1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
|
# Author: Mainak Jas <mainak.jas@telecom-paristech.fr>
# Mikolaj Magnuski <mmagnuski@swps.edu.pl>
# Stefan Appelhoff <stefan.appelhoff@mailbox.org>
#
# License: BSD (3-clause)
from copy import deepcopy
from distutils.version import LooseVersion
import os.path as op
import shutil
from unittest import SkipTest
import numpy as np
from numpy.testing import (assert_array_equal, assert_array_almost_equal,
assert_equal, assert_allclose)
import pytest
from scipy import io
from mne import write_events, read_epochs_eeglab
from mne.io import read_raw_eeglab
from mne.io.tests.test_raw import _test_raw_reader
from mne.datasets import testing
from mne.utils import requires_h5py, run_tests_if_main
from mne.annotations import events_from_annotations, read_annotations
from mne.io.eeglab.tests._utils import _read_eeglab_montage
base_dir = op.join(testing.data_path(download=False), 'EEGLAB')
raw_fname_mat = op.join(base_dir, 'test_raw.set')
raw_fname_onefile_mat = op.join(base_dir, 'test_raw_onefile.set')
raw_fname_event_duration = op.join(base_dir, 'test_raw_event_duration.set')
epochs_fname_mat = op.join(base_dir, 'test_epochs.set')
epochs_fname_onefile_mat = op.join(base_dir, 'test_epochs_onefile.set')
raw_mat_fnames = [raw_fname_mat, raw_fname_onefile_mat]
epochs_mat_fnames = [epochs_fname_mat, epochs_fname_onefile_mat]
raw_fname_h5 = op.join(base_dir, 'test_raw_h5.set')
raw_fname_onefile_h5 = op.join(base_dir, 'test_raw_onefile_h5.set')
epochs_fname_h5 = op.join(base_dir, 'test_epochs_h5.set')
epochs_fname_onefile_h5 = op.join(base_dir, 'test_epochs_onefile_h5.set')
raw_h5_fnames = [raw_fname_h5, raw_fname_onefile_h5]
epochs_h5_fnames = [epochs_fname_h5, epochs_fname_onefile_h5]
raw_fnames = [raw_fname_mat, raw_fname_onefile_mat,
raw_fname_h5, raw_fname_onefile_h5]
montage_path = op.join(base_dir, 'test_chans.locs')
def _check_h5(fname):
if fname.endswith('_h5.set'):
try:
import h5py # noqa, analysis:ignore
except Exception:
raise SkipTest('h5py module required')
@requires_h5py
@testing.requires_testing_data
@pytest.mark.parametrize(
'fname', [raw_fname_mat, raw_fname_h5], ids=op.basename
)
def test_io_set_raw(fname):
"""Test importing EEGLAB .set files."""
montage = _read_eeglab_montage(montage_path)
montage.ch_names = [
'EEG {0:03d}'.format(ii) for ii in range(len(montage.ch_names))
]
_test_raw_reader(read_raw_eeglab, input_fname=fname)
# test that preloading works
raw0 = read_raw_eeglab(input_fname=fname, preload=True)
raw0.set_montage(montage)
raw0.filter(1, None, l_trans_bandwidth='auto', filter_length='auto',
phase='zero')
# test that using uint16_codec does not break stuff
raw0 = read_raw_eeglab(input_fname=fname,
preload=False, uint16_codec='ascii')
raw0.set_montage(montage, update_ch_names=True)
@testing.requires_testing_data
def test_io_set_raw_more(tmpdir):
"""Test importing EEGLAB .set files."""
