1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
|
import os.path as op
from pathlib import Path
import re
import numpy as np
from numpy.testing import (assert_array_almost_equal, assert_equal,
assert_allclose, assert_array_equal,
assert_array_less)
from scipy import sparse
import pytest
import copy
import mne
from mne.datasets import testing
from mne.label import read_label, label_sign_flip
from mne.event import read_events
from mne.epochs import Epochs
from mne.forward import restrict_forward_to_stc, apply_forward, is_fixed_orient
from mne.source_estimate import read_source_estimate, VolSourceEstimate
from mne import (read_cov, read_forward_solution, read_evokeds, pick_types,
pick_types_forward, make_forward_solution, EvokedArray,
convert_forward_solution, Covariance, combine_evoked,
SourceEstimate, make_sphere_model, make_ad_hoc_cov,
pick_channels_forward)
from mne.io import read_raw_fif
from mne.io.proj import make_projector
from mne.minimum_norm.inverse import (apply_inverse, read_inverse_operator,
apply_inverse_raw, apply_inverse_epochs,
make_inverse_operator,
write_inverse_operator,
compute_rank_inverse,
prepare_inverse_operator)
from mne.utils import _TempDir, run_tests_if_main, catch_logging
test_path = testing.data_path(download=False)
s_path = op.join(test_path, 'MEG', 'sample')
fname_fwd = op.join(s_path, 'sample_audvis_trunc-meg-eeg-oct-4-fwd.fif')
# Four inverses:
fname_full = op.join(s_path, 'sample_audvis_trunc-meg-eeg-oct-6-meg-inv.fif')
fname_inv = op.join(s_path, 'sample_audvis_trunc-meg-eeg-oct-4-meg-inv.fif')
fname_inv_fixed_nodepth = op.join(s_path,
'sample_audvis_trunc-meg-eeg-oct-4-meg'
'-nodepth-fixed-inv.fif')
fname_inv_fixed_depth = op.join(s_path,
'sample_audvis_trunc-meg-eeg-oct-4-meg'
'-fixed-inv.fif')
fname_inv_meeg_diag = op.join(s_path,
'sample_audvis_trunc-'
'meg-eeg-oct-4-meg-eeg-diagnoise-inv.fif')
fname_data = op.join(s_path, 'sample_audvis_trunc-ave.fif')
fname_cov = op.join(s_path, 'sample_audvis_trunc-cov.fif')
fname_raw = op.join(s_path, 'sample_audvis_trunc_raw.fif')
fname_raw_ctf = op.join(test_path, 'CTF', 'somMDYO-18av.ds')
fname_event = op.join(s_path, 'sample_audvis_trunc_raw-eve.fif')
fname_label = op.join(s_path, 'labels', '%s.label')
fname_vol_inv = op.join(s_path,
'sample_audvis_trunc-meg-vol-7-meg-inv.fif')
# trans and bem needed for channel reordering tests incl. forward computation
fname_trans = op.join(s_path, 'sample_audvis_trunc-trans.fif')
s_path_bem = op.join(test_path, 'subjects', 'sample', 'bem')
fname_bem = op.join(s_path_bem, 'sample-320-320-320-bem-sol.fif')
src_fname = op.join(s_path_bem, 'sample-oct-4-src.fif')
snr = 3.0
lambda2 = 1.0 / snr ** 2
last_keys = [None] * 10
def read_forward_solution_meg(fname, **kwargs):
"""Read MEG forward."""
fwd = convert_forward_solution(read_forward_solution(fname), copy=False,
**kwargs)
fwd = pick_types_forward(fwd, meg=True, eeg=False)
return fwd
def read_forward_solution_eeg(fname, **kwargs):
"""Read EEG forward."""
fwd = convert_forward_solution(read_forward_solution(fname), copy=False,
**kwargs)
fwd = pick_types_forward(fwd, meg=False, eeg=True)
return fwd
def _compare(a, b):
"""Compare two python objects."""
global last_keys
skip_types = ['whitener', 'proj', 'reginv', 'noisenorm', 'nchan',
'command_line', 'working_dir', 'mri_file', 'mri_id',
'scanno']
try:
if isinstance(a, dict):
assert isinstance(b, dict)
for k, v in a.items():
if k not in b and k not in skip_types:
raise ValueError('First one had one second one didn\'t:\n'
'%s not in %s' % (k, b.keys()))
if k not in skip_types:
last_keys.pop()
last_keys = [k] + last_keys
_compare(v, b[k])
for k in b.keys():
if k not in a and k not in skip_types:
raise ValueError('Second one had one first one didn\'t:\n'
'%s not in %s' % (k, sorted(a.keys())))
elif isinstance(a, list):
assert (len(a) == len(b))
for i, j in zip(a, b):
_compare(i, j)
elif isinstance(a, sparse.csr.csr_matrix):
assert_array_almost_equal(a.data, b.data)
assert_equal(a.indices, b.indices)
assert_equal(a.indptr, b.indptr)
elif isinstance(a, np.ndarray):
assert_array_almost_equal(a, b)
else:
assert a == b
except Exception:
print(last_keys)
raise
def _compare_inverses_approx(inv_1, inv_2, evoked, rtol, atol,
depth_atol=1e-6, ctol=0.999999,
check_nn=True, check_K=True):
"""Compare inverses."""
