1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
|
from copy import deepcopy
import inspect
import os.path as op
from numpy.testing import assert_array_equal, assert_equal
import pytest
import numpy as np
from mne import (pick_channels_regexp, pick_types, Epochs,
read_forward_solution, rename_channels,
pick_info, pick_channels, create_info)
from mne import __file__ as _root_init_fname
from mne.io import (read_raw_fif, RawArray, read_raw_bti, read_raw_kit,
read_info)
from mne.io.pick import (channel_indices_by_type, channel_type,
pick_types_forward, _picks_by_type, _picks_to_idx,
get_channel_types, _DATA_CH_TYPES_SPLIT,
_contains_ch_type)
from mne.io.constants import FIFF
from mne.datasets import testing
from mne.utils import run_tests_if_main, catch_logging, assert_object_equal
io_dir = op.join(op.dirname(inspect.getfile(inspect.currentframe())), '..')
data_path = testing.data_path(download=False)
fname_meeg = op.join(data_path, 'MEG', 'sample',
'sample_audvis_trunc-meg-eeg-oct-4-fwd.fif')
fname_mc = op.join(data_path, 'SSS', 'test_move_anon_movecomp_raw_sss.fif')
base_dir = op.join(op.dirname(__file__), 'data')
ctf_fname = op.join(base_dir, 'test_ctf_raw.fif')
def _picks_by_type_old(info, meg_combined=False, ref_meg=False,
exclude='bads'):
"""Use the old, slower _picks_by_type code."""
picks_list = []
has = [_contains_ch_type(info, k) for k in _DATA_CH_TYPES_SPLIT]
has = dict(zip(_DATA_CH_TYPES_SPLIT, has))
if has['mag'] and (meg_combined is not True or not has['grad']):
picks_list.append(
('mag', pick_types(info, meg='mag', eeg=False, stim=False,
ref_meg=ref_meg, exclude=exclude))
)
if has['grad'] and (meg_combined is not True or not has['mag']):
picks_list.append(
('grad', pick_types(info, meg='grad', eeg=False, stim=False,
ref_meg=ref_meg, exclude=exclude))
)
if has['mag'] and has['grad'] and meg_combined is True:
picks_list.append(
('meg', pick_types(info, meg=True, eeg=False, stim=False,
ref_meg=ref_meg, exclude=exclude))
)
for ch_type in _DATA_CH_TYPES_SPLIT:
if ch_type in ['grad', 'mag']: # exclude just MEG channels
continue
if has[ch_type]:
picks_list.append(
(ch_type, pick_types(info, meg=False, stim=False,
ref_meg=ref_meg, exclude=exclude,
**{ch_type: True}))
)
return picks_list
def _channel_type_old(info, idx):
"""Get channel type using old, slower scheme."""
ch = info['chs'][idx]
# iterate through all defined channel types until we find a match with ch
for t, rules in get_channel_types().items():
for key, vals in rules.items(): # all keys must match the values
if ch.get(key, None) not in np.array(vals):
break # not channel type t, go to next iteration
else:
return t
raise ValueError('Unknown channel type for {}'.format(ch["ch_name"]))
def _assert_channel_types(info):
for k in range(info['nchan']):
a, b = channel_type(info, k), _channel_type_old(info, k)
assert a == b
def test_pick_refs():
"""Test picking of reference sensors."""