tmpdir = str(tmpdir)
# test reading file with one event (read old version)
eeg = io.loadmat(raw_fname_mat, struct_as_record=False,
squeeze_me=True)['EEG']
# test negative event latencies
negative_latency_fname = op.join(tmpdir, 'test_negative_latency.set')
evnts = deepcopy(eeg.event[0])
evnts.latency = 0
io.savemat(negative_latency_fname,
{'EEG': {'trials': eeg.trials, 'srate': eeg.srate,
'nbchan': eeg.nbchan,
'data': 'test_negative_latency.fdt',
'epoch': eeg.epoch, 'event': evnts,
'chanlocs': eeg.chanlocs, 'pnts': eeg.pnts}},
appendmat=False, oned_as='row')
shutil.copyfile(op.join(base_dir, 'test_raw.fdt'),
negative_latency_fname.replace('.set', '.fdt'))
with pytest.warns(RuntimeWarning, match="has a sample index of -1."):
read_raw_eeglab(input_fname=negative_latency_fname, preload=True)
evnts.latency = -1
io.savemat(negative_latency_fname,
{'EEG': {'trials': eeg.trials, 'srate': eeg.srate,
'nbchan': eeg.nbchan,
'data': 'test_negative_latency.fdt',
'epoch': eeg.epoch, 'event': evnts,
'chanlocs': eeg.chanlocs, 'pnts': eeg.pnts}},
appendmat=False, oned_as='row')
with pytest.raises(ValueError, match='event sample index is negative'):
with pytest.warns(RuntimeWarning, match="has a sample index of -1."):
read_raw_eeglab(input_fname=negative_latency_fname, preload=True)
# test overlapping events
overlap_fname = op.join(tmpdir, 'test_overlap_event.set')
io.savemat(overlap_fname,
{'EEG': {'trials': eeg.trials, 'srate': eeg.srate,
'nbchan': eeg.nbchan, 'data': 'test_overlap_event.fdt',
'epoch': eeg.epoch,
'event': [eeg.event[0], eeg.event[0]],
'chanlocs': eeg.chanlocs, 'pnts': eeg.pnts}},
appendmat=False, oned_as='row')
shutil.copyfile(op.join(base_dir, 'test_raw.fdt'),
overlap_fname.replace('.set', '.fdt'))
# test reading file with one channel
one_chan_fname = op.join(tmpdir, 'test_one_channel.set')
io.savemat(one_chan_fname,
{'EEG': {'trials': eeg.trials, 'srate': eeg.srate,
'nbchan': 1, 'data': np.random.random((1, 3)),
'epoch': eeg.epoch, 'event': eeg.epoch,
'chanlocs': {'labels': 'E1', 'Y': -6.6069,
'X': 6.3023, 'Z': -2.9423},
'times': eeg.times[:3], 'pnts': 3}},
appendmat=False, oned_as='row')
read_raw_eeglab(input_fname=one_chan_fname, preload=True)
# test reading file with 3 channels - one without position information
# first, create chanlocs structured array
ch_names = ['F3', 'unknown', 'FPz']
x, y, z = [1., 2., np.nan], [4., 5., np.nan], [7., 8., np.nan]
dt = [('labels', 'S10'), ('X', 'f8'), ('Y', 'f8'), ('Z', 'f8')]
nopos_dt = [('labels', 'S10'), ('Z', 'f8')]
chanlocs = np.zeros((3,), dtype=dt)
nopos_chanlocs = np.zeros((3,), dtype=nopos_dt)
for ind, vals in enumerate(zip(ch_names, x, y, z)):
for fld in range(4):
chanlocs[ind][dt[fld][0]] = vals[fld]
if fld in (0, 3):
nopos_chanlocs[ind][dt[fld][0]] = vals[fld]
# In theory this should work and be simpler, but there is an obscure
# SciPy writing bug that pops up sometimes:
# nopos_chanlocs = np.array(chanlocs[['labels', 'Z']])
if LooseVersion(np.__version__) == '1.14.0':
# There is a bug in 1.14.0 (or maybe with SciPy 1.0.0?) that causes
# this write to fail!
raise SkipTest('Need to fix bug in NumPy 1.14.0!')