# depth prior
if inv_1['depth_prior'] is not None:
assert_allclose(inv_1['depth_prior']['data'],
inv_2['depth_prior']['data'], atol=depth_atol)
else:
assert (inv_2['depth_prior'] is None)
# orient prior
if inv_1['orient_prior'] is not None:
assert_allclose(inv_1['orient_prior']['data'],
inv_2['orient_prior']['data'], atol=1e-7)
else:
assert (inv_2['orient_prior'] is None)
# source cov
assert_allclose(inv_1['source_cov']['data'], inv_2['source_cov']['data'],
atol=1e-7)
for key in ('units', 'eigen_leads_weighted', 'nsource', 'coord_frame'):
assert_equal(inv_1[key], inv_2[key], err_msg=key)
assert_equal(inv_1['eigen_leads']['ncol'], inv_2['eigen_leads']['ncol'])
K_1 = np.dot(inv_1['eigen_leads']['data'] * inv_1['sing'].astype(float),
inv_1['eigen_fields']['data'])
K_2 = np.dot(inv_2['eigen_leads']['data'] * inv_2['sing'].astype(float),
inv_2['eigen_fields']['data'])
# for free + surf ori, we only care about the ::2
# (the other two dimensions have arbitrary direction)
if inv_1['nsource'] * 3 == inv_1['source_nn'].shape[0]:
# Technically this undersamples the free-orientation, non-surf-ori
# inverse, but it's probably okay
sl = slice(2, None, 3)
else:
sl = slice(None)
if check_nn:
assert_allclose(inv_1['source_nn'][sl], inv_2['source_nn'][sl],
atol=1e-4)
if check_K:
assert_allclose(np.abs(K_1[sl]), np.abs(K_2[sl]), rtol=rtol, atol=atol)
# Now let's do some practical tests, too
evoked = EvokedArray(np.eye(len(evoked.ch_names)), evoked.info)
for method in ('MNE', 'dSPM'):
stc_1 = apply_inverse(evoked, inv_1, lambda2, method)
stc_2 = apply_inverse(evoked, inv_2, lambda2, method)
assert_equal(stc_1.subject, stc_2.subject)
assert_equal(stc_1.times, stc_2.times)
stc_1 = stc_1.data
stc_2 = stc_2.data
norms = np.max(stc_1, axis=-1, keepdims=True)
stc_1 /= norms
stc_2 /= norms
corr = np.corrcoef(stc_1.ravel(), stc_2.ravel())[0, 1]
assert corr > ctol
assert_allclose(stc_1, stc_2, rtol=rtol, atol=atol,
err_msg='%s: %s' % (method, corr))
def _compare_io(inv_op, out_file_ext='.fif'):
"""Compare inverse IO."""
tempdir = _TempDir()
if out_file_ext == '.fif':
out_file = op.join(tempdir, 'test-inv.fif')
elif out_file_ext == '.gz':
out_file = op.join(tempdir, 'test-inv.fif.gz')
else:
raise ValueError('IO test could not complete')
out_file = Path(out_file)
# Test io operations
inv_init = copy.deepcopy(inv_op)
write_inverse_operator(out_file, inv_op)
read_inv_op = read_inverse_operator(out_file)
_compare(inv_init, read_inv_op)
_compare(inv_init, inv_op)
def test_warn_inverse_operator(evoked, noise_cov):
"""Test MNE inverse warning without average EEG projection."""
bad_info = evoked.info
bad_info['projs'] = list()
fwd_op = convert_forward_solution(read_forward_solution(fname_fwd),
surf_ori=True, copy=False)
noise_cov['projs'].pop(-1) # get rid of avg EEG ref proj
with pytest.warns(RuntimeWarning, match='reference'):
make_inverse_operator(bad_info, fwd_op, noise_cov)
@pytest.mark.slowtest
def test_make_inverse_operator_loose(evoked):
"""Test MNE inverse computation (precomputed and non-precomputed)."""
# Test old version of inverse computation starting from forward operator
noise_cov = read_cov(fname_cov)
inverse_operator = read_inverse_operator(fname_inv)
fwd_op = convert_forward_solution(read_forward_solution_meg(fname_fwd),
surf_ori=True, copy=False)
with catch_logging() as log:
with pytest.deprecated_call(): # limit_depth_chs
my_inv_op = make_inverse_operator(
evoked.info, fwd_op, noise_cov, loose=0.2, depth=0.8,
limit_depth_chs=False, verbose=True)
log = log.getvalue()
assert 'MEG: rank 302 computed' in log
assert 'limit = 1/%d' % fwd_op['nsource'] in log
_compare_io(my_inv_op)
assert_equal(inverse_operator['units'], 'Am')
_compare_inverses_approx(my_inv_op, inverse_operator, evoked,
rtol=1e-2, atol=1e-5, depth_atol=1e-3)
# Test MNE inverse computation starting from forward operator
with catch_logging() as log:
my_inv_op = make_inverse_operator(evoked.info, fwd_op, noise_cov,
loose='auto', depth=0.8,
fixed=False, verbose=True)
log = log.getvalue()
assert 'MEG: rank 302 computed from 305' in log
_compare_io(my_inv_op)
_compare_inverses_approx(my_inv_op, inverse_operator, evoked,
rtol=1e-3, atol=1e-5)
assert ('dev_head_t' in my_inv_op['info'])
assert ('mri_head_t' in my_inv_op)
@pytest.mark.slowtest
def test_inverse_operator_channel_ordering(evoked, noise_cov):
"""Test MNE inverse computation is immune to channel reorderings."""
