File: test_inverse.py

package info (click to toggle)
python-mne 0.19.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 100,440 kB
  • sloc: python: 120,243; pascal: 1,861; makefile: 225; sh: 15
file content (898 lines) | stat: -rw-r--r-- 40,903 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
import os.path as op
from pathlib import Path
import re

import numpy as np
from numpy.testing import (assert_array_almost_equal, assert_equal,
                           assert_allclose, assert_array_equal,
                           assert_array_less)
from scipy import sparse

import pytest
import copy

import mne
from mne.datasets import testing
from mne.label import read_label, label_sign_flip
from mne.event import read_events
from mne.epochs import Epochs
from mne.forward import restrict_forward_to_stc, apply_forward, is_fixed_orient
from mne.source_estimate import read_source_estimate, VolSourceEstimate
from mne import (read_cov, read_forward_solution, read_evokeds, pick_types,
                 pick_types_forward, make_forward_solution, EvokedArray,
                 convert_forward_solution, Covariance, combine_evoked,
                 SourceEstimate, make_sphere_model, make_ad_hoc_cov,
                 pick_channels_forward)
from mne.io import read_raw_fif
from mne.io.proj import make_projector
from mne.minimum_norm.inverse import (apply_inverse, read_inverse_operator,
                                      apply_inverse_raw, apply_inverse_epochs,
                                      make_inverse_operator,
                                      write_inverse_operator,
                                      compute_rank_inverse,
                                      prepare_inverse_operator)
from mne.utils import _TempDir, run_tests_if_main, catch_logging

test_path = testing.data_path(download=False)
s_path = op.join(test_path, 'MEG', 'sample')
fname_fwd = op.join(s_path, 'sample_audvis_trunc-meg-eeg-oct-4-fwd.fif')
# Four inverses:
fname_full = op.join(s_path, 'sample_audvis_trunc-meg-eeg-oct-6-meg-inv.fif')
fname_inv = op.join(s_path, 'sample_audvis_trunc-meg-eeg-oct-4-meg-inv.fif')
fname_inv_fixed_nodepth = op.join(s_path,
                                  'sample_audvis_trunc-meg-eeg-oct-4-meg'
                                  '-nodepth-fixed-inv.fif')
fname_inv_fixed_depth = op.join(s_path,
                                'sample_audvis_trunc-meg-eeg-oct-4-meg'
                                '-fixed-inv.fif')
fname_inv_meeg_diag = op.join(s_path,
                              'sample_audvis_trunc-'
                              'meg-eeg-oct-4-meg-eeg-diagnoise-inv.fif')

fname_data = op.join(s_path, 'sample_audvis_trunc-ave.fif')
fname_cov = op.join(s_path, 'sample_audvis_trunc-cov.fif')
fname_raw = op.join(s_path, 'sample_audvis_trunc_raw.fif')
fname_raw_ctf = op.join(test_path, 'CTF', 'somMDYO-18av.ds')
fname_event = op.join(s_path, 'sample_audvis_trunc_raw-eve.fif')
fname_label = op.join(s_path, 'labels', '%s.label')
fname_vol_inv = op.join(s_path,
                        'sample_audvis_trunc-meg-vol-7-meg-inv.fif')
# trans and bem needed for channel reordering tests incl. forward computation
fname_trans = op.join(s_path, 'sample_audvis_trunc-trans.fif')
s_path_bem = op.join(test_path, 'subjects', 'sample', 'bem')
fname_bem = op.join(s_path_bem, 'sample-320-320-320-bem-sol.fif')
src_fname = op.join(s_path_bem, 'sample-oct-4-src.fif')

snr = 3.0
lambda2 = 1.0 / snr ** 2

last_keys = [None] * 10


def read_forward_solution_meg(fname, **kwargs):
    """Read MEG forward."""
    fwd = convert_forward_solution(read_forward_solution(fname), copy=False,
                                   **kwargs)
    fwd = pick_types_forward(fwd, meg=True, eeg=False)
    return fwd


def read_forward_solution_eeg(fname, **kwargs):
    """Read EEG forward."""
    fwd = convert_forward_solution(read_forward_solution(fname), copy=False,
                                   **kwargs)
    fwd = pick_types_forward(fwd, meg=False, eeg=True)
    return fwd


def _compare(a, b):
    """Compare two python objects."""
    global last_keys
    skip_types = ['whitener', 'proj', 'reginv', 'noisenorm', 'nchan',
                  'command_line', 'working_dir', 'mri_file', 'mri_id',
                  'scanno']
    try:
        if isinstance(a, dict):
            assert isinstance(b, dict)
            for k, v in a.items():
                if k not in b and k not in skip_types:
                    raise ValueError('First one had one second one didn\'t:\n'
                                     '%s not in %s' % (k, b.keys()))
                if k not in skip_types:
                    last_keys.pop()
                    last_keys = [k] + last_keys
                    _compare(v, b[k])
            for k in b.keys():
                if k not in a and k not in skip_types:
                    raise ValueError('Second one had one first one didn\'t:\n'
                                     '%s not in %s' % (k, sorted(a.keys())))
        elif isinstance(a, list):
            assert (len(a) == len(b))
            for i, j in zip(a, b):
                _compare(i, j)
        elif isinstance(a, sparse.csr.csr_matrix):
            assert_array_almost_equal(a.data, b.data)
            assert_equal(a.indices, b.indices)
            assert_equal(a.indptr, b.indptr)
        elif isinstance(a, np.ndarray):
            assert_array_almost_equal(a, b)
        else:
            assert a == b
    except Exception:
        print(last_keys)
        raise


