File: test_pick.py

package info (click to toggle)
python-mne 0.19.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 100,440 kB
  • sloc: python: 120,243; pascal: 1,861; makefile: 225; sh: 15
file content (497 lines) | stat: -rw-r--r-- 21,177 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
from copy import deepcopy
import inspect
import os.path as op

from numpy.testing import assert_array_equal, assert_equal
import pytest
import numpy as np

from mne import (pick_channels_regexp, pick_types, Epochs,
                 read_forward_solution, rename_channels,
                 pick_info, pick_channels, create_info)
from mne import __file__ as _root_init_fname
from mne.io import (read_raw_fif, RawArray, read_raw_bti, read_raw_kit,
                    read_info)
from mne.io.pick import (channel_indices_by_type, channel_type,
                         pick_types_forward, _picks_by_type, _picks_to_idx,
                         get_channel_types, _DATA_CH_TYPES_SPLIT,
                         _contains_ch_type)
from mne.io.constants import FIFF
from mne.datasets import testing
from mne.utils import run_tests_if_main, catch_logging, assert_object_equal

io_dir = op.join(op.dirname(inspect.getfile(inspect.currentframe())), '..')
data_path = testing.data_path(download=False)
fname_meeg = op.join(data_path, 'MEG', 'sample',
                     'sample_audvis_trunc-meg-eeg-oct-4-fwd.fif')
fname_mc = op.join(data_path, 'SSS', 'test_move_anon_movecomp_raw_sss.fif')

base_dir = op.join(op.dirname(__file__), 'data')
ctf_fname = op.join(base_dir, 'test_ctf_raw.fif')


def _picks_by_type_old(info, meg_combined=False, ref_meg=False,
                       exclude='bads'):
    """Use the old, slower _picks_by_type code."""
    picks_list = []
    has = [_contains_ch_type(info, k) for k in _DATA_CH_TYPES_SPLIT]
    has = dict(zip(_DATA_CH_TYPES_SPLIT, has))
    if has['mag'] and (meg_combined is not True or not has['grad']):
        picks_list.append(
            ('mag', pick_types(info, meg='mag', eeg=False, stim=False,
                               ref_meg=ref_meg, exclude=exclude))
        )
    if has['grad'] and (meg_combined is not True or not has['mag']):
        picks_list.append(
            ('grad', pick_types(info, meg='grad', eeg=False, stim=False,
                                ref_meg=ref_meg, exclude=exclude))
        )
    if has['mag'] and has['grad'] and meg_combined is True:
        picks_list.append(
            ('meg', pick_types(info, meg=True, eeg=False, stim=False,
                               ref_meg=ref_meg, exclude=exclude))
        )
    for ch_type in _DATA_CH_TYPES_SPLIT:
        if ch_type in ['grad', 'mag']:  # exclude just MEG channels
            continue
        if has[ch_type]:
            picks_list.append(
                (ch_type, pick_types(info, meg=False, stim=False,
                                     ref_meg=ref_meg, exclude=exclude,
                                     **{ch_type: True}))
            )
    return picks_list


def _channel_type_old(info, idx):
    """Get channel type using old, slower scheme."""
    ch = info['chs'][idx]

    # iterate through all defined channel types until we find a match with ch
    for t, rules in get_channel_types().items():
        for key, vals in rules.items():  # all keys must match the values
            if ch.get(key, None) not in np.array(vals):
                break  # not channel type t, go to next iteration
        else:
            return t

    raise ValueError('Unknown channel type for {}'.format(ch["ch_name"]))


def _assert_channel_types(info):
    for k in range(info['nchan']):
        a, b = channel_type(info, k), _channel_type_old(info, k)
        assert a == b