# These are with original ordering
evoked_orig = evoked.copy()
fwd_orig = make_forward_solution(evoked.info, fname_trans, src_fname,
fname_bem, eeg=True, mindist=5.0)
fwd_orig = convert_forward_solution(fwd_orig, surf_ori=True)
depth = dict(exp=0.8, limit_depth_chs=False)
with catch_logging() as log:
inv_orig = make_inverse_operator(evoked.info, fwd_orig, noise_cov,
loose=0.2, depth=depth, verbose=True)
log = log.getvalue()
assert 'limit = 1/%s' % fwd_orig['nsource'] in log
stc_1 = apply_inverse(evoked, inv_orig, lambda2, "dSPM")
# Assume that a raw reordering applies to both evoked and noise_cov,
# so we don't need to create those from scratch. Just reorder them,
# then try to apply the original inverse operator
new_order = np.arange(len(evoked.info['ch_names']))
randomiser = np.random.RandomState(42)
randomiser.shuffle(new_order)
evoked.data = evoked.data[new_order]
evoked.info['chs'] = [evoked.info['chs'][n] for n in new_order]
evoked.info._update_redundant()
evoked.info._check_consistency()
cov_ch_reorder = [c for c in evoked.info['ch_names']
if (c in noise_cov.ch_names)]
new_order_cov = [noise_cov.ch_names.index(name) for name in cov_ch_reorder]
noise_cov['data'] = noise_cov.data[np.ix_(new_order_cov, new_order_cov)]
noise_cov['names'] = [noise_cov['names'][idx] for idx in new_order_cov]
fwd_reorder = make_forward_solution(evoked.info, fname_trans, src_fname,
fname_bem, eeg=True, mindist=5.0)
fwd_reorder = convert_forward_solution(fwd_reorder, surf_ori=True)
inv_reorder = make_inverse_operator(evoked.info, fwd_reorder, noise_cov,
loose=0.2, depth=depth)
stc_2 = apply_inverse(evoked, inv_reorder, lambda2, "dSPM")
assert_equal(stc_1.subject, stc_2.subject)
assert_array_equal(stc_1.times, stc_2.times)
assert_allclose(stc_1.data, stc_2.data, rtol=1e-5, atol=1e-5)
assert (inv_orig['units'] == inv_reorder['units'])
# Reload with original ordering & apply reordered inverse
evoked = evoked_orig
noise_cov = read_cov(fname_cov)
stc_3 = apply_inverse(evoked, inv_reorder, lambda2, "dSPM")
assert_allclose(stc_1.data, stc_3.data, rtol=1e-5, atol=1e-5)
@pytest.mark.parametrize('method, lower, upper, depth', [
('MNE', 54, 57, dict(limit=None, combine_xyz=False, exp=1.)), # DICS def
('MNE', 75, 80, dict(limit_depth_chs=False)), # ancient MNE default
('MNE', 83, 87, 0.8), # MNE default
('MNE', 89, 92, dict(limit_depth_chs='whiten')), # sparse default
('dSPM', 96, 98, 0.8),
('sLORETA', 100, 100, 0.8),
('eLORETA', 100, 100, 0.8)])
def test_localization_bias_fixed(bias_params_fixed, method, lower, upper,
depth):
"""Test inverse localization bias for fixed minimum-norm solvers."""
evoked, fwd, noise_cov, _, want = bias_params_fixed
fwd_use = convert_forward_solution(fwd, force_fixed=False)
inv_fixed = make_inverse_operator(evoked.info, fwd_use, noise_cov,
loose=0., depth=depth)
loc = np.abs(apply_inverse(evoked, inv_fixed, lambda2, method).data)
# Compute the percentage of sources for which there is no loc bias:
perc = (want == np.argmax(loc, axis=0)).mean() * 100
assert lower <= perc <= upper, method
@pytest.mark.parametrize('method, lower, upper, depth', [
('MNE', 32, 35, dict(limit=None, combine_xyz=False, exp=1.)), # DICS def
('MNE', 78, 81, 0.8), # MNE default
('MNE', 89, 92, dict(limit_depth_chs='whiten')), # sparse default
('dSPM', 85, 87, 0.8),
('sLORETA', 100, 100, 0.8),
('eLORETA', 97, 100, 0.8)])
def test_localization_bias_loose(bias_params_fixed, method, lower, upper,
depth):
"""Test inverse localization bias for loose minimum-norm solvers."""
