1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
|
# -*- coding: utf-8 -*-
# Authors: Mark Wronkiewicz <wronk@uw.edu>
# Yousra Bekhti <yousra.bekhti@gmail.com>
# Eric Larson <larson.eric.d@gmail.com>
#
# License: BSD (3-clause)
from collections.abc import Iterable
import numpy as np
from .evoked import add_noise
from ..event import _get_stim_channel
from ..filter import _Interp2
from ..io.pick import (pick_types, pick_info, pick_channels,
pick_channels_forward)
from ..cov import make_ad_hoc_cov, read_cov, Covariance
from ..bem import fit_sphere_to_headshape, make_sphere_model, read_bem_solution
from ..io import RawArray, BaseRaw, Info
from ..chpi import (read_head_pos, head_pos_to_trans_rot_t, _get_hpi_info,
_get_hpi_initial_fit)
from ..io.constants import FIFF
from ..forward import (_magnetic_dipole_field_vec, _merge_meg_eeg_fwds,
_stc_src_sel, convert_forward_solution,
_prepare_for_forward, _transform_orig_meg_coils,
_compute_forwards, _to_forward_dict,
restrict_forward_to_stc, _prep_meg_channels)
from ..transforms import _get_trans, transform_surface_to
from ..source_space import (_ensure_src, _set_source_space_vertices,
setup_volume_source_space)
from ..source_estimate import _BaseSourceEstimate
from ..surface import _CheckInside
from ..utils import (logger, verbose, check_random_state, _pl, _validate_type,
warn, _check_preload)
from ..parallel import check_n_jobs
def _check_cov(info, cov):
"""Check that the user provided a valid covariance matrix for the noise."""
if isinstance(cov, Covariance) or cov is None:
pass
elif isinstance(cov, dict):
cov = make_ad_hoc_cov(info, cov, verbose=False)
elif isinstance(cov, str):
if cov == 'simple':
cov = make_ad_hoc_cov(info, None, verbose=False)
else:
cov = read_cov(cov, verbose=False)
else:
raise TypeError('Covariance matrix type not recognized. Valid input '
'types are: instance of Covariance, dict, str, None. '
', got %s' % (cov,))
return cov
def _check_stc_iterable(stc, info, n_samples=None):
# 1. Check that our STC is iterable (or convert it to one using cycle)
# 2. Do first iter so we can get the vertex subselection
# 3. Get the list of verts, which must stay the same across iterations
if isinstance(stc, _BaseSourceEstimate):
if n_samples is None:
stc = [stc]
else:
n_samp_stc = stc.times.size
n_stc = int(np.ceil(n_samples / n_samp_stc))
logger.info('Making %d copies of STC to fit into raw' % (n_stc,))
stc = [stc] * n_stc
_validate_type(stc, Iterable, 'SourceEstimate, tuple, or iterable')
stc_enum = enumerate(stc)
del stc
try:
stc_counted = next(stc_enum)
except StopIteration:
raise RuntimeError('Iterable did not provide stc[0]')
_, _, verts = _stc_data_event(stc_counted, 1, info['sfreq'])
return stc_enum, stc_counted, verts
def _log_ch(start, info, ch):
"""Log channel information."""
if ch is not None:
extra, just, ch = ' stored on channel:', 50, info['ch_names'][ch]
else:
extra, just, ch = ' not stored', 0, ''
logger.info((start + extra).ljust(just) + ch)
def _check_head_pos(head_pos, info, first_samp, times=None):
if head_pos is None: # use pos from info['dev_head_t']
head_pos = dict()
if isinstance(head_pos, str): # can be a head pos file
head_pos = read_head_pos(head_pos)
if isinstance(head_pos, np.ndarray): # can be head_pos quats
head_pos = head_pos_to_trans_rot_t(head_pos)
if isinstance(head_pos, tuple): # can be quats converted to trans, rot, t
transs, rots, ts = head_pos
first_time = first_samp / info['sfreq']
ts = ts - first_time # MF files need reref
dev_head_ts = [np.r_[np.c_[r, t[:, np.newaxis]], [[0, 0, 0, 1]]]
for r, t in zip(rots, transs)]
del transs, rots
elif isinstance(head_pos, dict):
ts = np.array(list(head_pos.keys()), float)
ts.sort()
dev_head_ts = [head_pos[float(tt)] for tt in ts]
else:
raise TypeError('unknown head_pos type %s' % type(head_pos))
bad = ts < 0
if bad.any():
raise RuntimeError('All position times must be >= 0, found %s/%s'
'< 0' % (bad.sum(), len(bad)))
if times is not None:
bad = ts > times[-1]
if bad.any():
raise RuntimeError('All position times must be <= t_end (%0.1f '
'sec), found %s/%s bad values (is this a split '
'file?)' % (times[-1], bad.sum(), len(bad)))
# If it doesn't start at zero, insert one at t=0
if len(ts) == 0 or ts[0] > 0:
ts = np.r_[[0.], ts]
dev_head_ts.insert(0, info['dev_head_t']['trans'])
dev_head_ts = [{'trans': d, 'to': info['dev_head_t']['to'],
'from': info['dev_head_t']['from']}
for d in dev_head_ts]
offsets = np.round(ts * info['sfreq']).astype(int)
assert np.array_equal(offsets, np.unique(offsets))
assert len(offsets) == len(dev_head_ts)
offsets = list(offsets)
return dev_head_ts, offsets
@verbose
def simulate_raw(info, stc=None, trans=None, src=None, bem=None, cov=None,
blink=None, ecg=None, chpi=None, head_pos=None,
mindist=1.0, interp='cos2', iir_filter=None, n_jobs=1,
random_state=None, use_cps=True, forward=None, first_samp=0,
max_iter=10000, raw=None, verbose=None):
u"""Simulate raw data.