def test_pick_refs():
    """Test picking of reference sensors."""
    infos = list()
    # KIT
    kit_dir = op.join(io_dir, 'kit', 'tests', 'data')
    sqd_path = op.join(kit_dir, 'test.sqd')
    mrk_path = op.join(kit_dir, 'test_mrk.sqd')
    elp_path = op.join(kit_dir, 'test_elp.txt')
    hsp_path = op.join(kit_dir, 'test_hsp.txt')
    raw_kit = read_raw_kit(sqd_path, mrk_path, elp_path, hsp_path)
    infos.append(raw_kit.info)
    # BTi
    bti_dir = op.join(io_dir, 'bti', 'tests', 'data')
    bti_pdf = op.join(bti_dir, 'test_pdf_linux')
    bti_config = op.join(bti_dir, 'test_config_linux')
    bti_hs = op.join(bti_dir, 'test_hs_linux')
    raw_bti = read_raw_bti(bti_pdf, bti_config, bti_hs, preload=False)
    infos.append(raw_bti.info)
    # CTF
    fname_ctf_raw = op.join(io_dir, 'tests', 'data', 'test_ctf_comp_raw.fif')
    raw_ctf = read_raw_fif(fname_ctf_raw)
    raw_ctf.apply_gradient_compensation(2)
    for info in infos:
        info['bads'] = []
        _assert_channel_types(info)
        pytest.raises(ValueError, pick_types, info, meg='foo')
        pytest.raises(ValueError, pick_types, info, ref_meg='foo')
        picks_meg_ref = pick_types(info, meg=True, ref_meg=True)
        picks_meg = pick_types(info, meg=True, ref_meg=False)
        picks_ref = pick_types(info, meg=False, ref_meg=True)
        assert_array_equal(picks_meg_ref,
                           np.sort(np.concatenate([picks_meg, picks_ref])))
        picks_grad = pick_types(info, meg='grad', ref_meg=False)
        picks_ref_grad = pick_types(info, meg=False, ref_meg='grad')
        picks_meg_ref_grad = pick_types(info, meg='grad', ref_meg='grad')
        assert_array_equal(picks_meg_ref_grad,
                           np.sort(np.concatenate([picks_grad,
                                                   picks_ref_grad])))
        picks_mag = pick_types(info, meg='mag', ref_meg=False)
        picks_ref_mag = pick_types(info, meg=False, ref_meg='mag')
        picks_meg_ref_mag = pick_types(info, meg='mag', ref_meg='mag')
        assert_array_equal(picks_meg_ref_mag,
                           np.sort(np.concatenate([picks_mag,
                                                   picks_ref_mag])))
        assert_array_equal(picks_meg,
                           np.sort(np.concatenate([picks_mag, picks_grad])))
        assert_array_equal(picks_ref,
                           np.sort(np.concatenate([picks_ref_mag,
                                                   picks_ref_grad])))
        assert_array_equal(picks_meg_ref, np.sort(np.concatenate(
            [picks_grad, picks_mag, picks_ref_grad, picks_ref_mag])))

        for pick in (picks_meg_ref, picks_meg, picks_ref,
                     picks_grad, picks_ref_grad, picks_meg_ref_grad,
                     picks_mag, picks_ref_mag, picks_meg_ref_mag):
            if len(pick) > 0:
                pick_info(info, pick)

    # test CTF expected failures directly
    info = raw_ctf.info
    info['bads'] = []
    picks_meg_ref = pick_types(info, meg=True, ref_meg=True)
    picks_meg = pick_types(info, meg=True, ref_meg=False)
    picks_ref = pick_types(info, meg=False, ref_meg=True)
    picks_mag = pick_types(info, meg='mag', ref_meg=False)
    picks_ref_mag = pick_types(info, meg=False, ref_meg='mag')
    picks_meg_ref_mag = pick_types(info, meg='mag', ref_meg='mag')
    for pick in (picks_meg_ref, picks_ref, picks_ref_mag, picks_meg_ref_mag):
        if len(pick) > 0:
            pick_info(info, pick)

    for pick in (picks_meg, picks_mag):
        if len(pick) > 0:
            with catch_logging() as log:
                pick_info(info, pick, verbose=True)
            assert ('Removing {} compensators'.format(len(info['comps']))
                    in log.getvalue())
    picks_ref_grad = pick_types(info, meg=False, ref_meg='grad')
    assert set(picks_ref_mag) == set(picks_ref)
    assert len(picks_ref_grad) == 0
    all_meg = np.arange(3, 306)
    assert_array_equal(np.concatenate([picks_ref, picks_meg]), all_meg)
    assert_array_equal(picks_meg_ref_mag, all_meg)


