32 * nchan).decode()  # reserved
        assert fid.tell() == header_nbytes

        fid.seek(0, 2)
        n_bytes = fid.tell()
        n_data_bytes = n_bytes - header_nbytes
        total_samps = (n_data_bytes // 3 if subtype == 'bdf'
                       else n_data_bytes // 2)
        read_records = total_samps // np.sum(n_samps)
        if n_records != read_records:
            warn('Number of records from the header does not match the file '
                 'size (perhaps the recording was not stopped before exiting).'
                 ' Inferring from the file size.')
            edf_info['n_records'] = read_records
        del n_records

        if subtype == 'bdf':
            edf_info['dtype_byte'] = 3  # 24-bit (3 byte) integers
            edf_info['dtype_np'] = np.uint8
        else:
            edf_info['dtype_byte'] = 2  # 16-bit (2 byte) integers
            edf_info['dtype_np'] = np.int16

    return edf_info, orig_units


GDFTYPE_NP = (None, np.int8, np.uint8, np.int16, np.uint16, np.int32,
              np.uint32, np.int64, np.uint64, None, None, None, None,
              None, None, None, np.float32, np.float64)
GDFTYPE_BYTE = tuple(np.dtype(x).itemsize if x is not None else 0
                     for x in GDFTYPE_NP)


def _check_dtype_byte(types):
    assert sum(GDFTYPE_BYTE) == 42
    dtype_byte = [GDFTYPE_BYTE[t] for t in types]
    dtype_np = [GDFTYPE_NP[t] for t in types]
    if len(np.unique(dtype_byte)) > 1:
        # We will not read it properly, so this should be an error
        raise RuntimeError("Reading multiple data types not supported")
    return dtype_np[0], dtype_byte[0]


def _read_gdf_header(fname, exclude):
    """Read GDF 1.x and GDF 2.x header info."""
    edf_info = dict()
    events = None
    with open(fname, 'rb') as fid:

        version = fid.read(8).decode()
        edf_info['type'] = edf_info['subtype'] = version[:3]
        edf_info['number'] = float(version[4:])
        meas_date = DATE_NONE

        # GDF 1.x
        # ---------------------------------------------------------------------
        if edf_info['number'] < 1.9:

            # patient ID
            pid = fid.read(80).decode('latin-1')
            pid = pid.split(' ', 2)
            patient = {}
            if len(pid) >= 2:
                patient['id'] = pid[0]
                patient['name'] = pid[1]

            # Recording ID
            meas_id = {}
            meas_id['recording_id'] = fid.read(80).decode().strip(' \x00')

            # date
            tm = fid.read(16).decode().strip(' \x00')
            try:
                if tm[14:16] == '  ':
                    tm = tm[:14] + '00' + tm[16:]
                date = datetime.datetime(int(tm[0:4]), int(tm[4:6]),
                                         int(tm[6:8]), int(tm[8:10]),
                                         int(tm[10:12]), int(tm[12:14]),
                                         int(tm[14:16]) * pow(10, 4))
                meas_date = (calendar.timegm(date.utctimetuple()), 0)
            except Exception:
                pass

            header_nbytes = np.fromfile(fid, np.int64, 1)[0]
            meas_id['equipment'] = np.fromfile(fid, np.uint8, 8)[0]
            meas_id['hospital'] = np.fromfile(fid, np.uint8, 8)[0]
            meas_id['technician'] = np.fromfile(fid, np.uint8, 8)[0]
            fid.seek(20, 1)    # 20bytes reserved

            n_records = np.fromfile(fid, np.int64, 1)[0]
            # record length in seconds
            record_length = np.fromfile(fid, np.uint32, 2)
            if record_length[0] == 0:
                record_length[0] = 1.
                warn('Header information is incorrect for record length. '
                     'Default record length set to 1.')
            nchan = np.fromfile(fid, np.uint32, 1)[0]
            channels = list(range(nchan))
            ch_names = [fid.read(16).decode('latin-1').strip(' \x00')
                        for ch in channels]
            fid.seek(80 * len(channels), 1)  # transducer
            units = [fid.read(8).decode('latin-1').strip(' \x00')
                     for ch in channels]
            exclude = _find_exclude_idx(ch_names, exclude)
            sel = list()
            for i, unit in enumerate(units):
                if unit[:2] == 'uV':
                    units[i] = 1e-6
                else:
                    units[i] = 1
                sel.append(i)