evoked, fwd, noise_cov, _, want = bias_params_fixed
fwd = convert_forward_solution(fwd, surf_ori=False, force_fixed=False)
assert not is_fixed_orient(fwd)
inv_loose = make_inverse_operator(evoked.info, fwd, noise_cov, loose=0.2,
depth=depth)
loc = apply_inverse(evoked, inv_loose, lambda2, method).data
assert (loc >= 0).all()
# Compute the percentage of sources for which there is no loc bias:
perc = (want == np.argmax(loc, axis=0)).mean() * 100
assert lower <= perc <= upper, method
@pytest.mark.parametrize('method, lower, upper, kwargs, depth', [
('MNE', 21, 24, {}, dict(limit=None, combine_xyz=False, exp=1.)), # DICS
('MNE', 35, 40, {}, dict(limit_depth_chs=False)), # ancient default
('MNE', 45, 55, {}, 0.8), # MNE default
('MNE', 65, 70, {}, dict(limit_depth_chs='whiten')), # sparse default
('dSPM', 40, 45, {}, 0.8),
('sLORETA', 90, 95, {}, 0.8),
('eLORETA', 90, 95, dict(method_params=dict(force_equal=True)), 0.8),
('eLORETA', 100, 100, {}, 0.8)])
def test_localization_bias_free(bias_params_free, method, lower, upper,
kwargs, depth):
"""Test inverse localization bias for free minimum-norm solvers."""
evoked, fwd, noise_cov, _, want = bias_params_free
inv_free = make_inverse_operator(evoked.info, fwd, noise_cov, loose=1.,
depth=depth)
loc = apply_inverse(evoked, inv_free, lambda2, method,
pick_ori='vector', **kwargs).data
loc = np.linalg.norm(loc, axis=1)
# Compute the percentage of sources for which there is no loc bias:
perc = (want == np.argmax(loc, axis=0)).mean() * 100
assert lower <= perc <= upper, method
def test_apply_inverse_sphere(evoked):
"""Test applying an inverse with a sphere model (rank-deficient)."""
evoked.pick_channels(evoked.ch_names[:306:8])
evoked.info['projs'] = []
cov = make_ad_hoc_cov(evoked.info)
sphere = make_sphere_model('auto', 'auto', evoked.info)
fwd = read_forward_solution(fname_fwd)
vertices = [fwd['src'][0]['vertno'][::5],
fwd['src'][1]['vertno'][::5]]
stc = SourceEstimate(np.zeros((sum(len(v) for v in vertices), 1)),
vertices, 0., 1.)
fwd = restrict_forward_to_stc(fwd, stc)
fwd = make_forward_solution(evoked.info, fwd['mri_head_t'], fwd['src'],
sphere, mindist=5.)
evoked = EvokedArray(fwd['sol']['data'].copy(), evoked.info)
assert fwd['sol']['nrow'] == 39
assert fwd['nsource'] == 101
assert fwd['sol']['ncol'] == 303
tempdir = _TempDir()
temp_fname = op.join(tempdir, 'temp-inv.fif')
inv = make_inverse_operator(evoked.info, fwd, cov, loose=1.)
# This forces everything to be float32
write_inverse_operator(temp_fname, inv)
inv = read_inverse_operator(temp_fname)
stc = apply_inverse(evoked, inv, method='eLORETA',
method_params=dict(eps=1e-2))
# assert zero localization bias
assert_array_equal(np.argmax(stc.data, axis=0),
np.repeat(np.arange(101), 3))
@pytest.mark.slowtest
def test_apply_inverse_operator(evoked):
"""Test MNE inverse application."""
# use fname_inv as it will be faster than fname_full (fewer verts and chs)
inverse_operator = read_inverse_operator(fname_inv)
# Inverse has 306 channels - 4 proj = 302
assert (compute_rank_inverse(inverse_operator) == 302)
# Inverse has 306 channels - 4 proj = 302
assert (compute_rank_inverse(inverse_operator) == 302)
stc = apply_inverse(evoked, inverse_operator, lambda2, "MNE")
assert stc.subject == 'sample'
assert stc.data.min() > 0
assert stc.data.max() < 13e-9
assert stc.data.mean() > 1e-11
# test if using prepared and not prepared inverse operator give the same
# result
inv_op = prepare_inverse_operator(inverse_operator, nave=evoked.nave,
lambda2=lambda2, method="MNE")
stc2 = apply_inverse(evoked, inv_op, lambda2, "MNE")
assert_array_almost_equal(stc.data, stc2.data)
assert_array_almost_equal(stc.times, stc2.times)
# This is little more than a smoke test...
stc = apply_inverse(evoked, inverse_operator, lambda2, "sLORETA")
assert stc.subject == 'sample'
assert stc.data.min() > 0
assert stc.data.max() < 10.0
assert stc.data.mean() > 0.1
stc = apply_inverse(evoked, inverse_operator, lambda2, "eLORETA")
assert stc.subject == 'sample'
assert stc.data.min() > 0
assert stc.data.max() < 3.0
assert stc.data.mean() > 0.1
stc = apply_inverse(evoked, inverse_operator, lambda2, "dSPM")
assert stc.subject == 'sample'
assert stc.data.min() > 0
assert stc.data.max() < 35
assert stc.data.mean() > 0.1
# test without using a label (so delayed computation is used)
label = read_label(fname_label % 'Aud-lh')
stc = apply_inverse(evoked, inv_op, lambda2, "MNE")
stc_label = apply_inverse(evoked, inv_op, lambda2, "MNE",
label=label)
assert_equal(stc_label.subject, 'sample')
label_stc = stc.in_label(label)
assert label_stc.subject == 'sample'
assert_allclose(stc_label.data, label_stc.data)
# Test that no errors are raised with loose inverse ops and picking normals
noise_cov = read_cov(fname_cov)
fwd = read_forward_solution_meg(fname_fwd)
inv_op_meg = make_inverse_operator(evoked.info, fwd, noise_cov, loose=1,
fixed='auto', depth=None)
apply_inverse(evoked, inv_op_meg, 1 / 9., method='MNE', pick_ori='normal')
# Test we get errors when using custom ref or no average proj is present
evoked.info['custom_ref_applied'] = True
pytest.raises(ValueError, apply_inverse, evoked, inv_op, lambda2, "MNE")
evoked.info['custom_ref_applied'] = False
evoked.info['projs'] = [] # remove EEG proj
pytest.raises(ValueError, apply_inverse, evoked, inv_op, lambda2, "MNE")
# But test that we do not get EEG-related errors on MEG-only inv (gh-4650)
apply_inverse(evoked, inv_op_meg, 1. / 9.)