def test_pick_channels_regexp():
    """Test pick with regular expression."""
    ch_names = ['MEG 2331', 'MEG 2332', 'MEG 2333']
    assert_array_equal(pick_channels_regexp(ch_names, 'MEG ...1'), [0])
    assert_array_equal(pick_channels_regexp(ch_names, 'MEG ...[2-3]'), [1, 2])
    assert_array_equal(pick_channels_regexp(ch_names, 'MEG *'), [0, 1, 2])


def assert_indexing(info, picks_by_type, ref_meg=False, all_data=True):
    """Assert our indexing functions work properly."""
    # First that our old and new channel typing functions are equivalent
    _assert_channel_types(info)
    # Next that channel_indices_by_type works
    if not ref_meg:
        idx = channel_indices_by_type(info)
        for key in idx:
            for p in picks_by_type:
                if key == p[0]:
                    assert_array_equal(idx[key], p[1])
                    break
            else:
                assert len(idx[key]) == 0
    # Finally, picks_by_type (if relevant)
    if not all_data:
        picks_by_type = [p for p in picks_by_type
                         if p[0] in _DATA_CH_TYPES_SPLIT]
    picks_by_type = [(p[0], np.array(p[1], int)) for p in picks_by_type]
    actual = _picks_by_type(info, ref_meg=ref_meg)
    assert_object_equal(actual, picks_by_type)
    if not ref_meg and idx['hbo']:  # our old code had a bug
        with pytest.raises(TypeError, match='unexpected keyword argument'):
            _picks_by_type_old(info, ref_meg=ref_meg)
    else:
        old = _picks_by_type_old(info, ref_meg=ref_meg)
        assert_object_equal(old, picks_by_type)
    # test bads
    info = info.copy()
    info['bads'] = [info['chs'][picks_by_type[0][1][0]]['ch_name']]
    picks_by_type = deepcopy(picks_by_type)
    picks_by_type[0] = (picks_by_type[0][0], picks_by_type[0][1][1:])
    actual = _picks_by_type(info, ref_meg=ref_meg)
    assert_object_equal(actual, picks_by_type)


def test_pick_seeg_ecog():
    """Test picking with sEEG and ECoG."""
    names = 'A1 A2 Fz O OTp1 OTp2 E1 OTp3 E2 E3'.split()
    types = 'mag mag eeg eeg seeg seeg ecog seeg ecog ecog'.split()
    info = create_info(names, 1024., types)
    picks_by_type = [('mag', [0, 1]), ('eeg', [2, 3]),
                     ('seeg', [4, 5, 7]), ('ecog', [6, 8, 9])]
    assert_indexing(info, picks_by_type)
    assert_array_equal(pick_types(info, meg=False, seeg=True), [4, 5, 7])
    for i, t in enumerate(types):
        assert_equal(channel_type(info, i), types[i])
    raw = RawArray(np.zeros((len(names), 10)), info)
    events = np.array([[1, 0, 0], [2, 0, 0]])
    epochs = Epochs(raw, events, {'event': 0}, -1e-5, 1e-5)
    evoked = epochs.average(pick_types(epochs.info, meg=True, seeg=True))
    e_seeg = evoked.copy().pick_types(meg=False, seeg=True)
    for l, r in zip(e_seeg.ch_names, [names[4], names[5], names[7]]):
        assert_equal(l, r)
    # Deal with constant debacle
    raw = read_raw_fif(op.join(io_dir, 'tests', 'data',
                               'test_chpi_raw_sss.fif'))
    assert_equal(len(pick_types(raw.info, meg=False, seeg=True, ecog=True)), 0)


def test_pick_chpi():
    """Test picking cHPI."""
    # Make sure we don't mis-classify cHPI channels
    info = read_info(op.join(io_dir, 'tests', 'data', 'test_chpi_raw_sss.fif'))
    _assert_channel_types(info)
    channel_types = {channel_type(info, idx) for idx in range(info['nchan'])}
    assert 'chpi' in channel_types
    assert 'seeg' not in channel_types
    assert 'ecog' not in channel_types


