1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
|
# -*- coding: utf-8 -*-
# Authors: Teon Brooks <teon.brooks@gmail.com>
# Martin Billinger <martin.billinger@tugraz.at>
# Alan Leggitt <alan.leggitt@ucsf.edu>
# Alexandre Barachant <alexandre.barachant@gmail.com>
# Stefan Appelhoff <stefan.appelhoff@mailbox.org>
# Joan Massich <mailsik@gmail.com>
#
# License: BSD (3-clause)
import os.path as op
import inspect
import numpy as np
from numpy.testing import (assert_array_almost_equal, assert_array_equal,
assert_equal)
from scipy.io import loadmat
import pytest
from mne import pick_types, Annotations
from mne.datasets import testing
from mne.utils import run_tests_if_main, requires_pandas, _TempDir
from mne.io import read_raw_edf, read_raw_bdf
from mne.io.tests.test_raw import _test_raw_reader
from mne.io.edf.edf import _get_edf_default_event_id
from mne.io.edf.edf import _read_annotations_edf
from mne.io.edf.edf import _read_ch
from mne.io.pick import channel_indices_by_type
from mne.annotations import events_from_annotations, read_annotations
from mne.io.meas_info import _kind_dict as _KIND_DICT
FILE = inspect.getfile(inspect.currentframe())
data_dir = op.join(op.dirname(op.abspath(FILE)), 'data')
montage_path = op.join(data_dir, 'biosemi.hpts') # XXX: missing reader
bdf_path = op.join(data_dir, 'test.bdf')
edf_path = op.join(data_dir, 'test.edf')
duplicate_channel_labels_path = op.join(data_dir,
'duplicate_channel_labels.edf')
edf_uneven_path = op.join(data_dir, 'test_uneven_samp.edf')
bdf_eeglab_path = op.join(data_dir, 'test_bdf_eeglab.mat')
edf_eeglab_path = op.join(data_dir, 'test_edf_eeglab.mat')
edf_uneven_eeglab_path = op.join(data_dir, 'test_uneven_samp.mat')
edf_stim_channel_path = op.join(data_dir, 'test_edf_stim_channel.edf')
edf_txt_stim_channel_path = op.join(data_dir, 'test_edf_stim_channel.txt')
data_path = testing.data_path(download=False)
edf_stim_resamp_path = op.join(data_path, 'EDF', 'test_edf_stim_resamp.edf')
edf_overlap_annot_path = op.join(data_path, 'EDF',
'test_edf_overlapping_annotations.edf')
edf_reduced = op.join(data_path, 'EDF', 'test_reduced.edf')
bdf_stim_channel_path = op.join(data_path, 'BDF', 'test_bdf_stim_channel.bdf')
test_generator_bdf = op.join(data_path, 'BDF', 'test_generator_2.bdf')
test_generator_edf = op.join(data_path, 'EDF', 'test_generator_2.edf')
eog = ['REOG', 'LEOG', 'IEOG']
misc = ['EXG1', 'EXG5', 'EXG8', 'M1', 'M2']
def test_orig_units():
"""Test exposure of original channel units."""
raw = read_raw_edf(edf_path, preload=True)
# Test original units
orig_units = raw._orig_units
assert len(orig_units) == len(raw.ch_names)
assert orig_units['A1'] == u'µV' # formerly 'uV' edit by _check_orig_units
def test_bdf_data():
"""Test reading raw bdf files."""