infos = list()
# KIT
kit_dir = op.join(io_dir, 'kit', 'tests', 'data')
sqd_path = op.join(kit_dir, 'test.sqd')
mrk_path = op.join(kit_dir, 'test_mrk.sqd')
elp_path = op.join(kit_dir, 'test_elp.txt')
hsp_path = op.join(kit_dir, 'test_hsp.txt')
raw_kit = read_raw_kit(sqd_path, mrk_path, elp_path, hsp_path)
infos.append(raw_kit.info)
# BTi
bti_dir = op.join(io_dir, 'bti', 'tests', 'data')
bti_pdf = op.join(bti_dir, 'test_pdf_linux')
bti_config = op.join(bti_dir, 'test_config_linux')
bti_hs = op.join(bti_dir, 'test_hs_linux')
raw_bti = read_raw_bti(bti_pdf, bti_config, bti_hs, preload=False)
infos.append(raw_bti.info)
# CTF
fname_ctf_raw = op.join(io_dir, 'tests', 'data', 'test_ctf_comp_raw.fif')
raw_ctf = read_raw_fif(fname_ctf_raw)
raw_ctf.apply_gradient_compensation(2)
for info in infos:
info['bads'] = []
_assert_channel_types(info)
pytest.raises(ValueError, pick_types, info, meg='foo')
pytest.raises(ValueError, pick_types, info, ref_meg='foo')
picks_meg_ref = pick_types(info, meg=True, ref_meg=True)
picks_meg = pick_types(info, meg=True, ref_meg=False)
picks_ref = pick_types(info, meg=False, ref_meg=True)
assert_array_equal(picks_meg_ref,
np.sort(np.concatenate([picks_meg, picks_ref])))
picks_grad = pick_types(info, meg='grad', ref_meg=False)
picks_ref_grad = pick_types(info, meg=False, ref_meg='grad')
picks_meg_ref_grad = pick_types(info, meg='grad', ref_meg='grad')
assert_array_equal(picks_meg_ref_grad,
np.sort(np.concatenate([picks_grad,
picks_ref_grad])))
picks_mag = pick_types(info, meg='mag', ref_meg=False)
picks_ref_mag = pick_types(info, meg=False, ref_meg='mag')
picks_meg_ref_mag = pick_types(info, meg='mag', ref_meg='mag')
assert_array_equal(picks_meg_ref_mag,
np.sort(np.concatenate([picks_mag,
picks_ref_mag])))
assert_array_equal(picks_meg,
np.sort(np.concatenate([picks_mag, picks_grad])))
assert_array_equal(picks_ref,
np.sort(np.concatenate([picks_ref_mag,
picks_ref_grad])))
assert_array_equal(picks_meg_ref, np.sort(np.concatenate(
[picks_grad, picks_mag, picks_ref_grad, picks_ref_mag])))
for pick in (picks_meg_ref, picks_meg, picks_ref,
picks_grad, picks_ref_grad, picks_meg_ref_grad,
picks_mag, picks_ref_mag, picks_meg_ref_mag):
if len(pick) > 0:
pick_info(info, pick)
# test CTF expected failures directly
info = raw_ctf.info
info['bads'] = []
picks_meg_ref = pick_types(info, meg=True, ref_meg=True)
picks_meg = pick_types(info, meg=True, ref_meg=False)
picks_ref = pick_types(info, meg=False, ref_meg=True)
picks_mag = pick_types(info, meg='mag', ref_meg=False)
picks_ref_mag = pick_types(info, meg=False, ref_meg='mag')
picks_meg_ref_mag = pick_types(info, meg='mag', ref_meg='mag')
for pick in (picks_meg_ref, picks_ref, picks_ref_mag, picks_meg_ref_mag):
if len(pick) > 0:
pick_info(info, pick)
for pick in (picks_meg, picks_mag):
if len(pick) > 0:
with catch_logging() as log:
pick_info(info, pick, verbose=True)
assert ('Removing {} compensators'.format(len(info['comps']))
in log.getvalue())
picks_ref_grad = pick_types(info, meg=False, ref_meg='grad')
assert set(picks_ref_mag) == set(picks_ref)
assert len(picks_ref_grad) == 0
all_meg = np.arange(3, 306)
assert_array_equal(np.concatenate([picks_ref, picks_meg]), all_meg)
assert_array_equal(picks_meg_ref_mag, all_meg)
def test_pick_channels_regexp():
"""Test pick with regular expression."""
ch_names = ['MEG 2331', 'MEG 2332', 'MEG 2333']
assert_array_equal(pick_channels_regexp(ch_names, 'MEG ...1'), [0])
assert_array_equal(pick_channels_regexp(ch_names, 'MEG ...[2-3]'), [1, 2])
assert_array_equal(pick_channels_regexp(ch_names, 'MEG *'), [0, 1, 2])
def assert_indexing(info, picks_by_type, ref_meg=False, all_data=True):
"""Assert our indexing functions work properly."""