def test_pick_bio():
    """Test picking BIO channels."""
    names = 'A1 A2 Fz O BIO1 BIO2 BIO3'.split()
    types = 'mag mag eeg eeg bio bio bio'.split()
    info = create_info(names, 1024., types)
    picks_by_type = [('mag', [0, 1]), ('eeg', [2, 3]), ('bio', [4, 5, 6])]
    assert_indexing(info, picks_by_type, all_data=False)


def test_pick_fnirs():
    """Test picking fNIRS channels."""
    names = 'A1 A2 Fz O hbo1 hbo2 hbr1'.split()
    types = 'mag mag eeg eeg hbo hbo hbr'.split()
    info = create_info(names, 1024., types)
    picks_by_type = [('mag', [0, 1]), ('eeg', [2, 3]),
                     ('hbo', [4, 5]), ('hbr', [6])]
    assert_indexing(info, picks_by_type)


def test_pick_ref():
    """Test picking ref_meg channels."""
    info = read_info(ctf_fname)
    picks_by_type = [('stim', [0]), ('eog', [306, 307]), ('ecg', [308]),
                     ('misc', [1]),
                     ('mag', np.arange(31, 306)),
                     ('ref_meg', np.arange(2, 31))]
    assert_indexing(info, picks_by_type, all_data=False)
    picks_by_type.append(('mag', np.concatenate([picks_by_type.pop(-1)[1],
                                                 picks_by_type.pop(-1)[1]])))
    assert_indexing(info, picks_by_type, ref_meg=True, all_data=False)


def _check_fwd_n_chan_consistent(fwd, n_expected):
    n_ok = len(fwd['info']['ch_names'])
    n_sol = fwd['sol']['data'].shape[0]
    assert_equal(n_expected, n_sol)
    assert_equal(n_expected, n_ok)


@testing.requires_testing_data
def test_pick_forward_seeg_ecog():
    """Test picking forward with SEEG and ECoG."""
    fwd = read_forward_solution(fname_meeg)
    counts = channel_indices_by_type(fwd['info'])
    for key in counts.keys():
        counts[key] = len(counts[key])
    counts['meg'] = counts['mag'] + counts['grad']
    fwd_ = pick_types_forward(fwd, meg=True)
    _check_fwd_n_chan_consistent(fwd_, counts['meg'])
    fwd_ = pick_types_forward(fwd, meg=False, eeg=True)
    _check_fwd_n_chan_consistent(fwd_, counts['eeg'])
    # should raise exception related to emptiness
    pytest.raises(ValueError, pick_types_forward, fwd, meg=False, seeg=True)
    pytest.raises(ValueError, pick_types_forward, fwd, meg=False, ecog=True)
    # change last chan from EEG to sEEG, second-to-last to ECoG
    ecog_name = 'E1'
    seeg_name = 'OTp1'
    rename_channels(fwd['info'], {'EEG 059': ecog_name})
    rename_channels(fwd['info'], {'EEG 060': seeg_name})
    for ch in fwd['info']['chs']:
        if ch['ch_name'] == seeg_name:
            ch['kind'] = FIFF.FIFFV_SEEG_CH
            ch['coil_type'] = FIFF.FIFFV_COIL_EEG
        elif ch['ch_name'] == ecog_name:
            ch['kind'] = FIFF.FIFFV_ECOG_CH
            ch['coil_type'] = FIFF.FIFFV_COIL_EEG
    fwd['sol']['row_names'][-1] = fwd['info']['chs'][-1]['ch_name']
    fwd['sol']['row_names'][-2] = fwd['info']['chs'][-2]['ch_name']
    counts['eeg'] -= 2
    counts['seeg'] += 1
    counts['ecog'] += 1
    # repick & check
    fwd_seeg = pick_types_forward(fwd, meg=False, seeg=True)
    assert_equal(fwd_seeg['sol']['row_names'], [seeg_name])
    assert_equal(fwd_seeg['info']['ch_names'], [seeg_name])
    # should work fine
    fwd_ = pick_types_forward(fwd, meg=True)
    _check_fwd_n_chan_consistent(fwd_, counts['meg'])
    fwd_ = pick_types_forward(fwd, meg=False, eeg=True)
    _check_fwd_n_chan_consistent(fwd_, counts['eeg'])
    fwd_ = pick_types_forward(fwd, meg=False, seeg=True)
    _check_fwd_n_chan_consistent(fwd_, counts['seeg'])
    fwd_ = pick_types_forward(fwd, meg=False, ecog=True)
    _check_fwd_n_chan_consistent(fwd_, counts['ecog'])