def test_inverse_residual(evoked):
"""Test MNE inverse application."""
# use fname_inv as it will be faster than fname_full (fewer verts and chs)
evoked = evoked.pick_types()
inv = read_inverse_operator(fname_inv_fixed_depth)
fwd = read_forward_solution(fname_fwd)
pick_channels_forward(fwd, evoked.ch_names, copy=False)
fwd = convert_forward_solution(fwd, force_fixed=True, surf_ori=True)
matcher = re.compile(r'.* ([0-9]?[0-9]?[0-9]?\.[0-9])% variance.*')
for method in ('MNE', 'dSPM', 'sLORETA'):
with catch_logging() as log:
stc, residual = apply_inverse(
evoked, inv, method=method, return_residual=True, verbose=True)
log = log.getvalue()
match = matcher.match(log.replace('\n', ' '))
assert match is not None
match = float(match.group(1))
assert 45 < match < 50
if method == 'MNE': # must be first!
recon = apply_forward(fwd, stc, evoked.info)
proj_op = make_projector(evoked.info['projs'], evoked.ch_names)[0]
recon.data[:] = np.dot(proj_op, recon.data)
residual_fwd = evoked.copy()
residual_fwd.data -= recon.data
corr = np.corrcoef(residual_fwd.data.ravel(),
residual.data.ravel())[0, 1]
assert corr > 0.999
with catch_logging() as log:
_, residual = apply_inverse(
evoked, inv, 0., 'MNE', return_residual=True, verbose=True)
log = log.getvalue()
match = matcher.match(log.replace('\n', ' '))
assert match is not None
match = float(match.group(1))
assert match == 100.
assert_array_less(np.abs(residual.data), 1e-15)
# Degenerate: we don't have the right representation for eLORETA for this
with pytest.raises(ValueError, match='eLORETA does not .* support .*'):
apply_inverse(evoked, inv, method="eLORETA", return_residual=True)
def test_make_inverse_operator_fixed(evoked, noise_cov):
"""Test MNE inverse computation (fixed orientation)."""
fwd = read_forward_solution_meg(fname_fwd)
# can't make fixed inv with depth weighting without free ori fwd
fwd_fixed = convert_forward_solution(fwd, force_fixed=True,
use_cps=True)
pytest.raises(ValueError, make_inverse_operator, evoked.info, fwd_fixed,
noise_cov, depth=0.8, fixed=True)
# now compare to C solution
# note that the forward solution must not be surface-oriented
# to get equivalence (surf_ori=True changes the normals)
with catch_logging() as log:
inv_op = make_inverse_operator( # test depth=0. alias for depth=None
evoked.info, fwd, noise_cov, depth=0., fixed=True,
use_cps=False, verbose=True)
log = log.getvalue()
assert 'MEG: rank 302 computed from 305' in log
assert 'EEG channels: 0' in repr(inv_op)
assert 'MEG channels: 305' in repr(inv_op)
del fwd_fixed
inverse_operator_nodepth = read_inverse_operator(fname_inv_fixed_nodepth)
# XXX We should have this but we don't (MNE-C doesn't restrict info):
# assert 'EEG channels: 0' in repr(inverse_operator_nodepth)
assert 'MEG channels: 305' in repr(inverse_operator_nodepth)
_compare_inverses_approx(inverse_operator_nodepth, inv_op, evoked,
rtol=1e-5, atol=1e-4)
# Inverse has 306 channels - 6 proj = 302
assert (compute_rank_inverse(inverse_operator_nodepth) == 302)
# Now with depth
fwd_surf = convert_forward_solution(fwd, surf_ori=True) # not fixed
for kwargs, use_fwd in zip([dict(fixed=True), dict(loose=0.)],
[fwd, fwd_surf]): # Should be equiv.
inv_op_depth = make_inverse_operator(
evoked.info, use_fwd, noise_cov, depth=0.8, use_cps=True,
**kwargs)
inverse_operator_depth = read_inverse_operator(fname_inv_fixed_depth)
# Normals should be the adjusted ones
assert_allclose(inverse_operator_depth['source_nn'],
fwd_surf['source_nn'][2::3], atol=1e-5)
_compare_inverses_approx(inverse_operator_depth, inv_op_depth, evoked,
rtol=1e-3, atol=1e-4)
def test_make_inverse_operator_free(evoked, noise_cov):
"""Test MNE inverse computation (free orientation)."""
fwd = read_forward_solution_meg(fname_fwd)
fwd_surf = convert_forward_solution(fwd, surf_ori=True)
fwd_fixed = convert_forward_solution(fwd, force_fixed=True,
use_cps=True)
# can't make free inv with fixed fwd
pytest.raises(ValueError, make_inverse_operator, evoked.info, fwd_fixed,
noise_cov, depth=None)
# for depth=None, surf_ori of the fwd should not matter
inv_3 = make_inverse_operator(evoked.info, fwd_surf, noise_cov, depth=None,
loose=1.)
inv_4 = make_inverse_operator(evoked.info, fwd, noise_cov,
depth=None, loose=1.)