raw_py = _test_raw_reader(read_raw_bdf, input_fname=bdf_path,
eog=eog, misc=misc,
exclude=['M2', 'IEOG'])
assert len(raw_py.ch_names) == 71
raw_py = _test_raw_reader(read_raw_bdf, input_fname=bdf_path,
montage='biosemi64', eog=eog, misc=misc,
exclude=['M2', 'IEOG'])
assert len(raw_py.ch_names) == 71
assert 'RawEDF' in repr(raw_py)
picks = pick_types(raw_py.info, meg=False, eeg=True, exclude='bads')
data_py, _ = raw_py[picks]
# this .mat was generated using the EEG Lab Biosemi Reader
raw_eeglab = loadmat(bdf_eeglab_path)
raw_eeglab = raw_eeglab['data'] * 1e-6 # data are stored in microvolts
data_eeglab = raw_eeglab[picks]
# bdf saved as a single, resolution to seven decimal points in matlab
assert_array_almost_equal(data_py, data_eeglab, 8)
# Manually checking that float coordinates are imported
assert (raw_py.info['chs'][0]['loc']).any()
assert (raw_py.info['chs'][25]['loc']).any()
assert (raw_py.info['chs'][63]['loc']).any()
@testing.requires_testing_data
def test_bdf_crop_save_stim_channel(tmpdir):
"""Test EDF with various sampling rates."""
raw = read_raw_bdf(bdf_stim_channel_path)
raw.save(tmpdir.join('test-raw.fif'), tmin=1.2, tmax=4.0, overwrite=True)
@testing.requires_testing_data
def test_edf_reduced():
"""Test EDF with various sampling rates."""
_test_raw_reader(read_raw_edf, input_fname=edf_reduced, verbose='error')
def test_edf_data():
"""Test edf files."""
raw = _test_raw_reader(read_raw_edf, input_fname=edf_path,
exclude=['Ergo-Left', 'H10'], verbose='error')
raw_py = read_raw_edf(edf_path, preload=True)
assert_equal(len(raw.ch_names) + 2, len(raw_py.ch_names))
# Test with number of records not in header (-1).
tempdir = _TempDir()
broken_fname = op.join(tempdir, 'broken.edf')
with open(edf_path, 'rb') as fid_in:
fid_in.seek(0, 2)
n_bytes = fid_in.tell()
fid_in.seek(0, 0)
rbytes = fid_in.read(int(n_bytes * 0.4))
with open(broken_fname, 'wb') as fid_out:
fid_out.write(rbytes[:236])
fid_out.write(b'-1 ')
fid_out.write(rbytes[244:])
with pytest.warns(RuntimeWarning,
match='records .* not match the file size'):
raw = read_raw_edf(broken_fname, preload=True)
read_raw_edf(broken_fname, exclude=raw.ch_names[:132], preload=True)
def test_duplicate_channel_labels_edf():
"""Test reading edf file with duplicate channel names."""
EXPECTED_CHANNEL_NAMES = ['EEG F1-Ref-0', 'EEG F2-Ref', 'EEG F1-Ref-1']
with pytest.warns(RuntimeWarning, match='Channel names are not unique'):
raw = read_raw_edf(duplicate_channel_labels_path, preload=False)
assert raw.ch_names == EXPECTED_CHANNEL_NAMES
def test_parse_annotation(tmpdir):
"""Test parsing the tal channel."""
# test the parser
annot = (b'+180\x14Lights off\x14Close door\x14\x00\x00\x00\x00\x00'
b'+180\x14Lights off\x14\x00\x00\x00\x00\x00\x00\x00\x00'
b'+180\x14Close door\x14\x00\x00\x00\x00\x00\x00\x00\x00'
b'+3.14\x1504.20\x14nothing\x14\x00\x00\x00\x00'
b'+1800.2\x1525.5\x14Apnea\x14\x00\x00\x00\x00\x00\x00\x00'
b'+123\x14\x14\x00\x00\x00\x00\x00\x00\x00')
annot_file = tmpdir.join('annotations.txt')
annot_file.write(annot)
annot = [a for a in bytes(annot)]
annot[1::2] = [a * 256 for a in annot[1::2]]
tal_channel_A = np.array(list(map(sum, zip(annot[0::2], annot[1::2]))),
dtype=np.int64)
with open(str(annot_file), 'rb') as fid:
# ch_data = np.fromfile(fid, dtype=np.int16, count=len(annot))
tal_channel_B = _read_ch(fid, subtype='EDF', dtype=np.int16,
samp=(len(annot) - 1) // 2,
dtype_byte='This_parameter_is_not_used')
for tal_channel in [tal_channel_A, tal_channel_B]:
onset, duration, description = _read_annotations_edf([tal_channel])
assert_equal(np.column_stack((onset, duration, description)),
[[180., 0., 'Lights off'], [180., 0., 'Close door'],
[180., 0., 'Lights off'], [180., 0., 'Close door'],
[3.14, 4.2, 'nothing'], [1800.2, 25.5, 'Apnea']])
def test_find_events_backward_compatibility():
"""Test if events are detected correctly in a typical MNE workflow."""