Head movements can optionally be simulated using the ``head_pos``
parameter.
Parameters
----------
info : instance of Info | instance of Raw
The channel information to use for simulation.
Can be an instance of :class:`mne.io.Raw`, but this is deprecated and
will be removed in 0.19.
.. versionchanged:: 0.18
Support for :class:`mne.Info`.
stc : iterable | SourceEstimate
The source estimates to use to simulate data. Each must have the same
sample rate as the raw data, and the vertices of all stcs in the
iterable must match. Each entry in the iterable can also be a tuple of
``(SourceEstimate, ndarray)`` to allow specifying the stim channel
(e.g., STI001) data accompany the source estimate.
See Notes for details.
.. versionchanged:: 0.18
Support for tuple, and iterable of tuple or SourceEstimate.
trans : dict | str | None
Either a transformation filename (usually made using mne_analyze)
or an info dict (usually opened using read_trans()).
If string, an ending of `.fif` or `.fif.gz` will be assumed to
be in FIF format, any other ending will be assumed to be a text
file with a 4x4 transformation matrix (like the `--trans` MNE-C
option). If trans is None, an identity transform will be used.
src : str | instance of SourceSpaces | None
Source space corresponding to the stc. If string, should be a source
space filename. Can also be an instance of loaded or generated
SourceSpaces. Can be None if ``forward`` is provided.
bem : str | dict | None
BEM solution corresponding to the stc. If string, should be a BEM
solution filename (e.g., "sample-5120-5120-5120-bem-sol.fif").
Can be None if ``forward`` is provided.
cov : instance of Covariance | str | dict of float | None
Deprecated and will be removed in 0.18.
Use :func:`mne.simulation.add_noise` instead.
The sensor covariance matrix used to generate noise. If string, should
be a filename or 'simple'. If 'simple', an ad hoc covariance matrix
will be generated with default values. If dict, an ad hoc covariance
matrix will be generated with the values specified by the dict entries.
If None, no noise will be added.
blink : bool
Deprecated and will be removed in 0.19, use :func:`add_eog` instead.
If true, add simulated blink artifacts. See Notes for details.
ecg : bool
Deprecated and will be removed in 0.19, use :func:`add_ecg` instead.
If true, add simulated ECG artifacts. See Notes for details.
chpi : bool
Deprecated and will be removed in 0.19, use :func:`add_chpi` instead.
If true, simulate continuous head position indicator information.
Valid cHPI information must encoded in ``raw.info['hpi_meas']``
to use this option.
%(head_pos)s
See for example [1]_.
mindist : float
Minimum distance between sources and the inner skull boundary
to use during forward calculation.
%(interp)s
iir_filter : None | array
Deprecated and will be removed in 0.19. Use :func:`add_noise` instead.
IIR filter coefficients (denominator) e.g. [1, -1, 0.2].
%(n_jobs)s
random_state : int | None
Deprecated and will be removed in 0.19. Use dedicated noise-generation
functions :func:`add_noise`, :func:`add_ecg`, and :func:`add_eog`
instead.
use_cps : None | bool (default True)
Whether to use cortical patch statistics to define normal
orientations. Only used when surf_ori and/or force_fixed are True.
forward : instance of Forward | None
The forward operator to use. If None (default) it will be computed
using ``bem``, ``trans``, and ``src``. If not None,
``bem``, ``trans``, and ``src`` are ignored.
.. versionadded:: 0.17
first_samp : int
The first_samp property in the output Raw instance.
.. versionadded:: 0.18
max_iter : int
The maximum number of STC iterations to allow.
This is a sanity parameter to prevent accidental blowups.