# First that our old and new channel typing functions are equivalent
_assert_channel_types(info)
# Next that channel_indices_by_type works
if not ref_meg:
idx = channel_indices_by_type(info)
for key in idx:
for p in picks_by_type:
if key == p[0]:
assert_array_equal(idx[key], p[1])
break
else:
assert len(idx[key]) == 0
# Finally, picks_by_type (if relevant)
if not all_data:
picks_by_type = [p for p in picks_by_type
if p[0] in _DATA_CH_TYPES_SPLIT]
picks_by_type = [(p[0], np.array(p[1], int)) for p in picks_by_type]
actual = _picks_by_type(info, ref_meg=ref_meg)
assert_object_equal(actual, picks_by_type)
if not ref_meg and idx['hbo']: # our old code had a bug
with pytest.raises(TypeError, match='unexpected keyword argument'):
_picks_by_type_old(info, ref_meg=ref_meg)
else:
old = _picks_by_type_old(info, ref_meg=ref_meg)
assert_object_equal(old, picks_by_type)
# test bads
info = info.copy()
info['bads'] = [info['chs'][picks_by_type[0][1][0]]['ch_name']]
picks_by_type = deepcopy(picks_by_type)
picks_by_type[0] = (picks_by_type[0][0], picks_by_type[0][1][1:])
actual = _picks_by_type(info, ref_meg=ref_meg)
assert_object_equal(actual, picks_by_type)
def test_pick_seeg_ecog():
"""Test picking with sEEG and ECoG."""
names = 'A1 A2 Fz O OTp1 OTp2 E1 OTp3 E2 E3'.split()
types = 'mag mag eeg eeg seeg seeg ecog seeg ecog ecog'.split()
info = create_info(names, 1024., types)
picks_by_type = [('mag', [0, 1]), ('eeg', [2, 3]),
('seeg', [4, 5, 7]), ('ecog', [6, 8, 9])]
assert_indexing(info, picks_by_type)
assert_array_equal(pick_types(info, meg=False, seeg=True), [4, 5, 7])
for i, t in enumerate(types):
assert_equal(channel_type(info, i), types[i])
raw = RawArray(np.zeros((len(names), 10)), info)
events = np.array([[1, 0, 0], [2, 0, 0]])
epochs = Epochs(raw, events, {'event': 0}, -1e-5, 1e-5)
evoked = epochs.average(pick_types(epochs.info, meg=True, seeg=True))
e_seeg = evoked.copy().pick_types(meg=False, seeg=True)
for l, r in zip(e_seeg.ch_names, [names[4], names[5], names[7]]):
assert_equal(l, r)
# Deal with constant debacle
raw = read_raw_fif(op.join(io_dir, 'tests', 'data',
'test_chpi_raw_sss.fif'))
assert_equal(len(pick_types(raw.info, meg=False, seeg=True, ecog=True)), 0)
def test_pick_chpi():
"""Test picking cHPI."""