_compare_inverses_approx(inv_3, inv_4, evoked, rtol=1e-5, atol=1e-8,
check_nn=False, check_K=False)
def test_make_inverse_operator_vector(evoked, noise_cov):
"""Test MNE inverse computation (vector result)."""
fwd_surf = read_forward_solution_meg(fname_fwd, surf_ori=True)
fwd_fixed = read_forward_solution_meg(fname_fwd, surf_ori=False)
# Make different version of the inverse operator
inv_1 = make_inverse_operator(evoked.info, fwd_fixed, noise_cov, loose=1)
inv_2 = make_inverse_operator(evoked.info, fwd_surf, noise_cov, depth=None,
use_cps=True)
inv_3 = make_inverse_operator(evoked.info, fwd_surf, noise_cov, fixed=True,
use_cps=True)
inv_4 = make_inverse_operator(evoked.info, fwd_fixed, noise_cov,
loose=.2, depth=None)
# Apply the inverse operators and check the result
for ii, inv in enumerate((inv_1, inv_2, inv_4)):
# Don't do eLORETA here as it will be quite slow
methods = ['MNE', 'dSPM', 'sLORETA'] if ii < 2 else ['MNE']
for method in methods:
stc = apply_inverse(evoked, inv, method=method)
stc_vec = apply_inverse(evoked, inv, pick_ori='vector',
method=method)
assert_allclose(stc.data, stc_vec.magnitude().data)
# Vector estimates don't work when using fixed orientations
pytest.raises(RuntimeError, apply_inverse, evoked, inv_3,
pick_ori='vector')
# When computing with vector fields, computing the difference between two
# evokeds and then performing the inverse should yield the same result as
# computing the difference between the inverses.
evoked0 = read_evokeds(fname_data, condition=0, baseline=(None, 0))
evoked0.crop(0, 0.2)
evoked1 = read_evokeds(fname_data, condition=1, baseline=(None, 0))
evoked1.crop(0, 0.2)
diff = combine_evoked((evoked0, evoked1), [1, -1])
stc_diff = apply_inverse(diff, inv_1, method='MNE')
stc_diff_vec = apply_inverse(diff, inv_1, method='MNE', pick_ori='vector')
stc_vec0 = apply_inverse(evoked0, inv_1, method='MNE', pick_ori='vector')
stc_vec1 = apply_inverse(evoked1, inv_1, method='MNE', pick_ori='vector')
assert_allclose(stc_diff_vec.data, (stc_vec0 - stc_vec1).data,
atol=1e-20)
assert_allclose(stc_diff.data, (stc_vec0 - stc_vec1).magnitude().data,
atol=1e-20)
def test_make_inverse_operator_diag(evoked, noise_cov):
"""Test MNE inverse computation with diagonal noise cov."""
noise_cov = noise_cov.as_diag()
fwd_op = convert_forward_solution(read_forward_solution(fname_fwd),
surf_ori=True)
inv_op = make_inverse_operator(evoked.info, fwd_op, noise_cov,
loose=0.2, depth=0.8)
_compare_io(inv_op)
inverse_operator_diag = read_inverse_operator(fname_inv_meeg_diag)
# This one is pretty bad
_compare_inverses_approx(inverse_operator_diag, inv_op, evoked,
rtol=1e-1, atol=1e-1, ctol=0.99, check_K=False)
# Inverse has 366 channels - 6 proj = 360
assert (compute_rank_inverse(inverse_operator_diag) == 360)
def test_inverse_operator_noise_cov_rank(evoked, noise_cov):
"""Test MNE inverse operator with a specified noise cov rank."""
fwd_op = read_forward_solution_meg(fname_fwd, surf_ori=True)
with pytest.deprecated_call(): # rank int
inv = make_inverse_operator(evoked.info, fwd_op, noise_cov, rank=64)
assert (compute_rank_inverse(inv) == 64)
inv = make_inverse_operator(evoked.info, fwd_op, noise_cov,
rank=dict(meg=64))
assert (compute_rank_inverse(inv) == 64)
fwd_op = read_forward_solution_eeg(fname_fwd, surf_ori=True)
inv = make_inverse_operator(evoked.info, fwd_op, noise_cov,
rank=dict(eeg=20))
assert (compute_rank_inverse(inv) == 20)
def test_inverse_operator_volume(evoked):
"""Test MNE inverse computation on volume source space."""