def _compare_inverses_approx(inv_1, inv_2, evoked, rtol, atol,
                             depth_atol=1e-6, ctol=0.999999,
                             check_nn=True, check_K=True):
    """Compare inverses."""
    # depth prior
    if inv_1['depth_prior'] is not None:
        assert_allclose(inv_1['depth_prior']['data'],
                        inv_2['depth_prior']['data'], atol=depth_atol)
    else:
        assert (inv_2['depth_prior'] is None)
    # orient prior
    if inv_1['orient_prior'] is not None:
        assert_allclose(inv_1['orient_prior']['data'],
                        inv_2['orient_prior']['data'], atol=1e-7)
    else:
        assert (inv_2['orient_prior'] is None)
    # source cov
    assert_allclose(inv_1['source_cov']['data'], inv_2['source_cov']['data'],
                    atol=1e-7)
    for key in ('units', 'eigen_leads_weighted', 'nsource', 'coord_frame'):
        assert_equal(inv_1[key], inv_2[key], err_msg=key)
    assert_equal(inv_1['eigen_leads']['ncol'], inv_2['eigen_leads']['ncol'])
    K_1 = np.dot(inv_1['eigen_leads']['data'] * inv_1['sing'].astype(float),
                 inv_1['eigen_fields']['data'])
    K_2 = np.dot(inv_2['eigen_leads']['data'] * inv_2['sing'].astype(float),
                 inv_2['eigen_fields']['data'])
    # for free + surf ori, we only care about the ::2
    # (the other two dimensions have arbitrary direction)
    if inv_1['nsource'] * 3 == inv_1['source_nn'].shape[0]:
        # Technically this undersamples the free-orientation, non-surf-ori
        # inverse, but it's probably okay
        sl = slice(2, None, 3)
    else:
        sl = slice(None)
    if check_nn:
        assert_allclose(inv_1['source_nn'][sl], inv_2['source_nn'][sl],
                        atol=1e-4)
    if check_K:
        assert_allclose(np.abs(K_1[sl]), np.abs(K_2[sl]), rtol=rtol, atol=atol)

    # Now let's do some practical tests, too
    evoked = EvokedArray(np.eye(len(evoked.ch_names)), evoked.info)
    for method in ('MNE', 'dSPM'):
        stc_1 = apply_inverse(evoked, inv_1, lambda2, method)
        stc_2 = apply_inverse(evoked, inv_2, lambda2, method)
        assert_equal(stc_1.subject, stc_2.subject)
        assert_equal(stc_1.times, stc_2.times)
        stc_1 = stc_1.data
        stc_2 = stc_2.data
        norms = np.max(stc_1, axis=-1, keepdims=True)
        stc_1 /= norms
        stc_2 /= norms
        corr = np.corrcoef(stc_1.ravel(), stc_2.ravel())[0, 1]
        assert corr > ctol
        assert_allclose(stc_1, stc_2, rtol=rtol, atol=atol,
                        err_msg='%s: %s' % (method, corr))


def _compare_io(inv_op, out_file_ext='.fif'):
    """Compare inverse IO."""
    tempdir = _TempDir()
    if out_file_ext == '.fif':
        out_file = op.join(tempdir, 'test-inv.fif')
    elif out_file_ext == '.gz':
        out_file = op.join(tempdir, 'test-inv.fif.gz')
    else:
        raise ValueError('IO test could not complete')
    out_file = Path(out_file)
    # Test io operations
    inv_init = copy.deepcopy(inv_op)
    write_inverse_operator(out_file, inv_op)
    read_inv_op = read_inverse_operator(out_file)
    _compare(inv_init, read_inv_op)
    _compare(inv_init, inv_op)


def test_warn_inverse_operator(evoked, noise_cov):
    """Test MNE inverse warning without average EEG projection."""
    bad_info = evoked.info
    bad_info['projs'] = list()
    fwd_op = convert_forward_solution(read_forward_solution(fname_fwd),
                                      surf_ori=True, copy=False)
    noise_cov['projs'].pop(-1)  # get rid of avg EEG ref proj
    with pytest.warns(RuntimeWarning, match='reference'):
        make_inverse_operator(bad_info, fwd_op, noise_cov)


@pytest.mark.slowtest
def test_make_inverse_operator_loose(evoked):
    """Test MNE inverse computation (precomputed and non-precomputed)."""
    # Test old version of inverse computation starting from forward operator
    noise_cov = read_cov(fname_cov)
    inverse_operator = read_inverse_operator(fname_inv)
    fwd_op = convert_forward_solution(read_forward_solution_meg(fname_fwd),
                                      surf_ori=True, copy=False)
    with catch_logging() as log:
        with pytest.deprecated_call():  # limit_depth_chs
            my_inv_op = make_inverse_operator(
                evoked.info, fwd_op, noise_cov, loose=0.2, depth=0.8,
                limit_depth_chs=False, verbose=True)
    log = log.getvalue()
    assert 'MEG: rank 302 computed' in log
    assert 'limit = 1/%d' % fwd_op['nsource'] in log
    _compare_io(my_inv_op)
    assert_equal(inverse_operator['units'], 'Am')
    _compare_inverses_approx(my_inv_op, inverse_operator, evoked,
                             rtol=1e-2, atol=1e-5, depth_atol=1e-3)
    # Test MNE inverse computation starting from forward operator
    with catch_logging() as log:
        my_inv_op = make_inverse_operator(evoked.info, fwd_op, noise_cov,
                                          loose='auto', depth=0.8,
                                          fixed=False, verbose=True)
    log = log.getvalue()
    assert 'MEG: rank 302 computed from 305' in log
    _compare_io(my_inv_op)
    _compare_inverses_approx(my_inv_op, inverse_operator, evoked,
                             rtol=1e-3, atol=1e-5)
    assert ('dev_head_t' in my_inv_op['info'])
    assert ('mri_head_t' in my_inv_op)