# test reading channel names but not positions when there is no X (only Z)
# field in the EEG.chanlocs structure
nopos_fname = op.join(tmpdir, 'test_no_chanpos.set')
io.savemat(nopos_fname,
{'EEG': {'trials': eeg.trials, 'srate': eeg.srate, 'nbchan': 3,
'data': np.random.random((3, 2)), 'epoch': eeg.epoch,
'event': eeg.epoch, 'chanlocs': nopos_chanlocs,
'times': eeg.times[:2], 'pnts': 2}},
appendmat=False, oned_as='row')
# load the file
raw = read_raw_eeglab(input_fname=nopos_fname, preload=True)
# test that channel names have been loaded but not channel positions
for i in range(3):
assert_equal(raw.info['chs'][i]['ch_name'], ch_names[i])
assert_array_equal(raw.info['chs'][i]['loc'][:3],
np.array([np.nan, np.nan, np.nan]))
@pytest.mark.timeout(60) # ~60 sec on Travis OSX
@requires_h5py
@testing.requires_testing_data
@pytest.mark.parametrize('fnames', [epochs_mat_fnames, epochs_h5_fnames])
def test_io_set_epochs(fnames):
"""Test importing EEGLAB .set epochs files."""
epochs_fname, epochs_fname_onefile = fnames
with pytest.warns(RuntimeWarning, match='multiple events'):
epochs = read_epochs_eeglab(epochs_fname)
with pytest.warns(RuntimeWarning, match='multiple events'):
epochs2 = read_epochs_eeglab(epochs_fname_onefile)
# one warning for each read_epochs_eeglab because both files have epochs
# associated with multiple events
assert_array_equal(epochs.get_data(), epochs2.get_data())
@testing.requires_testing_data
def test_io_set_epochs_events(tmpdir):
"""Test different combinations of events and event_ids."""
tmpdir = str(tmpdir)
out_fname = op.join(tmpdir, 'test-eve.fif')
events = np.array([[4, 0, 1], [12, 0, 2], [20, 0, 3], [26, 0, 3]])
write_events(out_fname, events)
event_id = {'S255/S8': 1, 'S8': 2, 'S255/S9': 3}
out_fname = op.join(tmpdir, 'test-eve.fif')
epochs = read_epochs_eeglab(epochs_fname_mat, events, event_id)
assert_equal(len(epochs.events), 4)
assert epochs.preload
assert epochs._bad_dropped
epochs = read_epochs_eeglab(epochs_fname_mat, out_fname, event_id)
pytest.raises(ValueError, read_epochs_eeglab, epochs_fname_mat,
None, event_id)
pytest.raises(ValueError, read_epochs_eeglab, epochs_fname_mat,
epochs.events, None)
@testing.requires_testing_data
def test_degenerate(tmpdir):
"""Test some degenerate conditions."""
# test if .dat file raises an error
tmpdir = str(tmpdir)
eeg = io.loadmat(epochs_fname_mat, struct_as_record=False,
squeeze_me=True)['EEG']
eeg.data = 'epochs_fname.dat'
bad_epochs_fname = op.join(tmpdir, 'test_epochs.set')
io.savemat(bad_epochs_fname,
{'EEG': {'trials': eeg.trials, 'srate': eeg.srate,
'nbchan': eeg.nbchan, 'data': eeg.data,
'epoch': eeg.epoch, 'event': eeg.event,
'chanlocs': eeg.chanlocs, 'pnts': eeg.pnts}},
appendmat=False, oned_as='row')
shutil.copyfile(op.join(base_dir, 'test_epochs.fdt'),
op.join(tmpdir, 'test_epochs.dat'))
with pytest.warns(RuntimeWarning, match='multiple events'):
pytest.raises(NotImplementedError, read_epochs_eeglab,
bad_epochs_fname)
@pytest.mark.parametrize("fname", raw_fnames)
@testing.requires_testing_data
def test_eeglab_annotations(fname):
"""Test reading annotations in EEGLAB files."""
_check_h5(fname)
annotations = read_annotations(fname)
assert len(annotations) == 154
assert set(annotations.description) == {'rt', 'square'}
assert np.all(annotations.duration == 0.)