# Make sure we don't mis-classify cHPI channels
info = read_info(op.join(io_dir, 'tests', 'data', 'test_chpi_raw_sss.fif'))
_assert_channel_types(info)
channel_types = {channel_type(info, idx) for idx in range(info['nchan'])}
assert 'chpi' in channel_types
assert 'seeg' not in channel_types
assert 'ecog' not in channel_types
def test_pick_bio():
"""Test picking BIO channels."""
names = 'A1 A2 Fz O BIO1 BIO2 BIO3'.split()
types = 'mag mag eeg eeg bio bio bio'.split()
info = create_info(names, 1024., types)
picks_by_type = [('mag', [0, 1]), ('eeg', [2, 3]), ('bio', [4, 5, 6])]
assert_indexing(info, picks_by_type, all_data=False)
def test_pick_fnirs():
"""Test picking fNIRS channels."""
names = 'A1 A2 Fz O hbo1 hbo2 hbr1'.split()
types = 'mag mag eeg eeg hbo hbo hbr'.split()
info = create_info(names, 1024., types)
picks_by_type = [('mag', [0, 1]), ('eeg', [2, 3]),
('hbo', [4, 5]), ('hbr', [6])]
assert_indexing(info, picks_by_type)
def test_pick_ref():
"""Test picking ref_meg channels."""
info = read_info(ctf_fname)
picks_by_type = [('stim', [0]), ('eog', [306, 307]), ('ecg', [308]),
('misc', [1]),
('mag', np.arange(31, 306)),
('ref_meg', np.arange(2, 31))]
assert_indexing(info, picks_by_type, all_data=False)
picks_by_type.append(('mag', np.concatenate([picks_by_type.pop(-1)[1],
picks_by_type.pop(-1)[1]])))
assert_indexing(info, picks_by_type, ref_meg=True, all_data=False)
def _check_fwd_n_chan_consistent(fwd, n_expected):
n_ok = len(fwd['info']['ch_names'])
n_sol = fwd['sol']['data'].shape[0]
assert_equal(n_expected, n_sol)
assert_equal(n_expected, n_ok)
@testing.requires_testing_data
def test_pick_forward_seeg_ecog():
"""Test picking forward with SEEG and ECoG."""
fwd = read_forward_solution(fname_meeg)
counts = channel_indices_by_type(fwd['info'])
for key in counts.keys():
counts[key] = len(counts[key])
counts['meg'] = counts['mag'] + counts['grad']
fwd_ = pick_types_forward(fwd, meg=True)
_check_fwd_n_chan_consistent(fwd_, counts['meg'])
fwd_ = pick_types_forward(fwd, meg=False, eeg=True)
_check_fwd_n_chan_consistent(fwd_, counts['eeg'])
# should raise exception related to emptiness
pytest.raises(ValueError, pick_types_forward, fwd, meg=False, seeg=True)
pytest.raises(ValueError, pick_types_forward, fwd, meg=False, ecog=True)
# change last chan from EEG to sEEG, second-to-last to ECoG
ecog_name = 'E1'
seeg_name = 'OTp1'
rename_channels(fwd['info'], {'EEG 059': ecog_name})
rename_channels(fwd['info'], {'EEG 060': seeg_name})
for ch in fwd['info']['chs']:
if ch['ch_name'] == seeg_name:
ch['kind'] = FIFF.FIFFV_SEEG_CH
ch['coil_type'] = FIFF.FIFFV_COIL_EEG
elif ch['ch_name'] == ecog_name:
ch['kind'] = FIFF.FIFFV_ECOG_CH
ch['coil_type'] = FIFF.FIFFV_COIL_EEG
fwd['sol']['row_names'][-1] = fwd['info']['chs'][-1]['ch_name']
fwd['sol']['row_names'][-2] = fwd['info']['chs'][-2]['ch_name']
counts['eeg'] -= 2
counts['seeg'] += 1
counts['ecog'] += 1
# repick & check
fwd_seeg = pick_types_forward(fwd, meg=False, seeg=True)
assert_equal(fwd_seeg['sol']['row_names'], [seeg_name])
assert_equal(fwd_seeg['info']['ch_names'], [seeg_name])
# should work fine
fwd_ = pick_types_forward(fwd, meg=True)
_check_fwd_n_chan_consistent(fwd_, counts['meg'])
fwd_ = pick_types_forward(fwd, meg=False, eeg=True)
_check_fwd_n_chan_consistent(fwd_, counts['eeg'])
fwd_ = pick_types_forward(fwd, meg=False, seeg=True)
_check_fwd_n_chan_consistent(fwd_, counts['seeg'])
fwd_ = pick_types_forward(fwd, meg=False, ecog=True)
_check_fwd_n_chan_consistent(fwd_, counts['ecog'])
def test_picks_by_channels():
"""Test creating pick_lists."""