tempdir = _TempDir()
inv_vol = read_inverse_operator(fname_vol_inv)
assert (repr(inv_vol))
stc = apply_inverse(evoked, inv_vol, lambda2, 'dSPM')
assert (isinstance(stc, VolSourceEstimate))
# volume inverses don't have associated subject IDs
assert (stc.subject is None)
stc.save(op.join(tempdir, 'tmp-vl.stc'))
stc2 = read_source_estimate(op.join(tempdir, 'tmp-vl.stc'))
assert (np.all(stc.data > 0))
assert (np.all(stc.data < 35))
assert_array_almost_equal(stc.data, stc2.data)
assert_array_almost_equal(stc.times, stc2.times)
# vector source estimate
stc_vec = apply_inverse(evoked, inv_vol, lambda2, 'dSPM', 'vector')
assert (repr(stc_vec))
assert_allclose(np.linalg.norm(stc_vec.data, axis=1), stc.data)
with pytest.raises(RuntimeError, match='surface or discrete'):
apply_inverse(evoked, inv_vol, pick_ori='normal')
@pytest.mark.slowtest
@testing.requires_testing_data
def test_io_inverse_operator():
"""Test IO of inverse_operator."""
tempdir = _TempDir()
inverse_operator = read_inverse_operator(fname_inv)
x = repr(inverse_operator)
assert (x)
assert (isinstance(inverse_operator['noise_cov'], Covariance))
# just do one example for .gz, as it should generalize
_compare_io(inverse_operator, '.gz')
# test warnings on bad filenames
inv_badname = op.join(tempdir, 'test-bad-name.fif.gz')
with pytest.warns(RuntimeWarning, match='-inv.fif'):
write_inverse_operator(inv_badname, inverse_operator)
with pytest.warns(RuntimeWarning, match='-inv.fif'):
read_inverse_operator(inv_badname)
# make sure we can write and read
inv_fname = op.join(tempdir, 'test-inv.fif')
args = (10, 1. / 9., 'dSPM')
inv_prep = prepare_inverse_operator(inverse_operator, *args)
write_inverse_operator(inv_fname, inv_prep)
inv_read = read_inverse_operator(inv_fname)
_compare(inverse_operator, inv_read)
inv_read_prep = prepare_inverse_operator(inv_read, *args)
_compare(inv_prep, inv_read_prep)
inv_prep_prep = prepare_inverse_operator(inv_prep, *args)
_compare(inv_prep, inv_prep_prep)
@testing.requires_testing_data
def test_apply_mne_inverse_raw():
"""Test MNE with precomputed inverse operator on Raw."""
start = 3
stop = 10
raw = read_raw_fif(fname_raw)
label_lh = read_label(fname_label % 'Aud-lh')
_, times = raw[0, start:stop]
inverse_operator = read_inverse_operator(fname_full)
with pytest.raises(ValueError, match='has not been prepared'):
apply_inverse_raw(raw, inverse_operator, lambda2, prepared=True)
inverse_operator = prepare_inverse_operator(inverse_operator, nave=1,
lambda2=lambda2, method="dSPM")
for pick_ori in [None, "normal", "vector"]:
stc = apply_inverse_raw(raw, inverse_operator, lambda2, "dSPM",
label=label_lh, start=start, stop=stop, nave=1,
pick_ori=pick_ori, buffer_size=None,
prepared=True)
stc2 = apply_inverse_raw(raw, inverse_operator, lambda2, "dSPM",
label=label_lh, start=start, stop=stop,
nave=1, pick_ori=pick_ori,
buffer_size=3, prepared=True)
if pick_ori is None:
assert (np.all(stc.data > 0))
assert (np.all(stc2.data > 0))
assert (stc.subject == 'sample')
assert (stc2.subject == 'sample')
assert_array_almost_equal(stc.times, times)
assert_array_almost_equal(stc2.times, times)
assert_array_almost_equal(stc.data, stc2.data)
@testing.requires_testing_data
def test_apply_mne_inverse_fixed_raw():
"""Test MNE with fixed-orientation inverse operator on Raw."""
raw = read_raw_fif(fname_raw)
start = 3
stop = 10
_, times = raw[0, start:stop]
label_lh = read_label(fname_label % 'Aud-lh')
# create a fixed-orientation inverse operator
fwd = read_forward_solution_meg(fname_fwd, force_fixed=False,
surf_ori=True)
noise_cov = read_cov(fname_cov)
pytest.raises(ValueError, make_inverse_operator,
raw.info, fwd, noise_cov, loose=1., fixed=True)
inv_op = make_inverse_operator(raw.info, fwd, noise_cov,
fixed=True, use_cps=True)
inv_op2 = prepare_inverse_operator(inv_op, nave=1,
lambda2=lambda2, method="dSPM")
stc = apply_inverse_raw(raw, inv_op2, lambda2, "dSPM",
label=label_lh, start=start, stop=stop, nave=1,
pick_ori=None, buffer_size=None, prepared=True)
stc2 = apply_inverse_raw(raw, inv_op2, lambda2, "dSPM",
label=label_lh, start=start, stop=stop, nave=1,
pick_ori=None, buffer_size=3, prepared=True)
stc3 = apply_inverse_raw(raw, inv_op, lambda2, "dSPM",
label=label_lh, start=start, stop=stop, nave=1,
pick_ori=None, buffer_size=None)
assert (stc.subject == 'sample')
assert (stc2.subject == 'sample')
assert_array_almost_equal(stc.times, times)
assert_array_almost_equal(stc2.times, times)
assert_array_almost_equal(stc3.times, times)
assert_array_almost_equal(stc.data, stc2.data)
assert_array_almost_equal(stc.data, stc3.data)
@testing.requires_testing_data
def test_apply_mne_inverse_epochs():
"""Test MNE with precomputed inverse operator on Epochs."""