@pytest.mark.slowtest
def test_inverse_operator_channel_ordering(evoked, noise_cov):
    """Test MNE inverse computation is immune to channel reorderings."""
    # These are with original ordering
    evoked_orig = evoked.copy()
    fwd_orig = make_forward_solution(evoked.info, fname_trans, src_fname,
                                     fname_bem, eeg=True, mindist=5.0)
    fwd_orig = convert_forward_solution(fwd_orig, surf_ori=True)
    depth = dict(exp=0.8, limit_depth_chs=False)
    with catch_logging() as log:
        inv_orig = make_inverse_operator(evoked.info, fwd_orig, noise_cov,
                                         loose=0.2, depth=depth, verbose=True)
    log = log.getvalue()
    assert 'limit = 1/%s' % fwd_orig['nsource'] in log
    stc_1 = apply_inverse(evoked, inv_orig, lambda2, "dSPM")

    # Assume that a raw reordering applies to both evoked and noise_cov,
    # so we don't need to create those from scratch. Just reorder them,
    # then try to apply the original inverse operator
    new_order = np.arange(len(evoked.info['ch_names']))
    randomiser = np.random.RandomState(42)
    randomiser.shuffle(new_order)
    evoked.data = evoked.data[new_order]
    evoked.info['chs'] = [evoked.info['chs'][n] for n in new_order]
    evoked.info._update_redundant()
    evoked.info._check_consistency()

    cov_ch_reorder = [c for c in evoked.info['ch_names']
                      if (c in noise_cov.ch_names)]

    new_order_cov = [noise_cov.ch_names.index(name) for name in cov_ch_reorder]
    noise_cov['data'] = noise_cov.data[np.ix_(new_order_cov, new_order_cov)]
    noise_cov['names'] = [noise_cov['names'][idx] for idx in new_order_cov]

    fwd_reorder = make_forward_solution(evoked.info, fname_trans, src_fname,
                                        fname_bem, eeg=True, mindist=5.0)
    fwd_reorder = convert_forward_solution(fwd_reorder, surf_ori=True)
    inv_reorder = make_inverse_operator(evoked.info, fwd_reorder, noise_cov,
                                        loose=0.2, depth=depth)

    stc_2 = apply_inverse(evoked, inv_reorder, lambda2, "dSPM")

    assert_equal(stc_1.subject, stc_2.subject)
    assert_array_equal(stc_1.times, stc_2.times)
    assert_allclose(stc_1.data, stc_2.data, rtol=1e-5, atol=1e-5)
    assert (inv_orig['units'] == inv_reorder['units'])

    # Reload with original ordering & apply reordered inverse
    evoked = evoked_orig
    noise_cov = read_cov(fname_cov)

    stc_3 = apply_inverse(evoked, inv_reorder, lambda2, "dSPM")
    assert_allclose(stc_1.data, stc_3.data, rtol=1e-5, atol=1e-5)


@pytest.mark.parametrize('method, lower, upper, depth', [
    ('MNE', 54, 57, dict(limit=None, combine_xyz=False, exp=1.)),  # DICS def
    ('MNE', 75, 80, dict(limit_depth_chs=False)),  # ancient MNE default
    ('MNE', 83, 87, 0.8),  # MNE default
    ('MNE', 89, 92, dict(limit_depth_chs='whiten')),  # sparse default
    ('dSPM', 96, 98, 0.8),
    ('sLORETA', 100, 100, 0.8),
    ('eLORETA', 100, 100, 0.8)])
def test_localization_bias_fixed(bias_params_fixed, method, lower, upper,
                                 depth):
    """Test inverse localization bias for fixed minimum-norm solvers."""
    evoked, fwd, noise_cov, _, want = bias_params_fixed
    fwd_use = convert_forward_solution(fwd, force_fixed=False)
    inv_fixed = make_inverse_operator(evoked.info, fwd_use, noise_cov,
                                      loose=0., depth=depth)
    loc = np.abs(apply_inverse(evoked, inv_fixed, lambda2, method).data)
    # Compute the percentage of sources for which there is no loc bias:
    perc = (want == np.argmax(loc, axis=0)).mean() * 100
    assert lower <= perc <= upper, method


@pytest.mark.parametrize('method, lower, upper, depth', [
    ('MNE', 32, 35, dict(limit=None, combine_xyz=False, exp=1.)),  # DICS def
    ('MNE', 78, 81, 0.8),  # MNE default
    ('MNE', 89, 92, dict(limit_depth_chs='whiten')),  # sparse default
    ('dSPM', 85, 87, 0.8),
    ('sLORETA', 100, 100, 0.8),
    ('eLORETA', 97, 100, 0.8)])
def test_localization_bias_loose(bias_params_fixed, method, lower, upper,
                                 depth):
    """Test inverse localization bias for loose minimum-norm solvers."""
    evoked, fwd, noise_cov, _, want = bias_params_fixed
    fwd = convert_forward_solution(fwd, surf_ori=False, force_fixed=False)
    assert not is_fixed_orient(fwd)
    inv_loose = make_inverse_operator(evoked.info, fwd, noise_cov, loose=0.2,
                                      depth=depth)
    loc = apply_inverse(evoked, inv_loose, lambda2, method).data
    assert (loc >= 0).all()
    # Compute the percentage of sources for which there is no loc bias:
    perc = (want == np.argmax(loc, axis=0)).mean() * 100
    assert lower <= perc <= upper, method