def test_picks_by_channels():
    """Test creating pick_lists."""
    rng = np.random.RandomState(909)

    test_data = rng.random_sample((4, 2000))
    ch_names = ['MEG %03d' % i for i in [1, 2, 3, 4]]
    ch_types = ['grad', 'mag', 'mag', 'eeg']
    sfreq = 250.0
    info = create_info(ch_names=ch_names, sfreq=sfreq, ch_types=ch_types)
    _assert_channel_types(info)
    raw = RawArray(test_data, info)

    pick_list = _picks_by_type(raw.info)
    assert_equal(len(pick_list), 3)
    assert_equal(pick_list[0][0], 'mag')
    pick_list2 = _picks_by_type(raw.info, meg_combined=False)
    assert_equal(len(pick_list), len(pick_list2))
    assert_equal(pick_list2[0][0], 'mag')

    pick_list2 = _picks_by_type(raw.info, meg_combined=True)
    assert_equal(len(pick_list), len(pick_list2) + 1)
    assert_equal(pick_list2[0][0], 'meg')

    test_data = rng.random_sample((4, 2000))
    ch_names = ['MEG %03d' % i for i in [1, 2, 3, 4]]
    ch_types = ['mag', 'mag', 'mag', 'mag']
    sfreq = 250.0
    info = create_info(ch_names=ch_names, sfreq=sfreq, ch_types=ch_types)
    raw = RawArray(test_data, info)
    # This acts as a set, not an order
    assert_array_equal(pick_channels(info['ch_names'], ['MEG 002', 'MEG 001']),
                       [0, 1])

    # Make sure checks for list input work.
    pytest.raises(ValueError, pick_channels, ch_names, 'MEG 001')
    pytest.raises(ValueError, pick_channels, ch_names, ['MEG 001'], 'hi')

    pick_list = _picks_by_type(raw.info)
    assert_equal(len(pick_list), 1)
    assert_equal(pick_list[0][0], 'mag')
    pick_list2 = _picks_by_type(raw.info, meg_combined=True)
    assert_equal(len(pick_list), len(pick_list2))
    assert_equal(pick_list2[0][0], 'mag')

    # pick_types type check
    pytest.raises(ValueError, raw.pick_types, eeg='string')

    # duplicate check
    names = ['MEG 002', 'MEG 002']
    assert len(pick_channels(raw.info['ch_names'], names)) == 1
    assert len(raw.copy().pick_channels(names)[0][0]) == 1


def test_clean_info_bads():
    """Test cleaning info['bads'] when bad_channels are excluded."""
    raw_file = op.join(op.dirname(_root_init_fname), 'io', 'tests', 'data',
                       'test_raw.fif')
    raw = read_raw_fif(raw_file)
    _assert_channel_types(raw.info)

    # select eeg channels
    picks_eeg = pick_types(raw.info, meg=False, eeg=True)

    # select 3 eeg channels as bads
    idx_eeg_bad_ch = picks_eeg[[1, 5, 14]]
    eeg_bad_ch = [raw.info['ch_names'][k] for k in idx_eeg_bad_ch]

    # select meg channels
    picks_meg = pick_types(raw.info, meg=True, eeg=False)

    # select randomly 3 meg channels as bads
    idx_meg_bad_ch = picks_meg[[0, 15, 34]]
    meg_bad_ch = [raw.info['ch_names'][k] for k in idx_meg_bad_ch]