            ch_names = [ch_names[idx] for idx in sel]
            physical_min = np.fromfile(fid, np.float64, len(channels))
            physical_max = np.fromfile(fid, np.float64, len(channels))
            digital_min = np.fromfile(fid, np.int64, len(channels))
            digital_max = np.fromfile(fid, np.int64, len(channels))
            prefiltering = [fid.read(80).decode().strip(' \x00')
                            for ch in channels][:-1]
            highpass = np.ravel([re.findall(r'HP:\s+(\w+)', filt)
                                 for filt in prefiltering])
            lowpass = np.ravel([re.findall('LP:\\s+(\\w+)', filt)
                                for filt in prefiltering])

            # n samples per record
            n_samps = np.fromfile(fid, np.int32, len(channels))

            # channel data type
            dtype = np.fromfile(fid, np.int32, len(channels))

            # total number of bytes for data
            bytes_tot = np.sum([GDFTYPE_BYTE[t] * n_samps[i]
                                for i, t in enumerate(dtype)])

            # Populate edf_info
            dtype_np, dtype_byte = _check_dtype_byte(dtype)
            edf_info.update(
                bytes_tot=bytes_tot, ch_names=ch_names,
                data_offset=header_nbytes, digital_min=digital_min,
                digital_max=digital_max,
                dtype_byte=dtype_byte, dtype_np=dtype_np, exclude=exclude,
                highpass=highpass, sel=sel, lowpass=lowpass,
                meas_date=meas_date,
                meas_id=meas_id, n_records=n_records, n_samps=n_samps,
                nchan=nchan, subject_info=patient, physical_max=physical_max,
                physical_min=physical_min, record_length=record_length,
                units=units)

            fid.seek(32 * edf_info['nchan'], 1)  # reserved
            assert fid.tell() == header_nbytes

            # Event table
            # -----------------------------------------------------------------
            etp = header_nbytes + n_records * edf_info['bytes_tot']
            # skip data to go to event table
            fid.seek(etp)
            etmode = np.fromfile(fid, np.uint8, 1)[0]
            if etmode in (1, 3):
                sr = np.fromfile(fid, np.uint8, 3)
                event_sr = sr[0]
                for i in range(1, len(sr)):
                    event_sr = event_sr + sr[i] * 2 ** (i * 8)
                n_events = np.fromfile(fid, np.uint32, 1)[0]
                pos = np.fromfile(fid, np.uint32, n_events) - 1  # 1-based inds
                typ = np.fromfile(fid, np.uint16, n_events)

                if etmode == 3:
                    chn = np.fromfile(fid, np.uint16, n_events)
                    dur = np.fromfile(fid, np.uint32, n_events)
                else:
                    chn = np.zeros(n_events, dtype=np.int32)
                    dur = np.ones(n_events, dtype=np.uint32)
                np.maximum(dur, 1, out=dur)
                events = [n_events, pos, typ, chn, dur]

        # GDF 2.x
        # ---------------------------------------------------------------------
        else:
            # FIXED HEADER
            handedness = ('Unknown', 'Right', 'Left', 'Equal')
            gender = ('Unknown', 'Male', 'Female')
            scale = ('Unknown', 'No', 'Yes', 'Corrected')

            # date
            pid = fid.read(66).decode()
            pid = pid.split(' ', 2)
            patient = {}
            if len(pid) >= 2:
                patient['id'] = pid[0]
                patient['name'] = pid[1]
            fid.seek(10, 1)  # 10bytes reserved