@pytest.mark.parametrize('method, lower, upper, kwargs, depth', [
    ('MNE', 21, 24, {}, dict(limit=None, combine_xyz=False, exp=1.)),  # DICS
    ('MNE', 35, 40, {}, dict(limit_depth_chs=False)),  # ancient default
    ('MNE', 45, 55, {}, 0.8),  # MNE default
    ('MNE', 65, 70, {}, dict(limit_depth_chs='whiten')),  # sparse default
    ('dSPM', 40, 45, {}, 0.8),
    ('sLORETA', 90, 95, {}, 0.8),
    ('eLORETA', 90, 95, dict(method_params=dict(force_equal=True)), 0.8),
    ('eLORETA', 100, 100, {}, 0.8)])
def test_localization_bias_free(bias_params_free, method, lower, upper,
                                kwargs, depth):
    """Test inverse localization bias for free minimum-norm solvers."""
    evoked, fwd, noise_cov, _, want = bias_params_free
    inv_free = make_inverse_operator(evoked.info, fwd, noise_cov, loose=1.,
                                     depth=depth)
    loc = apply_inverse(evoked, inv_free, lambda2, method,
                        pick_ori='vector', **kwargs).data
    loc = np.linalg.norm(loc, axis=1)
    # Compute the percentage of sources for which there is no loc bias:
    perc = (want == np.argmax(loc, axis=0)).mean() * 100
    assert lower <= perc <= upper, method


def test_apply_inverse_sphere(evoked):
    """Test applying an inverse with a sphere model (rank-deficient)."""
    evoked.pick_channels(evoked.ch_names[:306:8])
    evoked.info['projs'] = []
    cov = make_ad_hoc_cov(evoked.info)
    sphere = make_sphere_model('auto', 'auto', evoked.info)
    fwd = read_forward_solution(fname_fwd)
    vertices = [fwd['src'][0]['vertno'][::5],
                fwd['src'][1]['vertno'][::5]]
    stc = SourceEstimate(np.zeros((sum(len(v) for v in vertices), 1)),
                         vertices, 0., 1.)
    fwd = restrict_forward_to_stc(fwd, stc)
    fwd = make_forward_solution(evoked.info, fwd['mri_head_t'], fwd['src'],
                                sphere, mindist=5.)
    evoked = EvokedArray(fwd['sol']['data'].copy(), evoked.info)
    assert fwd['sol']['nrow'] == 39
    assert fwd['nsource'] == 101
    assert fwd['sol']['ncol'] == 303
    tempdir = _TempDir()
    temp_fname = op.join(tempdir, 'temp-inv.fif')
    inv = make_inverse_operator(evoked.info, fwd, cov, loose=1.)
    # This forces everything to be float32
    write_inverse_operator(temp_fname, inv)
    inv = read_inverse_operator(temp_fname)
    stc = apply_inverse(evoked, inv, method='eLORETA',
                        method_params=dict(eps=1e-2))
    # assert zero localization bias
    assert_array_equal(np.argmax(stc.data, axis=0),
                       np.repeat(np.arange(101), 3))


@pytest.mark.slowtest
def test_apply_inverse_operator(evoked):
    """Test MNE inverse application."""
    # use fname_inv as it will be faster than fname_full (fewer verts and chs)
    inverse_operator = read_inverse_operator(fname_inv)

    # Inverse has 306 channels - 4 proj = 302
    assert (compute_rank_inverse(inverse_operator) == 302)

    # Inverse has 306 channels - 4 proj = 302
    assert (compute_rank_inverse(inverse_operator) == 302)

    stc = apply_inverse(evoked, inverse_operator, lambda2, "MNE")
    assert stc.subject == 'sample'
    assert stc.data.min() > 0
    assert stc.data.max() < 13e-9
    assert stc.data.mean() > 1e-11

    # test if using prepared and not prepared inverse operator give the same
    # result
    inv_op = prepare_inverse_operator(inverse_operator, nave=evoked.nave,
                                      lambda2=lambda2, method="MNE")
    stc2 = apply_inverse(evoked, inv_op, lambda2, "MNE")
    assert_array_almost_equal(stc.data, stc2.data)
    assert_array_almost_equal(stc.times, stc2.times)

    # This is little more than a smoke test...
    stc = apply_inverse(evoked, inverse_operator, lambda2, "sLORETA")
    assert stc.subject == 'sample'
    assert stc.data.min() > 0
    assert stc.data.max() < 10.0
    assert stc.data.mean() > 0.1

    stc = apply_inverse(evoked, inverse_operator, lambda2, "eLORETA")
    assert stc.subject == 'sample'
    assert stc.data.min() > 0
    assert stc.data.max() < 3.0
    assert stc.data.mean() > 0.1

    stc = apply_inverse(evoked, inverse_operator, lambda2, "dSPM")
    assert stc.subject == 'sample'
    assert stc.data.min() > 0
    assert stc.data.max() < 35
    assert stc.data.mean() > 0.1

    # test without using a label (so delayed computation is used)
    label = read_label(fname_label % 'Aud-lh')
    stc = apply_inverse(evoked, inv_op, lambda2, "MNE")
    stc_label = apply_inverse(evoked, inv_op, lambda2, "MNE",
                              label=label)
    assert_equal(stc_label.subject, 'sample')
    label_stc = stc.in_label(label)
    assert label_stc.subject == 'sample'
    assert_allclose(stc_label.data, label_stc.data)