@testing.requires_testing_data
def test_eeglab_read_annotations():
"""Test annotations onsets are timestamps (+ validate some)."""
annotations = read_annotations(raw_fname_mat)
validation_samples = [0, 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31]
expected_onset = np.array([1.00, 1.69, 2.08, 4.70, 7.71, 11.30, 17.18,
20.20, 26.12, 29.14, 35.25, 44.30, 47.15])
assert annotations.orig_time is None
assert_array_almost_equal(annotations.onset[validation_samples],
expected_onset, decimal=2)
# test if event durations are imported correctly
raw = read_raw_eeglab(raw_fname_event_duration, preload=True)
# file contains 3 annotations with 0.5 s (64 samples) duration each
assert_allclose(raw.annotations.duration, np.ones(3) * 0.5)
@testing.requires_testing_data
def test_eeglab_event_from_annot():
"""Test all forms of obtaining annotations."""
base_dir = op.join(testing.data_path(download=False), 'EEGLAB')
raw_fname_mat = op.join(base_dir, 'test_raw.set')
raw_fname = raw_fname_mat
event_id = {'rt': 1, 'square': 2}
raw1 = read_raw_eeglab(input_fname=raw_fname, preload=False)
annotations = read_annotations(raw_fname)
assert len(raw1.annotations) == 154
raw1.set_annotations(annotations)
events_b, _ = events_from_annotations(raw1, event_id=event_id)
assert len(events_b) == 154
def _assert_array_allclose_nan(left, right):
assert_array_equal(np.isnan(left), np.isnan(right))
assert_allclose(left[~np.isnan(left)], right[~np.isnan(left)], atol=1e-8)
@pytest.fixture(scope='session')
def one_chanpos_fname(tmpdir_factory):
"""Test file with 3 channels to exercise EEGLAB reader.
File characteristics
- ch_names: 'F3', 'unknown', 'FPz'
- 'FPz' has no position information.
- the rest is aleatory
Notes from when this code was factorized:
# test reading file with one event (read old version)
"""
fname = str(tmpdir_factory.mktemp('data').join('test_chanpos.set'))
file_conent = dict(EEG={
'trials': 1, 'nbchan': 3, 'pnts': 3, 'epoch': [], 'event': [],
'srate': 128, 'times': np.array([0., 0.1, 0.2]),
'data': np.empty([3, 3]),
'chanlocs': np.array(
[(b'F3', 1., 4., 7.),
(b'unknown', 2., 5., 8.),
(b'FPz', np.nan, np.nan, np.nan)],
dtype=[('labels', 'S10'), ('X', 'f8'), ('Y', 'f8'), ('Z', 'f8')]
)
})
io.savemat(file_name=fname, mdict=file_conent, appendmat=False,
oned_as='row')
return fname
@testing.requires_testing_data
def test_position_information(one_chanpos_fname):
"""Test reading file with 3 channels - one without position information."""
nan = np.nan
EXPECTED_LOCATIONS_FROM_FILE = np.array([
[-4., 1., 7., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[-5., 2., 8., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan],
])
EXPECTED_LOCATIONS_FROM_MONTAGE = np.array([
[-0.56705965, 0.67706631, 0.46906776, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan],
[0, 0.99977915, -0.02101571, 0, 0, 0, 0, 0, 0, 0, 0, 0],
])
montage = _read_eeglab_montage(montage_path)
raw = read_raw_eeglab(input_fname=one_chanpos_fname, preload=True)
assert_array_equal(np.array([ch['loc'] for ch in raw.info['chs']]),
EXPECTED_LOCATIONS_FROM_FILE)
# To acomodate the new behavior so that:
# read_raw_eeglab(.. montage=montage) and raw.set_montage(montage)
# behaves the same we need to flush the montage. otherwise we get
# a mix of what is in montage and in the file
raw = read_raw_eeglab(
input_fname=one_chanpos_fname,
preload=True,
).set_montage(None) # Flush the montage builtin within input_fname
with pytest.raises(ValueError):
raw.set_montage(montage, update_ch_names=False)
_msg = (
'DigMontage is a only a subset of info. '
'Did not set 1 channel positions:\nunknown'
)
with pytest.warns(RuntimeWarning, match=_msg):
raw.set_montage(montage, update_ch_names=False, raise_if_subset=False)
_assert_array_allclose_nan(np.array([ch['loc'] for ch in raw.info['chs']]),
EXPECTED_LOCATIONS_FROM_MONTAGE)
run_tests_if_main()
|