            # Smoking / Alcohol abuse / drug abuse / medication
            sadm = np.fromfile(fid, np.uint8, 1)[0]
            patient['smoking'] = scale[sadm % 4]
            patient['alcohol_abuse'] = scale[(sadm >> 2) % 4]
            patient['drug_abuse'] = scale[(sadm >> 4) % 4]
            patient['medication'] = scale[(sadm >> 6) % 4]
            patient['weight'] = np.fromfile(fid, np.uint8, 1)[0]
            if patient['weight'] == 0 or patient['weight'] == 255:
                patient['weight'] = None
            patient['height'] = np.fromfile(fid, np.uint8, 1)[0]
            if patient['height'] == 0 or patient['height'] == 255:
                patient['height'] = None

            # Gender / Handedness / Visual Impairment
            ghi = np.fromfile(fid, np.uint8, 1)[0]
            patient['sex'] = gender[ghi % 4]
            patient['handedness'] = handedness[(ghi >> 2) % 4]
            patient['visual'] = scale[(ghi >> 4) % 4]

            # Recording identification
            meas_id = {}
            meas_id['recording_id'] = fid.read(64).decode().strip(' \x00')
            vhsv = np.fromfile(fid, np.uint8, 4)
            loc = {}
            if vhsv[3] == 0:
                loc['vertpre'] = 10 * int(vhsv[0] >> 4) + int(vhsv[0] % 16)
                loc['horzpre'] = 10 * int(vhsv[1] >> 4) + int(vhsv[1] % 16)
                loc['size'] = 10 * int(vhsv[2] >> 4) + int(vhsv[2] % 16)
            else:
                loc['vertpre'] = 29
                loc['horzpre'] = 29
                loc['size'] = 29
            loc['version'] = 0
            loc['latitude'] = \
                float(np.fromfile(fid, np.uint32, 1)[0]) / 3600000
            loc['longitude'] = \
                float(np.fromfile(fid, np.uint32, 1)[0]) / 3600000
            loc['altitude'] = float(np.fromfile(fid, np.int32, 1)[0]) / 100
            meas_id['loc'] = loc

            date = np.fromfile(fid, np.uint64, 1)[0]
            if date != 0:
                date = datetime.datetime(1, 1, 1) + \
                    datetime.timedelta(date * pow(2, -32) - 367)
                meas_date = (calendar.timegm(date.utctimetuple()), 0)

            birthday = np.fromfile(fid, np.uint64, 1).tolist()[0]
            if birthday == 0:
                birthday = datetime.datetime(1, 1, 1)
            else:
                birthday = (datetime.datetime(1, 1, 1) +
                            datetime.timedelta(birthday * pow(2, -32) - 367))
            patient['birthday'] = birthday
            if patient['birthday'] != datetime.datetime(1, 1, 1, 0, 0):
                today = datetime.datetime.today()
                patient['age'] = today.year - patient['birthday'].year
                today = today.replace(year=patient['birthday'].year)
                if today < patient['birthday']:
                    patient['age'] -= 1
            else:
                patient['age'] = None

            header_nbytes = np.fromfile(fid, np.uint16, 1)[0] * 256

            fid.seek(6, 1)  # 6 bytes reserved
            meas_id['equipment'] = np.fromfile(fid, np.uint8, 8)
            meas_id['ip'] = np.fromfile(fid, np.uint8, 6)
            patient['headsize'] = np.fromfile(fid, np.uint16, 3)
            patient['headsize'] = np.asarray(patient['headsize'], np.float32)
            patient['headsize'] = np.ma.masked_array(
                patient['headsize'],
                np.equal(patient['headsize'], 0), None).filled()
            ref = np.fromfile(fid, np.float32, 3)
            gnd = np.fromfile(fid, np.float32, 3)
            n_records = np.fromfile(fid, np.int64, 1)[0]

            # record length in seconds
            record_length = np.fromfile(fid, np.uint32, 2)
            if record_length[0] == 0:
                record_length[0] = 1.
                warn('Header information is incorrect for record length. '
                     'Default record length set to 1.')