rng = np.random.RandomState(909)
test_data = rng.random_sample((4, 2000))
ch_names = ['MEG %03d' % i for i in [1, 2, 3, 4]]
ch_types = ['grad', 'mag', 'mag', 'eeg']
sfreq = 250.0
info = create_info(ch_names=ch_names, sfreq=sfreq, ch_types=ch_types)
_assert_channel_types(info)
raw = RawArray(test_data, info)
pick_list = _picks_by_type(raw.info)
assert_equal(len(pick_list), 3)
assert_equal(pick_list[0][0], 'mag')
pick_list2 = _picks_by_type(raw.info, meg_combined=False)
assert_equal(len(pick_list), len(pick_list2))
assert_equal(pick_list2[0][0], 'mag')
pick_list2 = _picks_by_type(raw.info, meg_combined=True)
assert_equal(len(pick_list), len(pick_list2) + 1)
assert_equal(pick_list2[0][0], 'meg')
test_data = rng.random_sample((4, 2000))
ch_names = ['MEG %03d' % i for i in [1, 2, 3, 4]]
ch_types = ['mag', 'mag', 'mag', 'mag']
sfreq = 250.0
info = create_info(ch_names=ch_names, sfreq=sfreq, ch_types=ch_types)
raw = RawArray(test_data, info)
# This acts as a set, not an order
assert_array_equal(pick_channels(info['ch_names'], ['MEG 002', 'MEG 001']),
[0, 1])
# Make sure checks for list input work.
pytest.raises(ValueError, pick_channels, ch_names, 'MEG 001')
pytest.raises(ValueError, pick_channels, ch_names, ['MEG 001'], 'hi')
pick_list = _picks_by_type(raw.info)
assert_equal(len(pick_list), 1)
assert_equal(pick_list[0][0], 'mag')
pick_list2 = _picks_by_type(raw.info, meg_combined=True)
assert_equal(len(pick_list), len(pick_list2))
assert_equal(pick_list2[0][0], 'mag')
# pick_types type check
pytest.raises(ValueError, raw.pick_types, eeg='string')
# duplicate check
names = ['MEG 002', 'MEG 002']
assert len(pick_channels(raw.info['ch_names'], names)) == 1
assert len(raw.copy().pick_channels(names)[0][0]) == 1
def test_clean_info_bads():
"""Test cleaning info['bads'] when bad_channels are excluded."""
raw_file = op.join(op.dirname(_root_init_fname), 'io', 'tests', 'data',
'test_raw.fif')
raw = read_raw_fif(raw_file)
_assert_channel_types(raw.info)
# select eeg channels
picks_eeg = pick_types(raw.info, meg=False, eeg=True)
# select 3 eeg channels as bads
idx_eeg_bad_ch = picks_eeg[[1, 5, 14]]
eeg_bad_ch = [raw.info['ch_names'][k] for k in idx_eeg_bad_ch]
# select meg channels
picks_meg = pick_types(raw.info, meg=True, eeg=False)
# select randomly 3 meg channels as bads
idx_meg_bad_ch = picks_meg[[0, 15, 34]]
meg_bad_ch = [raw.info['ch_names'][k] for k in idx_meg_bad_ch]
# simulate the bad channels
raw.info['bads'] = eeg_bad_ch + meg_bad_ch
# simulate the call to pick_info excluding the bad eeg channels
info_eeg = pick_info(raw.info, picks_eeg)
# simulate the call to pick_info excluding the bad meg channels
info_meg = pick_info(raw.info, picks_meg)
assert_equal(info_eeg['bads'], eeg_bad_ch)
assert_equal(info_meg['bads'], meg_bad_ch)
info = pick_info(raw.info, picks_meg)
info._check_consistency()
info['bads'] += ['EEG 053']
pytest.raises(RuntimeError, info._check_consistency)
with pytest.raises(ValueError, match='unique'):
pick_info(raw.info, [0, 0])
@testing.requires_testing_data
def test_picks_to_idx():
"""Test checking type integrity checks of picks."""