    # Test that no errors are raised with loose inverse ops and picking normals
    noise_cov = read_cov(fname_cov)
    fwd = read_forward_solution_meg(fname_fwd)
    inv_op_meg = make_inverse_operator(evoked.info, fwd, noise_cov, loose=1,
                                       fixed='auto', depth=None)
    apply_inverse(evoked, inv_op_meg, 1 / 9., method='MNE', pick_ori='normal')

    # Test we get errors when using custom ref or no average proj is present
    evoked.info['custom_ref_applied'] = True
    pytest.raises(ValueError, apply_inverse, evoked, inv_op, lambda2, "MNE")
    evoked.info['custom_ref_applied'] = False
    evoked.info['projs'] = []  # remove EEG proj
    pytest.raises(ValueError, apply_inverse, evoked, inv_op, lambda2, "MNE")

    # But test that we do not get EEG-related errors on MEG-only inv (gh-4650)
    apply_inverse(evoked, inv_op_meg, 1. / 9.)


def test_inverse_residual(evoked):
    """Test MNE inverse application."""
    # use fname_inv as it will be faster than fname_full (fewer verts and chs)
    evoked = evoked.pick_types()
    inv = read_inverse_operator(fname_inv_fixed_depth)
    fwd = read_forward_solution(fname_fwd)
    pick_channels_forward(fwd, evoked.ch_names, copy=False)
    fwd = convert_forward_solution(fwd, force_fixed=True, surf_ori=True)
    matcher = re.compile(r'.* ([0-9]?[0-9]?[0-9]?\.[0-9])% variance.*')
    for method in ('MNE', 'dSPM', 'sLORETA'):
        with catch_logging() as log:
            stc, residual = apply_inverse(
                evoked, inv, method=method, return_residual=True, verbose=True)
        log = log.getvalue()
        match = matcher.match(log.replace('\n', ' '))
        assert match is not None
        match = float(match.group(1))
        assert 45 < match < 50
        if method == 'MNE':  # must be first!
            recon = apply_forward(fwd, stc, evoked.info)
            proj_op = make_projector(evoked.info['projs'], evoked.ch_names)[0]
            recon.data[:] = np.dot(proj_op, recon.data)
            residual_fwd = evoked.copy()
            residual_fwd.data -= recon.data
        corr = np.corrcoef(residual_fwd.data.ravel(),
                           residual.data.ravel())[0, 1]
        assert corr > 0.999
    with catch_logging() as log:
        _, residual = apply_inverse(
            evoked, inv, 0., 'MNE', return_residual=True, verbose=True)
    log = log.getvalue()
    match = matcher.match(log.replace('\n', ' '))
    assert match is not None
    match = float(match.group(1))
    assert match == 100.
    assert_array_less(np.abs(residual.data), 1e-15)

    # Degenerate: we don't have the right representation for eLORETA for this
    with pytest.raises(ValueError, match='eLORETA does not .* support .*'):
        apply_inverse(evoked, inv, method="eLORETA", return_residual=True)


def test_make_inverse_operator_fixed(evoked, noise_cov):
    """Test MNE inverse computation (fixed orientation)."""
    fwd = read_forward_solution_meg(fname_fwd)

    # can't make fixed inv with depth weighting without free ori fwd
    fwd_fixed = convert_forward_solution(fwd, force_fixed=True,
                                         use_cps=True)
    pytest.raises(ValueError, make_inverse_operator, evoked.info, fwd_fixed,
                  noise_cov, depth=0.8, fixed=True)

    # now compare to C solution
    # note that the forward solution must not be surface-oriented
    # to get equivalence (surf_ori=True changes the normals)
    with catch_logging() as log:
        inv_op = make_inverse_operator(  # test depth=0. alias for depth=None
            evoked.info, fwd, noise_cov, depth=0., fixed=True,
            use_cps=False, verbose=True)
    log = log.getvalue()
    assert 'MEG: rank 302 computed from 305' in log
    assert 'EEG channels: 0' in repr(inv_op)
    assert 'MEG channels: 305' in repr(inv_op)
    del fwd_fixed
    inverse_operator_nodepth = read_inverse_operator(fname_inv_fixed_nodepth)
    # XXX We should have this but we don't (MNE-C doesn't restrict info):
    # assert 'EEG channels: 0' in repr(inverse_operator_nodepth)
    assert 'MEG channels: 305' in repr(inverse_operator_nodepth)
    _compare_inverses_approx(inverse_operator_nodepth, inv_op, evoked,
                             rtol=1e-5, atol=1e-4)
    # Inverse has 306 channels - 6 proj = 302
    assert (compute_rank_inverse(inverse_operator_nodepth) == 302)
    # Now with depth
    fwd_surf = convert_forward_solution(fwd, surf_ori=True)  # not fixed
    for kwargs, use_fwd in zip([dict(fixed=True), dict(loose=0.)],
                               [fwd, fwd_surf]):  # Should be equiv.
        inv_op_depth = make_inverse_operator(
            evoked.info, use_fwd, noise_cov, depth=0.8, use_cps=True,
            **kwargs)
        inverse_operator_depth = read_inverse_operator(fname_inv_fixed_depth)
        # Normals should be the adjusted ones
        assert_allclose(inverse_operator_depth['source_nn'],
                        fwd_surf['source_nn'][2::3], atol=1e-5)
        _compare_inverses_approx(inverse_operator_depth, inv_op_depth, evoked,
                                 rtol=1e-3, atol=1e-4)


def test_make_inverse_operator_free(evoked, noise_cov):
    """Test MNE inverse computation (free orientation)."""
    fwd = read_forward_solution_meg(fname_fwd)
    fwd_surf = convert_forward_solution(fwd, surf_ori=True)
    fwd_fixed = convert_forward_solution(fwd, force_fixed=True,
                                         use_cps=True)