            nchan = np.fromfile(fid, np.uint16, 1)[0]
            fid.seek(2, 1)  # 2bytes reserved

            # Channels (variable header)
            channels = list(range(nchan))
            ch_names = [fid.read(16).decode().strip(' \x00')
                        for ch in channels]
            exclude = _find_exclude_idx(ch_names, exclude)

            fid.seek(80 * len(channels), 1)  # reserved space
            fid.seek(6 * len(channels), 1)  # phys_dim, obsolete

            """The Physical Dimensions are encoded as int16, according to:
            - Units codes :
            https://sourceforge.net/p/biosig/svn/HEAD/tree/trunk/biosig/doc/units.csv
            - Decimal factors codes:
            https://sourceforge.net/p/biosig/svn/HEAD/tree/trunk/biosig/doc/DecimalFactors.txt
            """  # noqa
            units = np.fromfile(fid, np.uint16, len(channels)).tolist()
            unitcodes = np.array(units[:])
            sel = list()
            for i, unit in enumerate(units):
                if unit == 4275:  # microvolts
                    units[i] = 1e-6
                elif unit == 4274:  # millivolts
                    units[i] = 1e-3
                elif unit == 512:  # dimensionless
                    units[i] = 1
                elif unit == 0:
                    units[i] = 1  # unrecognized
                else:
                    warn('Unsupported physical dimension for channel %d '
                         '(assuming dimensionless). Please contact the '
                         'MNE-Python developers for support.' % i)
                    units[i] = 1
                sel.append(i)

            ch_names = [ch_names[idx] for idx in sel]
            physical_min = np.fromfile(fid, np.float64, len(channels))
            physical_max = np.fromfile(fid, np.float64, len(channels))
            digital_min = np.fromfile(fid, np.float64, len(channels))
            digital_max = np.fromfile(fid, np.float64, len(channels))

            fid.seek(68 * len(channels), 1)  # obsolete
            lowpass = np.fromfile(fid, np.float32, len(channels))
            highpass = np.fromfile(fid, np.float32, len(channels))
            notch = np.fromfile(fid, np.float32, len(channels))

            # number of samples per record
            n_samps = np.fromfile(fid, np.int32, len(channels))

            # data type
            dtype = np.fromfile(fid, np.int32, len(channels))

            channel = {}
            channel['xyz'] = [np.fromfile(fid, np.float32, 3)[0]
                              for ch in channels]

            if edf_info['number'] < 2.19:
                impedance = np.fromfile(fid, np.uint8,
                                        len(channels)).astype(float)
                impedance[impedance == 255] = np.nan
                channel['impedance'] = pow(2, impedance / 8)
                fid.seek(19 * len(channels), 1)  # reserved
            else:
                tmp = np.fromfile(fid, np.float32, 5 * len(channels))
                tmp = tmp[::5]
                fZ = tmp[:]
                impedance = tmp[:]
                # channels with no voltage (code 4256) data
                ch = [unitcodes & 65504 != 4256][0]
                impedance[np.where(ch)] = None
                # channel with no impedance (code 4288) data
                ch = [unitcodes & 65504 != 4288][0]
                fZ[np.where(ch)[0]] = None

            assert fid.tell() == header_nbytes

            # total number of bytes for data
            bytes_tot = np.sum([GDFTYPE_BYTE[t] * n_samps[i]
                                for i, t in enumerate(dtype)])

            # Populate edf_info
            dtype_np, dtype_byte = _check_dtype_byte(dtype)
            edf_info.update(
                bytes_tot=bytes_tot, ch_names=ch_names,
                data_offset=header_nbytes,
                dtype_byte=dtype_byte, dtype_np=dtype_np,
                digital_min=digital_min, digital_max=digital_max,
                exclude=exclude, gnd=gnd, highpass=highpass, sel=sel,
                impedance=impedance, lowpass=lowpass, meas_date=meas_date,
                meas_id=meas_id, n_records=n_records, n_samps=n_samps,
                nchan=nchan, notch=notch, subject_info=patient,
                physical_max=physical_max, physical_min=physical_min,
                record_length=record_length, ref=ref, units=units)