info = create_info(12, 1000., 'eeg')
_assert_channel_types(info)
picks = np.arange(info['nchan'])
# Array and list
assert_array_equal(picks, _picks_to_idx(info, picks))
assert_array_equal(picks, _picks_to_idx(info, list(picks)))
with pytest.raises(TypeError, match='data type of float64'):
_picks_to_idx(info, 1.)
# None
assert_array_equal(picks, _picks_to_idx(info, None))
# Type indexing
assert_array_equal(picks, _picks_to_idx(info, 'eeg'))
assert_array_equal(picks, _picks_to_idx(info, ['eeg']))
# Negative indexing
assert_array_equal([len(picks) - 1], _picks_to_idx(info, len(picks) - 1))
assert_array_equal([len(picks) - 1], _picks_to_idx(info, -1))
assert_array_equal([len(picks) - 1], _picks_to_idx(info, [-1]))
# Name indexing
assert_array_equal([2], _picks_to_idx(info, info['ch_names'][2]))
assert_array_equal(np.arange(5, 9),
_picks_to_idx(info, info['ch_names'][5:9]))
with pytest.raises(ValueError, match='must be >= '):
_picks_to_idx(info, -len(picks) - 1)
with pytest.raises(ValueError, match='must be < '):
_picks_to_idx(info, len(picks))
with pytest.raises(ValueError, match='could not be interpreted'):
_picks_to_idx(info, ['a', 'b'])
with pytest.raises(ValueError, match='could not be interpreted'):
_picks_to_idx(info, 'b')
# bads behavior
info['bads'] = info['ch_names'][1:2]
picks_good = np.array([0] + list(range(2, 12)))
assert_array_equal(picks_good, _picks_to_idx(info, None))
assert_array_equal(picks_good, _picks_to_idx(info, None,
exclude=info['bads']))
assert_array_equal(picks, _picks_to_idx(info, None, exclude=()))
with pytest.raises(ValueError, match=' 1D, got'):
_picks_to_idx(info, [[1]])
# MEG types
info = read_info(fname_mc)
meg_picks = np.arange(306)
mag_picks = np.arange(2, 306, 3)
grad_picks = np.setdiff1d(meg_picks, mag_picks)
assert_array_equal(meg_picks, _picks_to_idx(info, 'meg'))
assert_array_equal(meg_picks, _picks_to_idx(info, ('mag', 'grad')))
assert_array_equal(mag_picks, _picks_to_idx(info, 'mag'))
assert_array_equal(grad_picks, _picks_to_idx(info, 'grad'))
info = create_info(['eeg', 'foo'], 1000., 'eeg')
with pytest.raises(RuntimeError, match='equivalent to channel types'):
_picks_to_idx(info, 'eeg')
with pytest.raises(ValueError, match='same length'):
create_info(['a', 'b'], 1000., dict(hbo=['a'], hbr=['b']))
info = create_info(['a', 'b'], 1000., ['hbo', 'hbr'])
assert_array_equal(np.arange(2), _picks_to_idx(info, 'fnirs'))
assert_array_equal([0], _picks_to_idx(info, 'hbo'))
assert_array_equal([1], _picks_to_idx(info, 'hbr'))
info = create_info(['a', 'b'], 1000., ['hbo', 'misc'])
assert_array_equal(np.arange(len(info['ch_names'])),
_picks_to_idx(info, 'all'))
assert_array_equal([0], _picks_to_idx(info, 'data'))
run_tests_if_main()
|