    # can't make free inv with fixed fwd
    pytest.raises(ValueError, make_inverse_operator, evoked.info, fwd_fixed,
                  noise_cov, depth=None)

    # for depth=None, surf_ori of the fwd should not matter
    inv_3 = make_inverse_operator(evoked.info, fwd_surf, noise_cov, depth=None,
                                  loose=1.)
    inv_4 = make_inverse_operator(evoked.info, fwd, noise_cov,
                                  depth=None, loose=1.)
    _compare_inverses_approx(inv_3, inv_4, evoked, rtol=1e-5, atol=1e-8,
                             check_nn=False, check_K=False)


def test_make_inverse_operator_vector(evoked, noise_cov):
    """Test MNE inverse computation (vector result)."""
    fwd_surf = read_forward_solution_meg(fname_fwd, surf_ori=True)
    fwd_fixed = read_forward_solution_meg(fname_fwd, surf_ori=False)

    # Make different version of the inverse operator
    inv_1 = make_inverse_operator(evoked.info, fwd_fixed, noise_cov, loose=1)
    inv_2 = make_inverse_operator(evoked.info, fwd_surf, noise_cov, depth=None,
                                  use_cps=True)
    inv_3 = make_inverse_operator(evoked.info, fwd_surf, noise_cov, fixed=True,
                                  use_cps=True)
    inv_4 = make_inverse_operator(evoked.info, fwd_fixed, noise_cov,
                                  loose=.2, depth=None)

    # Apply the inverse operators and check the result
    for ii, inv in enumerate((inv_1, inv_2, inv_4)):
        # Don't do eLORETA here as it will be quite slow
        methods = ['MNE', 'dSPM', 'sLORETA'] if ii < 2 else ['MNE']
        for method in methods:
            stc = apply_inverse(evoked, inv, method=method)
            stc_vec = apply_inverse(evoked, inv, pick_ori='vector',
                                    method=method)
            assert_allclose(stc.data, stc_vec.magnitude().data)

    # Vector estimates don't work when using fixed orientations
    pytest.raises(RuntimeError, apply_inverse, evoked, inv_3,
                  pick_ori='vector')

    # When computing with vector fields, computing the difference between two
    # evokeds and then performing the inverse should yield the same result as
    # computing the difference between the inverses.
    evoked0 = read_evokeds(fname_data, condition=0, baseline=(None, 0))
    evoked0.crop(0, 0.2)
    evoked1 = read_evokeds(fname_data, condition=1, baseline=(None, 0))
    evoked1.crop(0, 0.2)
    diff = combine_evoked((evoked0, evoked1), [1, -1])
    stc_diff = apply_inverse(diff, inv_1, method='MNE')
    stc_diff_vec = apply_inverse(diff, inv_1, method='MNE', pick_ori='vector')
    stc_vec0 = apply_inverse(evoked0, inv_1, method='MNE', pick_ori='vector')
    stc_vec1 = apply_inverse(evoked1, inv_1, method='MNE', pick_ori='vector')
    assert_allclose(stc_diff_vec.data, (stc_vec0 - stc_vec1).data,
                    atol=1e-20)
    assert_allclose(stc_diff.data, (stc_vec0 - stc_vec1).magnitude().data,
                    atol=1e-20)


def test_make_inverse_operator_diag(evoked, noise_cov):
    """Test MNE inverse computation with diagonal noise cov."""
    noise_cov = noise_cov.as_diag()
    fwd_op = convert_forward_solution(read_forward_solution(fname_fwd),
                                      surf_ori=True)
    inv_op = make_inverse_operator(evoked.info, fwd_op, noise_cov,
                                   loose=0.2, depth=0.8)
    _compare_io(inv_op)
    inverse_operator_diag = read_inverse_operator(fname_inv_meeg_diag)
    # This one is pretty bad
    _compare_inverses_approx(inverse_operator_diag, inv_op, evoked,
                             rtol=1e-1, atol=1e-1, ctol=0.99, check_K=False)
    # Inverse has 366 channels - 6 proj = 360
    assert (compute_rank_inverse(inverse_operator_diag) == 360)


def test_inverse_operator_noise_cov_rank(evoked, noise_cov):
    """Test MNE inverse operator with a specified noise cov rank."""
    fwd_op = read_forward_solution_meg(fname_fwd, surf_ori=True)
    with pytest.deprecated_call():  # rank int
        inv = make_inverse_operator(evoked.info, fwd_op, noise_cov, rank=64)
    assert (compute_rank_inverse(inv) == 64)
    inv = make_inverse_operator(evoked.info, fwd_op, noise_cov,
                                rank=dict(meg=64))
    assert (compute_rank_inverse(inv) == 64)

    fwd_op = read_forward_solution_eeg(fname_fwd, surf_ori=True)
    inv = make_inverse_operator(evoked.info, fwd_op, noise_cov,
                                rank=dict(eeg=20))
    assert (compute_rank_inverse(inv) == 20)


def test_inverse_operator_volume(evoked):
    """Test MNE inverse computation on volume source space."""
    tempdir = _TempDir()
    inv_vol = read_inverse_operator(fname_vol_inv)
    assert (repr(inv_vol))
    stc = apply_inverse(evoked, inv_vol, lambda2, 'dSPM')
    assert (isinstance(stc, VolSourceEstimate))
    # volume inverses don't have associated subject IDs
    assert (stc.subject is None)
    stc.save(op.join(tempdir, 'tmp-vl.stc'))
    stc2 = read_source_estimate(op.join(tempdir, 'tmp-vl.stc'))
    assert (np.all(stc.data > 0))
    assert (np.all(stc.data < 35))
    assert_array_almost_equal(stc.data, stc2.data)
    assert_array_almost_equal(stc.times, stc2.times)
    # vector source estimate
    stc_vec = apply_inverse(evoked, inv_vol, lambda2, 'dSPM', 'vector')
    assert (repr(stc_vec))
    assert_allclose(np.linalg.norm(stc_vec.data, axis=1), stc.data)
    with pytest.raises(RuntimeError, match='surface or discrete'):
        apply_inverse(evoked, inv_vol, pick_ori='normal')