            # EVENT TABLE
            # -----------------------------------------------------------------
            etp = edf_info['data_offset'] + edf_info['n_records'] * \
                edf_info['bytes_tot']
            fid.seek(etp)  # skip data to go to event table
            etmode = fid.read(1).decode()
            if etmode != '':
                etmode = np.fromstring(etmode, np.uint8).tolist()[0]

                if edf_info['number'] < 1.94:
                    sr = np.fromfile(fid, np.uint8, 3)
                    event_sr = sr[0]
                    for i in range(1, len(sr)):
                        event_sr = event_sr + sr[i] * 2**(i * 8)
                    n_events = np.fromfile(fid, np.uint32, 1)[0]
                else:
                    ne = np.fromfile(fid, np.uint8, 3)
                    n_events = ne[0]
                    for i in range(1, len(ne)):
                        n_events = n_events + ne[i] * 2**(i * 8)
                    event_sr = np.fromfile(fid, np.float32, 1)[0]

                pos = np.fromfile(fid, np.uint32, n_events) - 1  # 1-based inds
                typ = np.fromfile(fid, np.uint16, n_events)

                if etmode == 3:
                    chn = np.fromfile(fid, np.uint16, n_events)
                    dur = np.fromfile(fid, np.uint32, n_events)
                else:
                    chn = np.zeros(n_events, dtype=np.uint32)
                    dur = np.ones(n_events, dtype=np.uint32)
                np.clip(dur, 1, np.inf, out=dur)
                events = [n_events, pos, typ, chn, dur]
                edf_info['event_sfreq'] = event_sr

    edf_info.update(events=events, sel=np.arange(len(edf_info['ch_names'])))

    return edf_info


def _check_stim_channel(stim_channel, ch_names,
                        tal_ch_names=['EDF Annotations', 'BDF Annotations']):
    """Check that the stimulus channel exists in the current datafile."""
    DEFAULT_STIM_CH_NAMES = ['status', 'trigger']

    if stim_channel is None:
        return [], []

    elif isinstance(stim_channel, str):
        if stim_channel == 'auto':
            if 'auto' in ch_names:
                warn(RuntimeWarning, "Using `stim_channel='auto'` when auto"
                     " also corresponds to a channel name is ambiguous."
                     " Please use `stim_channel=['auto']`.")
            else:
                valid_stim_ch_names = DEFAULT_STIM_CH_NAMES
        else:
            valid_stim_ch_names = [stim_channel.lower()]

    elif isinstance(stim_channel, int):
        valid_stim_ch_names = [ch_names[stim_channel].lower()]

    elif isinstance(stim_channel, list):
        if all([isinstance(s, str) for s in stim_channel]):
            valid_stim_ch_names = [s.lower() for s in stim_channel]
        elif all([isinstance(s, int) for s in stim_channel]):
            valid_stim_ch_names = [ch_names[s].lower() for s in stim_channel]
        else:
            raise ValueError('Invalid stim_channel')
    else:
        raise ValueError('Invalid stim_channel')

    # Forbid the synthesis of stim channels from TAL Annotations
    tal_ch_names_found = [ch for ch in valid_stim_ch_names
                          if ch in [t.lower() for t in tal_ch_names]]
    if len(tal_ch_names_found):
        _msg = ('The synthesis of the stim channel is not supported'
                ' since 0.18. Please remove {} from `stim_channel`'
                ' and use `mne.events_from_annotations` instead'
                ).format(tal_ch_names_found)
        raise ValueError(_msg)

    ch_names_low = [ch.lower() for ch in ch_names]
    found = list(set(valid_stim_ch_names) & set(ch_names_low))

    if not found:
        return [], []
    else:
        stim_channel_idxs = [ch_names_low.index(f) for f in found]
        names = [ch_names[idx] for idx in stim_channel_idxs]
        return stim_channel_idxs, names


def _find_exclude_idx(ch_names, exclude):
    """Find the index of all channels to exclude.

