File: test_flat.py

package info (click to toggle)
python-mne 0.19.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 100,440 kB
  • sloc: python: 120,243; pascal: 1,861; makefile: 225; sh: 15
file content (64 lines) | stat: -rw-r--r-- 2,476 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# Author: Eric Larson <larson.eric.d@gmail.com>
#
# License: BSD (3-clause)

import numpy as np
import pytest

from mne import create_info
from mne.io import RawArray
from mne.preprocessing import mark_flat


@pytest.mark.parametrize('first_samp', (0, 10000))
def test_mark_flat(first_samp):
    """Test marking flat segments."""
    # Test if ECG analysis will work on data that is not preloaded
    n_ch, n_times = 11, 1000
    data = np.random.RandomState(0).randn(n_ch, n_times)
    assert not (np.diff(data, axis=-1) == 0).any()  # nothing flat at first
    info = create_info(n_ch, 1000., 'eeg')
    info['meas_date'] = (1, 2)
    # test first_samp != for gh-6295
    raw = RawArray(data, info, first_samp=first_samp)
    raw.info['bads'] = [raw.ch_names[-1]]

    #
    # First make a channel flat the whole time
    #
    raw_0 = raw.copy()
    raw_0._data[0] = 0.
    for kwargs, bads, want_times in [
            # Anything < 1 will mark spatially
            (dict(bad_percent=100.), [], 0),
            (dict(bad_percent=99.9), [raw.ch_names[0]], n_times),
            (dict(), [raw.ch_names[0]], n_times)]:  # default (1)
        raw_time = mark_flat(raw_0.copy(), verbose='debug', **kwargs)
        want_bads = raw.info['bads'] + bads
        assert raw_time.info['bads'] == want_bads
        n_good_times = raw_time.get_data(reject_by_annotation='omit').shape[1]
        assert n_good_times == want_times

    #
    # Now make a channel flat for 20% of the time points
    #
    raw_0 = raw.copy()
    n_good_times = int(round(0.8 * n_times))
    raw_0._data[0, n_good_times:] = 0.
    threshold = 100 * (n_times - n_good_times) / n_times
    for kwargs, bads, want_times in [
            # Should change behavior at bad_percent=20
            (dict(bad_percent=100), [], n_good_times),
            (dict(bad_percent=threshold), [], n_good_times),
            (dict(bad_percent=threshold - 1e-5), [raw.ch_names[0]], n_times),
            (dict(), [raw.ch_names[0]], n_times)]:
        raw_time = mark_flat(raw_0.copy(), verbose='debug', **kwargs)
        want_bads = raw.info['bads'] + bads
        assert raw_time.info['bads'] == want_bads
        n_good_times = raw_time.get_data(reject_by_annotation='omit').shape[1]
        assert n_good_times == want_times

    with pytest.raises(TypeError, match='must be an instance of BaseRaw'):
        mark_flat(0.)
    with pytest.raises(ValueError, match='not convert string to float'):
        mark_flat(raw, 'x')