@pytest.mark.slowtest
@testing.requires_testing_data
def test_io_inverse_operator():
    """Test IO of inverse_operator."""
    tempdir = _TempDir()
    inverse_operator = read_inverse_operator(fname_inv)
    x = repr(inverse_operator)
    assert (x)
    assert (isinstance(inverse_operator['noise_cov'], Covariance))
    # just do one example for .gz, as it should generalize
    _compare_io(inverse_operator, '.gz')

    # test warnings on bad filenames
    inv_badname = op.join(tempdir, 'test-bad-name.fif.gz')
    with pytest.warns(RuntimeWarning, match='-inv.fif'):
        write_inverse_operator(inv_badname, inverse_operator)
    with pytest.warns(RuntimeWarning, match='-inv.fif'):
        read_inverse_operator(inv_badname)

    # make sure we can write and read
    inv_fname = op.join(tempdir, 'test-inv.fif')
    args = (10, 1. / 9., 'dSPM')
    inv_prep = prepare_inverse_operator(inverse_operator, *args)
    write_inverse_operator(inv_fname, inv_prep)
    inv_read = read_inverse_operator(inv_fname)
    _compare(inverse_operator, inv_read)
    inv_read_prep = prepare_inverse_operator(inv_read, *args)
    _compare(inv_prep, inv_read_prep)
    inv_prep_prep = prepare_inverse_operator(inv_prep, *args)
    _compare(inv_prep, inv_prep_prep)


@testing.requires_testing_data
def test_apply_mne_inverse_raw():
    """Test MNE with precomputed inverse operator on Raw."""
    start = 3
    stop = 10
    raw = read_raw_fif(fname_raw)
    label_lh = read_label(fname_label % 'Aud-lh')
    _, times = raw[0, start:stop]
    inverse_operator = read_inverse_operator(fname_full)
    with pytest.raises(ValueError, match='has not been prepared'):
        apply_inverse_raw(raw, inverse_operator, lambda2, prepared=True)
    inverse_operator = prepare_inverse_operator(inverse_operator, nave=1,
                                                lambda2=lambda2, method="dSPM")
    for pick_ori in [None, "normal", "vector"]:
        stc = apply_inverse_raw(raw, inverse_operator, lambda2, "dSPM",
                                label=label_lh, start=start, stop=stop, nave=1,
                                pick_ori=pick_ori, buffer_size=None,
                                prepared=True)

        stc2 = apply_inverse_raw(raw, inverse_operator, lambda2, "dSPM",
                                 label=label_lh, start=start, stop=stop,
                                 nave=1, pick_ori=pick_ori,
                                 buffer_size=3, prepared=True)

        if pick_ori is None:
            assert (np.all(stc.data > 0))
            assert (np.all(stc2.data > 0))

        assert (stc.subject == 'sample')
        assert (stc2.subject == 'sample')
        assert_array_almost_equal(stc.times, times)
        assert_array_almost_equal(stc2.times, times)
        assert_array_almost_equal(stc.data, stc2.data)


@testing.requires_testing_data
def test_apply_mne_inverse_fixed_raw():
    """Test MNE with fixed-orientation inverse operator on Raw."""
    raw = read_raw_fif(fname_raw)
    start = 3
    stop = 10
    _, times = raw[0, start:stop]
    label_lh = read_label(fname_label % 'Aud-lh')

    # create a fixed-orientation inverse operator
    fwd = read_forward_solution_meg(fname_fwd, force_fixed=False,
                                    surf_ori=True)
    noise_cov = read_cov(fname_cov)
    pytest.raises(ValueError, make_inverse_operator,
                  raw.info, fwd, noise_cov, loose=1., fixed=True)
    inv_op = make_inverse_operator(raw.info, fwd, noise_cov,
                                   fixed=True, use_cps=True)

    inv_op2 = prepare_inverse_operator(inv_op, nave=1,
                                       lambda2=lambda2, method="dSPM")
    stc = apply_inverse_raw(raw, inv_op2, lambda2, "dSPM",
                            label=label_lh, start=start, stop=stop, nave=1,
                            pick_ori=None, buffer_size=None, prepared=True)

    stc2 = apply_inverse_raw(raw, inv_op2, lambda2, "dSPM",
                             label=label_lh, start=start, stop=stop, nave=1,
                             pick_ori=None, buffer_size=3, prepared=True)

    stc3 = apply_inverse_raw(raw, inv_op, lambda2, "dSPM",
                             label=label_lh, start=start, stop=stop, nave=1,
                             pick_ori=None, buffer_size=None)

    assert (stc.subject == 'sample')
    assert (stc2.subject == 'sample')
    assert_array_almost_equal(stc.times, times)
    assert_array_almost_equal(stc2.times, times)
    assert_array_almost_equal(stc3.times, times)
    assert_array_almost_equal(stc.data, stc2.data)
    assert_array_almost_equal(stc.data, stc3.data)