    If there are several channels called "A" and we want to exclude "A",
    then add (the index of) all "A" channels to the exclusion list.
    """
    return [idx for idx, ch in enumerate(ch_names) if ch in exclude]


def _find_tal_idx(ch_names):
    # Annotations / TAL Channels
    accepted_tal_ch_names = ['EDF Annotations', 'BDF Annotations']
    tal_channel_idx = np.where(np.in1d(ch_names, accepted_tal_ch_names))[0]
    return tal_channel_idx


@fill_doc
def read_raw_edf(input_fname, montage='deprecated', eog=None, misc=None,
                 stim_channel='auto', exclude=(), preload=False, verbose=None):
    """Reader function for EDF or EDF+ files.

    Parameters
    ----------
    input_fname : str
        Path to the EDF or EDF+ file.
    %(montage_deprecated)s
    eog : list or tuple
        Names of channels or list of indices that should be designated EOG
        channels. Values should correspond to the electrodes in the file.
        Default is None.
    misc : list or tuple
        Names of channels or list of indices that should be designated MISC
        channels. Values should correspond to the electrodes in the file.
        Default is None.
    stim_channel : 'auto' | str | list of str | int | list of int
        Defaults to 'auto', which means that channels named 'status' or
        'trigger' (case insensitive) are set to STIM. If str (or list of str),
        all channels matching the name(s) are set to STIM. If int (or list of
        ints), channels corresponding to the indices are set to STIM.

        .. warning:: 0.18 does not allow for stim channel synthesis from TAL
                     channels called 'EDF Annotations' anymore. Instead, TAL
                     channels are parsed and extracted annotations are stored
                     in raw.annotations. Use
                     :func:`mne.events_from_annotations` to obtain events from
                     these annotations.

    exclude : list of str
        Channel names to exclude. This can help when reading data with
        different sampling rates to avoid unnecessary resampling.
    %(preload)s
    %(verbose)s

    Notes
    -----
    It is worth noting that in some special cases, it may be necessary to shift
    event values in order to retrieve correct event triggers. This depends on
    the triggering device used to perform the synchronization. For instance, in
    some files events need to be shifted by 8 bits:

        >>> events[:, 2] >>= 8  # doctest:+SKIP

    TAL channels called 'EDF Annotations' are parsed and extracted annotations
    are stored in raw.annotations. Use :func:`mne.events_from_annotations` to
    obtain events from these annotations.

    If channels named 'status' or 'trigger' are present, they are considered as
    STIM channels by default. Use func:`mne.find_events` to parse events
    encoded in such analog stim channels.

    See Also
    --------
    mne.io.read_raw_bdf : Reader function for BDF files.
    mne.io.read_raw_gdf : Reader function for GDF files.
    """
    input_fname = os.path.abspath(input_fname)
    ext = os.path.splitext(input_fname)[1][1:].lower()
    if ext == 'gdf':
        warn('The use of read_raw_edf for GDF files is deprecated. Please use '
             'read_raw_gdf instead.', DeprecationWarning)
        return RawGDF(input_fname=input_fname, montage=montage, eog=eog,
                      misc=misc, stim_channel=stim_channel, exclude=exclude,
                      preload=preload, verbose=verbose)
    elif ext == 'bdf':
        warn('The use of read_raw_edf for BDF files is deprecated. Please use '
             'read_raw_bdf instead.', DeprecationWarning)
    elif ext not in ('edf', 'bdf'):
        raise NotImplementedError('Only EDF and BDF files are supported, got '
                                  '{}.'.format(ext))
    return RawEDF(input_fname=input_fname, montage=montage, eog=eog, misc=misc,
                  stim_channel=stim_channel, exclude=exclude, preload=preload,
                  verbose=verbose)


@fill_doc
def read_raw_bdf(input_fname, montage='deprecated', eog=None, misc=None,
                 stim_channel='auto', exclude=(), preload=False, verbose=None):
    """Reader function for BDF files.