EXPECTED_EVENTS = [[68, 0, 2],
[199, 0, 2],
[1024, 0, 3],
[1280, 0, 2]]
# test an actual file
raw = read_raw_edf(edf_path, preload=True)
event_id = _get_edf_default_event_id(raw.annotations.description)
event_id.pop('start')
events_from_EFA, _ = events_from_annotations(raw, event_id=event_id,
use_rounding=False)
assert_array_equal(events_from_EFA, EXPECTED_EVENTS)
@requires_pandas
@pytest.mark.parametrize('fname', [edf_path, bdf_path])
def test_to_data_frame(fname):
"""Test EDF/BDF Raw Pandas exporter."""
ext = op.splitext(fname)[1][1:].lower()
if ext == 'edf':
raw = read_raw_edf(fname, preload=True, verbose='error')
elif ext == 'bdf':
raw = read_raw_bdf(fname, preload=True, verbose='error')
_, times = raw[0, :10]
df = raw.to_data_frame()
assert (df.columns == raw.ch_names).all()
assert_array_equal(np.round(times * 1e3), df.index.values[:10])
df = raw.to_data_frame(index=None, scalings={'eeg': 1e13})
assert 'time' in df.index.names
assert_array_equal(df.values[:, 0], raw._data[0] * 1e13)
def test_read_raw_edf_stim_channel_input_parameters():
"""Test edf raw reader deprecation."""
_MSG = "`read_raw_edf` is not supposed to trigger a deprecation warning"
with pytest.warns(None) as recwarn:
read_raw_edf(edf_path)
assert all([w.category != DeprecationWarning for w in recwarn.list]), _MSG
for invalid_stim_parameter in ['EDF Annotations', 'BDF Annotations']:
with pytest.raises(ValueError,
match="stim channel is not supported"):
read_raw_edf(edf_path, stim_channel=invalid_stim_parameter)
def _assert_annotations_equal(a, b):
assert_array_equal(a.onset, b.onset)
assert_array_equal(a.duration, b.duration)
assert_array_equal(a.description, b.description)
assert a.orig_time == b.orig_time
def test_read_annot(tmpdir):
"""Test parsing the tal channel."""