@testing.requires_testing_data
def test_apply_mne_inverse_epochs():
    """Test MNE with precomputed inverse operator on Epochs."""
    inverse_operator = read_inverse_operator(fname_full)
    label_lh = read_label(fname_label % 'Aud-lh')
    label_rh = read_label(fname_label % 'Aud-rh')
    event_id, tmin, tmax = 1, -0.2, 0.5
    raw = read_raw_fif(fname_raw)

    picks = pick_types(raw.info, meg=True, eeg=False, stim=True, ecg=True,
                       eog=True, include=['STI 014'], exclude='bads')
    reject = dict(grad=4000e-13, mag=4e-12, eog=150e-6)
    flat = dict(grad=1e-15, mag=1e-15)

    events = read_events(fname_event)[:15]
    epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks,
                    baseline=(None, 0), reject=reject, flat=flat)

    inverse_operator = prepare_inverse_operator(inverse_operator, nave=1,
                                                lambda2=lambda2,
                                                method="dSPM")
    for pick_ori in [None, "normal", "vector"]:
        stcs = apply_inverse_epochs(epochs, inverse_operator, lambda2, "dSPM",
                                    label=label_lh, pick_ori=pick_ori)
        stcs2 = apply_inverse_epochs(epochs, inverse_operator, lambda2, "dSPM",
                                     label=label_lh, pick_ori=pick_ori,
                                     prepared=True)
        # test if using prepared and not prepared inverse operator give the
        # same result
        assert_array_almost_equal(stcs[0].data, stcs2[0].data)
        assert_array_almost_equal(stcs[0].times, stcs2[0].times)

        assert (len(stcs) == 2)
        assert (3 < stcs[0].data.max() < 10)
        assert (stcs[0].subject == 'sample')
    inverse_operator = read_inverse_operator(fname_full)

    stcs = apply_inverse_epochs(epochs, inverse_operator, lambda2, "dSPM",
                                label=label_lh, pick_ori='normal')
    data = sum(stc.data for stc in stcs) / len(stcs)
    flip = label_sign_flip(label_lh, inverse_operator['src'])

    label_mean = np.mean(data, axis=0)
    label_mean_flip = np.mean(flip[:, np.newaxis] * data, axis=0)

    assert (label_mean.max() < label_mean_flip.max())

    # test extracting a BiHemiLabel
    inverse_operator = prepare_inverse_operator(inverse_operator, nave=1,
                                                lambda2=lambda2,
                                                method="dSPM")
    stcs_rh = apply_inverse_epochs(epochs, inverse_operator, lambda2, "dSPM",
                                   label=label_rh, pick_ori="normal",
                                   prepared=True)
    stcs_bh = apply_inverse_epochs(epochs, inverse_operator, lambda2, "dSPM",
                                   label=label_lh + label_rh,
                                   pick_ori="normal",
                                   prepared=True)

    n_lh = len(stcs[0].data)
    assert_array_almost_equal(stcs[0].data, stcs_bh[0].data[:n_lh])
    assert_array_almost_equal(stcs_rh[0].data, stcs_bh[0].data[n_lh:])

    # test without using a label (so delayed computation is used)
    stcs = apply_inverse_epochs(epochs, inverse_operator, lambda2, "dSPM",
                                pick_ori="normal", prepared=True)
    assert (stcs[0].subject == 'sample')
    label_stc = stcs[0].in_label(label_rh)
    assert (label_stc.subject == 'sample')
    assert_array_almost_equal(stcs_rh[0].data, label_stc.data)


def test_make_inverse_operator_bads(evoked, noise_cov):
    """Test MNE inverse computation given a mismatch of bad channels."""
    fwd_op = read_forward_solution_meg(fname_fwd, surf_ori=True)
    assert evoked.info['bads'] == noise_cov['bads']
    assert evoked.info['bads'] == fwd_op['info']['bads'] + ['EEG 053']

    # one fewer bad in evoked than cov
    bad = evoked.info['bads'].pop()
    inv_ = make_inverse_operator(evoked.info, fwd_op, noise_cov, loose=1.)
    union_good = set(noise_cov['names']) & set(evoked.ch_names)
    union_bads = set(noise_cov['bads']) & set(evoked.info['bads'])
    evoked.info['bads'].append(bad)

    assert len(set(inv_['info']['ch_names']) - union_good) == 0
    assert len(set(inv_['info']['bads']) - union_bads) == 0


@testing.requires_testing_data
def test_inverse_ctf_comp():
    """Test interpolation with compensated CTF data."""
    raw = mne.io.read_raw_ctf(fname_raw_ctf).crop(0, 0)
    raw.apply_gradient_compensation(1)
    sphere = make_sphere_model()
    cov = make_ad_hoc_cov(raw.info)
    src = mne.setup_volume_source_space(
        pos=dict(rr=[[0., 0., 0.01]], nn=[[0., 1., 0.]]))
    fwd = make_forward_solution(raw.info, None, src, sphere, eeg=False)
    raw.apply_gradient_compensation(0)
    with pytest.raises(RuntimeError, match='Compensation grade .* not match'):
        make_inverse_operator(raw.info, fwd, cov, loose=1.)
    raw.apply_gradient_compensation(1)
    inv = make_inverse_operator(raw.info, fwd, cov, loose=1.)
    apply_inverse_raw(raw, inv, 1. / 9.)  # smoke test
    raw.apply_gradient_compensation(0)
    with pytest.raises(RuntimeError, match='Compensation grade .* not match'):
        apply_inverse_raw(raw, inv, 1. / 9.)


run_tests_if_main()