    Parameters
    ----------
    input_fname : str
        Path to the BDF file.
    %(montage_deprecated)s
    eog : list or tuple
        Names of channels or list of indices that should be designated EOG
        channels. Values should correspond to the electrodes in the file.
        Default is None.
    misc : list or tuple
        Names of channels or list of indices that should be designated MISC
        channels. Values should correspond to the electrodes in the file.
        Default is None.
    stim_channel : 'auto' | str | list of str | int | list of int
        Defaults to 'auto', which means that channels named 'status' or
        'trigger' (case insensitive) are set to STIM. If str (or list of str),
        all channels matching the name(s) are set to STIM. If int (or list of
        ints), channels corresponding to the indices are set to STIM.

        .. warning:: 0.18 does not allow for stim channel synthesis from TAL
                     channels called 'BDF Annotations' anymore. Instead, TAL
                     channels are parsed and extracted annotations are stored
                     in raw.annotations. Use
                     :func:`mne.events_from_annotations` to obtain events from
                     these annotations.

    exclude : list of str
        Channel names to exclude. This can help when reading data with
        different sampling rates to avoid unnecessary resampling.
    %(preload)s
    %(verbose)s

    Notes
    -----
    Biosemi devices trigger codes are encoded in 16-bit format, whereas system
    codes (CMS in/out-of range, battery low, etc.) are coded in bits 16-23 of
    the status channel (see http://www.biosemi.com/faq/trigger_signals.htm).
    To retrieve correct event values (bits 1-16), one could do:

        >>> events = mne.find_events(...)  # doctest:+SKIP
        >>> events[:, 2] &= (2**16 - 1)  # doctest:+SKIP

    The above operation can be carried out directly in :func:`mne.find_events`
    using the ``mask`` and ``mask_type`` parameters (see
    :func:`mne.find_events` for more details).

    It is also possible to retrieve system codes, but no particular effort has
    been made to decode these in MNE. In case it is necessary, for instance to
    check the CMS bit, the following operation can be carried out:

        >>> cms_bit = 20  # doctest:+SKIP
        >>> cms_high = (events[:, 2] & (1 << cms_bit)) != 0  # doctest:+SKIP

    It is worth noting that in some special cases, it may be necessary to shift
    event values in order to retrieve correct event triggers. This depends on
    the triggering device used to perform the synchronization. For instance, in
    some files events need to be shifted by 8 bits:

        >>> events[:, 2] >>= 8  # doctest:+SKIP

    TAL channels called 'BDF Annotations' are parsed and extracted annotations
    are stored in raw.annotations. Use :func:`mne.events_from_annotations` to
    obtain events from these annotations.

    If channels named 'status' or 'trigger' are present, they are considered as
    STIM channels by default. Use func:`mne.find_events` to parse events
    encoded in such analog stim channels.

    See Also
    --------
    mne.io.read_raw_edf : Reader function for EDF and EDF+ files.
    mne.io.read_raw_gdf : Reader function for GDF files.
    """
    input_fname = os.path.abspath(input_fname)
    ext = os.path.splitext(input_fname)[1][1:].lower()
    if ext != 'bdf':
        raise NotImplementedError('Only BDF files are supported, got '
                                  '{}.'.format(ext))
    return RawEDF(input_fname=input_fname, montage=montage, eog=eog, misc=misc,
                  stim_channel=stim_channel, exclude=exclude, preload=preload,
                  verbose=verbose)


@fill_doc
def read_raw_gdf(input_fname, montage='deprecated', eog=None, misc=None,
                 stim_channel='auto', exclude=(), preload=False, verbose=None):
    """Reader function for GDF files.