EXPECTED_ANNOTATIONS = [[180.0, 0, 'Lights off'], [180.0, 0, 'Close door'],
[180.0, 0, 'Lights off'], [180.0, 0, 'Close door'],
[3.14, 4.2, 'nothing'], [1800.2, 25.5, 'Apnea']]
EXPECTED_ONSET = [180.0, 180.0, 180.0, 180.0, 3.14, 1800.2]
EXPECTED_DURATION = [0, 0, 0, 0, 4.2, 25.5]
EXPECTED_DESC = ['Lights off', 'Close door', 'Lights off', 'Close door',
'nothing', 'Apnea']
EXPECTED_ANNOTATIONS = Annotations(onset=EXPECTED_ONSET,
duration=EXPECTED_DURATION,
description=EXPECTED_DESC,
orig_time=None)
annot = (b'+180\x14Lights off\x14Close door\x14\x00\x00\x00\x00\x00'
b'+180\x14Lights off\x14\x00\x00\x00\x00\x00\x00\x00\x00'
b'+180\x14Close door\x14\x00\x00\x00\x00\x00\x00\x00\x00'
b'+3.14\x1504.20\x14nothing\x14\x00\x00\x00\x00'
b'+1800.2\x1525.5\x14Apnea\x14\x00\x00\x00\x00\x00\x00\x00'
b'+123\x14\x14\x00\x00\x00\x00\x00\x00\x00')
annot_file = tmpdir.join('annotations.txt')
annot_file.write(annot)
onset, duration, desc = _read_annotations_edf(annotations=str(annot_file))
annotation = Annotations(onset=onset, duration=duration, description=desc,
orig_time=None)
_assert_annotations_equal(annotation, EXPECTED_ANNOTATIONS)
# Now test when reading from buffer of data
with open(str(annot_file), 'rb') as fid:
ch_data = np.fromfile(fid, dtype=np.int16, count=len(annot))
onset, duration, desc = _read_annotations_edf([ch_data])
annotation = Annotations(onset=onset, duration=duration, description=desc,
orig_time=None)
_assert_annotations_equal(annotation, EXPECTED_ANNOTATIONS)
@testing.requires_testing_data
@pytest.mark.parametrize('fname', [test_generator_edf, test_generator_bdf])
def test_read_annotations(fname, recwarn):
"""Test IO of annotations from edf and bdf files via regexp."""
annot = read_annotations(fname)
assert len(annot.onset) == 2
@testing.requires_testing_data
@pytest.mark.parametrize('fname', [test_generator_edf, test_generator_bdf])
def test_load_generator(fname, recwarn):
"""Test IO of annotations from edf and bdf files with raw info."""
ext = op.splitext(fname)[1][1:].lower()
if ext == 'edf':
raw = read_raw_edf(fname)
elif ext == 'bdf':
raw = read_raw_bdf(fname)
assert len(raw.annotations.onset) == 2
found_types = [k for k, v in
channel_indices_by_type(raw.info, picks=None).items()
if v]
assert len(found_types) == 1
events, event_id = events_from_annotations(raw)
ch_names = ['squarewave', 'ramp', 'pulse', 'ECG', 'noise', 'sine 1 Hz',
'sine 8 Hz', 'sine 8.5 Hz', 'sine 15 Hz', 'sine 17 Hz',
'sine 50 Hz']
assert raw.get_data().shape == (11, 120000)
assert raw.ch_names == ch_names
assert event_id == {'RECORD START': 2, 'REC STOP': 1}
assert_array_equal(events, [[0, 0, 2], [120000, 0, 1]])
@pytest.mark.parametrize('EXPECTED, test_input', [
pytest.param({'stAtUs': 'stim', 'tRigGer': 'stim', 'sine 1 Hz': 'eeg'},
'auto', id='auto'),
pytest.param({'stAtUs': 'eeg', 'tRigGer': 'eeg', 'sine 1 Hz': 'eeg'},
None, id='None'),
pytest.param({'stAtUs': 'eeg', 'tRigGer': 'eeg', 'sine 1 Hz': 'stim'},
'sine 1 Hz', id='single string'),
pytest.param({'stAtUs': 'eeg', 'tRigGer': 'eeg', 'sine 1 Hz': 'stim'},
2, id='single int'),
pytest.param({'stAtUs': 'eeg', 'tRigGer': 'eeg', 'sine 1 Hz': 'stim'},
-1, id='single int (revers indexing)'),
pytest.param({'stAtUs': 'stim', 'tRigGer': 'stim', 'sine 1 Hz': 'eeg'},
[0, 1], id='int list')])
def test_edf_stim_ch_pick_up(test_input, EXPECTED):
"""Test stim_channel."""
TYPE_LUT = {v[0]: k for k, v in _KIND_DICT.items()}
fname = op.join(data_dir, 'test_stim_channel.edf')
raw = read_raw_edf(fname, stim_channel=test_input)
ch_types = {ch['ch_name']: TYPE_LUT[ch['kind']] for ch in raw.info['chs']}
assert ch_types == EXPECTED
run_tests_if_main()
|