inverse_operator = read_inverse_operator(fname_full)
label_lh = read_label(fname_label % 'Aud-lh')
label_rh = read_label(fname_label % 'Aud-rh')
event_id, tmin, tmax = 1, -0.2, 0.5
raw = read_raw_fif(fname_raw)
picks = pick_types(raw.info, meg=True, eeg=False, stim=True, ecg=True,
eog=True, include=['STI 014'], exclude='bads')
reject = dict(grad=4000e-13, mag=4e-12, eog=150e-6)
flat = dict(grad=1e-15, mag=1e-15)
events = read_events(fname_event)[:15]
epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks,
baseline=(None, 0), reject=reject, flat=flat)
inverse_operator = prepare_inverse_operator(inverse_operator, nave=1,
lambda2=lambda2,
method="dSPM")
for pick_ori in [None, "normal", "vector"]:
stcs = apply_inverse_epochs(epochs, inverse_operator, lambda2, "dSPM",
label=label_lh, pick_ori=pick_ori)
stcs2 = apply_inverse_epochs(epochs, inverse_operator, lambda2, "dSPM",
label=label_lh, pick_ori=pick_ori,
prepared=True)
# test if using prepared and not prepared inverse operator give the
# same result
assert_array_almost_equal(stcs[0].data, stcs2[0].data)
assert_array_almost_equal(stcs[0].times, stcs2[0].times)
assert (len(stcs) == 2)
assert (3 < stcs[0].data.max() < 10)
assert (stcs[0].subject == 'sample')
inverse_operator = read_inverse_operator(fname_full)
stcs = apply_inverse_epochs(epochs, inverse_operator, lambda2, "dSPM",
label=label_lh, pick_ori='normal')
data = sum(stc.data for stc in stcs) / len(stcs)
flip = label_sign_flip(label_lh, inverse_operator['src'])
label_mean = np.mean(data, axis=0)
label_mean_flip = np.mean(flip[:, np.newaxis] * data, axis=0)
assert (label_mean.max() < label_mean_flip.max())
# test extracting a BiHemiLabel
inverse_operator = prepare_inverse_operator(inverse_operator, nave=1,
lambda2=lambda2,
method="dSPM")
stcs_rh = apply_inverse_epochs(epochs, inverse_operator, lambda2, "dSPM",
label=label_rh, pick_ori="normal",
prepared=True)
stcs_bh = apply_inverse_epochs(epochs, inverse_operator, lambda2, "dSPM",
label=label_lh + label_rh,
pick_ori="normal",
prepared=True)
n_lh = len(stcs[0].data)
assert_array_almost_equal(stcs[0].data, stcs_bh[0].data[:n_lh])
assert_array_almost_equal(stcs_rh[0].data, stcs_bh[0].data[n_lh:])
# test without using a label (so delayed computation is used)
stcs = apply_inverse_epochs(epochs, inverse_operator, lambda2, "dSPM",
pick_ori="normal", prepared=True)
assert (stcs[0].subject == 'sample')
label_stc = stcs[0].in_label(label_rh)
assert (label_stc.subject == 'sample')
assert_array_almost_equal(stcs_rh[0].data, label_stc.data)
def test_make_inverse_operator_bads(evoked, noise_cov):
"""Test MNE inverse computation given a mismatch of bad channels."""
fwd_op = read_forward_solution_meg(fname_fwd, surf_ori=True)
assert evoked.info['bads'] == noise_cov['bads']
assert evoked.info['bads'] == fwd_op['info']['bads'] + ['EEG 053']
# one fewer bad in evoked than cov
bad = evoked.info['bads'].pop()
inv_ = make_inverse_operator(evoked.info, fwd_op, noise_cov, loose=1.)
union_good = set(noise_cov['names']) & set(evoked.ch_names)
union_bads = set(noise_cov['bads']) & set(evoked.info['bads'])
evoked.info['bads'].append(bad)
assert len(set(inv_['info']['ch_names']) - union_good) == 0
assert len(set(inv_['info']['bads']) - union_bads) == 0
@testing.requires_testing_data
def test_inverse_ctf_comp():
"""Test interpolation with compensated CTF data."""
raw = mne.io.read_raw_ctf(fname_raw_ctf).crop(0, 0)
raw.apply_gradient_compensation(1)
sphere = make_sphere_model()
cov = make_ad_hoc_cov(raw.info)
src = mne.setup_volume_source_space(
pos=dict(rr=[[0., 0., 0.01]], nn=[[0., 1., 0.]]))
fwd = make_forward_solution(raw.info, None, src, sphere, eeg=False)
raw.apply_gradient_compensation(0)
with pytest.raises(RuntimeError, match='Compensation grade .* not match'):
make_inverse_operator(raw.info, fwd, cov, loose=1.)
raw.apply_gradient_compensation(1)
inv = make_inverse_operator(raw.info, fwd, cov, loose=1.)
apply_inverse_raw(raw, inv, 1. / 9.) # smoke test
raw.apply_gradient_compensation(0)
with pytest.raises(RuntimeError, match='Compensation grade .* not match'):
apply_inverse_raw(raw, inv, 1. / 9.)
run_tests_if_main()
|