    Parameters
    ----------
    input_fname : str
        Path to the GDF file.
    %(montage_deprecated)s
    eog : list or tuple
        Names of channels or list of indices that should be designated EOG
        channels. Values should correspond to the electrodes in the file.
        Default is None.
    misc : list or tuple
        Names of channels or list of indices that should be designated MISC
        channels. Values should correspond to the electrodes in the file.
        Default is None.
    stim_channel : 'auto' | str | list of str | int | list of int
        Defaults to 'auto', which means that channels named 'status' or
        'trigger' (case insensitive) are set to STIM. If str (or list of str),
        all channels matching the name(s) are set to STIM. If int (or list of
        ints), channels corresponding to the indices are set to STIM.
    exclude : list of str
        Channel names to exclude. This can help when reading data with
        different sampling rates to avoid unnecessary resampling.
    %(preload)s
    %(verbose)s

    Notes
    -----
    If channels named 'status' or 'trigger' are present, they are considered as
    STIM channels by default. Use func:`mne.find_events` to parse events
    encoded in such analog stim channels.

    See Also
    --------
    mne.io.read_raw_edf : Reader function for EDF and EDF+ files.
    mne.io.read_raw_bdf : Reader function for BDF files.
    """
    input_fname = os.path.abspath(input_fname)
    ext = os.path.splitext(input_fname)[1][1:].lower()
    if ext != 'gdf':
        raise NotImplementedError('Only GDF files are supported, got '
                                  '{}.'.format(ext))
    return RawGDF(input_fname=input_fname, montage=montage, eog=eog, misc=misc,
                  stim_channel=stim_channel, exclude=exclude, preload=preload,
                  verbose=verbose)


def _read_annotations_edf(annotations):
    """Annotation File Reader.

    Parameters
    ----------
    annotations : ndarray (n_chans, n_samples) | str
        Channel data in EDF+ TAL format or path to annotation file.

    Returns
    -------
    onset : array of float, shape (n_annotations,)
        The starting time of annotations in seconds after ``orig_time``.
    duration : array of float, shape (n_annotations,)
        Durations of the annotations in seconds.
    description : array of str, shape (n_annotations,)
        Array of strings containing description for each annotation. If a
        string, all the annotations are given the same description. To reject
        epochs, use description starting with keyword 'bad'. See example above.
    """
    pat = '([+-]\\d+\\.?\\d*)(\x15(\\d+\\.?\\d*))?(\x14.*?)\x14\x00'
    if isinstance(annotations, str):
        with open(annotations, encoding='latin-1') as annot_file:
            triggers = re.findall(pat, annot_file.read())
    else:
        tals = bytearray()
        for chan in annotations:
            this_chan = chan.ravel()
            if this_chan.dtype == np.int32:  # BDF
                this_chan.dtype = np.uint8
                this_chan = this_chan.reshape(-1, 4)
                # Why only keep the first 3 bytes as BDF values
                # are stored with 24 bits (not 32)
                this_chan = this_chan[:, :3].ravel()
                for s in this_chan:
                    tals.extend(s)
            else:
                for s in this_chan:
                    i = int(s)
                    tals.extend(np.uint8([i % 256, i // 256]))

        # use of latin-1 because characters are only encoded for the first 256
        # code points and utf-8 can triggers an "invalid continuation byte"
        # error
        triggers = re.findall(pat, tals.decode('latin-1'))

    events = []
    for ev in triggers:
        onset = float(ev[0])
        duration = float(ev[2]) if ev[2] else 0
        for description in ev[3].split('\x14')[1:]:
            if description:
                events.append([onset, duration, description])

    return zip(*events) if events else (list(), list(), list())


def _get_edf_default_event_id(descriptions):
    mapping = {a: n for n, a in enumerate(sorted(set(descriptions)), start=1)}
    return mapping


def _get_annotations_gdf(edf_info, sfreq):
    onset, duration, desc = list(), list(), list()
    events = edf_info.get('events', None)
    # Annotations in GDF: events are stored as the following
    # list: `events = [n_events, pos, typ, chn, dur]` where pos is the
    # latency, dur is the duration in samples. They both are
    # numpy.ndarray
    if events is not None and events[1].shape[0] > 0:
        onset = events[1] / sfreq
        duration = events[4] / sfreq
        desc = events[2]

    return onset, duration, desc