    # simulate the bad channels
    raw.info['bads'] = eeg_bad_ch + meg_bad_ch

    # simulate the call to pick_info excluding the bad eeg channels
    info_eeg = pick_info(raw.info, picks_eeg)

    # simulate the call to pick_info excluding the bad meg channels
    info_meg = pick_info(raw.info, picks_meg)

    assert_equal(info_eeg['bads'], eeg_bad_ch)
    assert_equal(info_meg['bads'], meg_bad_ch)

    info = pick_info(raw.info, picks_meg)
    info._check_consistency()
    info['bads'] += ['EEG 053']
    pytest.raises(RuntimeError, info._check_consistency)
    with pytest.raises(ValueError, match='unique'):
        pick_info(raw.info, [0, 0])


@testing.requires_testing_data
def test_picks_to_idx():
    """Test checking type integrity checks of picks."""
    info = create_info(12, 1000., 'eeg')
    _assert_channel_types(info)
    picks = np.arange(info['nchan'])
    # Array and list
    assert_array_equal(picks, _picks_to_idx(info, picks))
    assert_array_equal(picks, _picks_to_idx(info, list(picks)))
    with pytest.raises(TypeError, match='data type of float64'):
        _picks_to_idx(info, 1.)
    # None
    assert_array_equal(picks, _picks_to_idx(info, None))
    # Type indexing
    assert_array_equal(picks, _picks_to_idx(info, 'eeg'))
    assert_array_equal(picks, _picks_to_idx(info, ['eeg']))
    # Negative indexing
    assert_array_equal([len(picks) - 1], _picks_to_idx(info, len(picks) - 1))
    assert_array_equal([len(picks) - 1], _picks_to_idx(info, -1))
    assert_array_equal([len(picks) - 1], _picks_to_idx(info, [-1]))
    # Name indexing
    assert_array_equal([2], _picks_to_idx(info, info['ch_names'][2]))
    assert_array_equal(np.arange(5, 9),
                       _picks_to_idx(info, info['ch_names'][5:9]))
    with pytest.raises(ValueError, match='must be >= '):
        _picks_to_idx(info, -len(picks) - 1)
    with pytest.raises(ValueError, match='must be < '):
        _picks_to_idx(info, len(picks))
    with pytest.raises(ValueError, match='could not be interpreted'):
        _picks_to_idx(info, ['a', 'b'])
    with pytest.raises(ValueError, match='could not be interpreted'):
        _picks_to_idx(info, 'b')
    # bads behavior
    info['bads'] = info['ch_names'][1:2]
    picks_good = np.array([0] + list(range(2, 12)))
    assert_array_equal(picks_good, _picks_to_idx(info, None))
    assert_array_equal(picks_good, _picks_to_idx(info, None,
                                                 exclude=info['bads']))
    assert_array_equal(picks, _picks_to_idx(info, None, exclude=()))
    with pytest.raises(ValueError, match=' 1D, got'):
        _picks_to_idx(info, [[1]])
    # MEG types
    info = read_info(fname_mc)
    meg_picks = np.arange(306)
    mag_picks = np.arange(2, 306, 3)
    grad_picks = np.setdiff1d(meg_picks, mag_picks)
    assert_array_equal(meg_picks, _picks_to_idx(info, 'meg'))
    assert_array_equal(meg_picks, _picks_to_idx(info, ('mag', 'grad')))
    assert_array_equal(mag_picks, _picks_to_idx(info, 'mag'))
    assert_array_equal(grad_picks, _picks_to_idx(info, 'grad'))

    info = create_info(['eeg', 'foo'], 1000., 'eeg')
    with pytest.raises(RuntimeError, match='equivalent to channel types'):
        _picks_to_idx(info, 'eeg')
    with pytest.raises(ValueError, match='same length'):
        create_info(['a', 'b'], 1000., dict(hbo=['a'], hbr=['b']))
    info = create_info(['a', 'b'], 1000., ['hbo', 'hbr'])
    assert_array_equal(np.arange(2), _picks_to_idx(info, 'fnirs'))
    assert_array_equal([0], _picks_to_idx(info, 'hbo'))
    assert_array_equal([1], _picks_to_idx(info, 'hbr'))
    info = create_info(['a', 'b'], 1000., ['hbo', 'misc'])
    assert_array_equal(np.arange(len(info['ch_names'])),
                       _picks_to_idx(info, 'all'))
    assert_array_equal([0], _picks_to_idx(info, 'data'))


run_tests_if_main()