.. versionadded:: 0.18
raw : instance of Raw
Deprecated and will be removed in 0.18. Pass an instance of
:class: `mne.Info` to ``info`` instead.
%(verbose)s
Returns
-------
raw : instance of Raw
The simulated raw file.
See Also
--------
mne.chpi.read_head_pos
add_chpi
add_noise
add_ecg
add_eog
simulate_evoked
simulate_stc
simulate_sparse_stc
Notes
-----
**Stim channel encoding**
By default, the stimulus channel will have the head position number
(starting at 1) stored in the trigger channel (if available) at the
t=0 point in each repetition of the ``stc``. If ``stc`` is a tuple of
``(SourceEstimate, ndarray)`` the array values will be placed in the
stim channel aligned with the :class:`mne.SourceEstimate`.
**Data simulation**
In the most advanced case where ``stc`` is an iterable of tuples the output
will be concatenated in time as:
.. table:: Data alignment and stim channel encoding
+---------+--------------------------+--------------------------+---------+
| Channel | Data |
+=========+==========================+==========================+=========+
| M/EEG | ``fwd @ stc[0][0].data`` | ``fwd @ stc[1][0].data`` | ``...`` |
+---------+--------------------------+--------------------------+---------+
| STIM | ``stc[0][1]`` | ``stc[1][1]`` | ``...`` |
+---------+--------------------------+--------------------------+---------+
| | *time →* |
+---------+--------------------------+--------------------------+---------+
.. versionadded:: 0.10.0
References
----------
.. [1] Larson E, Taulu S (2017). "The Importance of Properly Compensating
for Head Movements During MEG Acquisition Across Different Age
Groups." Brain Topogr 30:172–181
""" # noqa: E501
_validate_type(info, (BaseRaw, Info), 'info', 'Raw or Info')
if cov is not None:
warn('cov is deprecated in 0.18 and will be removed in 0.19, '
'use mne.simulation.add_noise instead', DeprecationWarning)
warn_raw = False
if raw is not None:
info = raw
warn_raw = True
del raw
if isinstance(info, Info):
raw_verbose = verbose
n_samples = None
else:
raw_verbose = info.verbose
n_samples = len(info.times)
info, first_samp = info.info, info.first_samp
warn_raw = True
if warn_raw:
warn('Passing a raw instance to simulate_raw is deprecated and will '
'not work in 0.19, pass an instance of Info as first argument or '
'as a keyword argument as info=info', DeprecationWarning)
if len(pick_types(info, meg=False, stim=True)) == 0:
event_ch = None
else:
event_ch = pick_channels(info['ch_names'],
_get_stim_channel(None, info))[0]
n_jobs = check_n_jobs(n_jobs)
interper = _Interp2(interp)
if forward is not None:
if any(x is not None for x in (trans, src, bem, head_pos)):
raise ValueError('If forward is not None then trans, src, bem, '
'and head_pos must all be None')
if not np.allclose(forward['info']['dev_head_t']['trans'],
info['dev_head_t']['trans'], atol=1e-6):
raise ValueError('The forward meg<->head transform '
'forward["info"]["dev_head_t"] does not match '
'the one in raw.info["dev_head_t"]')
src = forward['src']
if blink is not None:
warn('blink is deprecated and will be removed in 0.19, use add_eog '
'instead', DeprecationWarning)
if ecg is not None:
warn('ecg is deprecated and will be removed in 0.19, use add_ecg '
'instead', DeprecationWarning)
if chpi is not None:
warn('chpi is deprecated and will be removed in 0.19, use add_chpi '
'instead', DeprecationWarning)
dev_head_ts, offsets = _check_head_pos(head_pos, info, first_samp, None)
src = _ensure_src(src, verbose=False)
if isinstance(bem, str):
bem = read_bem_solution(bem, verbose=False)
cov = _check_cov(info, cov)
# Extract necessary info
meeg_picks = pick_types(info, meg=True, eeg=True, exclude=[])
logger.info('Setting up raw simulation: %s position%s, "%s" interpolation'
% (len(dev_head_ts), _pl(dev_head_ts), interp))
stc_enum, stc_counted, verts = _check_stc_iterable(stc, info, n_samples)
# del stc
if forward is not None:
forward = restrict_forward_to_stc(forward, verts)
src = forward['src']
else:
_stc_src_sel(src, verts, on_missing='warn', extra='')
src = _set_source_space_vertices(src.copy(), verts)
# array used to store result
raw_datas = list()
_log_ch('Event information', info, event_ch)
# don't process these any more if no MEG present
n = 1
for fi, fwd in enumerate(_iter_forward_solutions(
info, trans, src, bem, dev_head_ts, mindist, n_jobs, forward,
meeg_picks)):
# must be fixed orientation
# XXX eventually we could speed this up by allowing the forward
# solution code to only compute the normal direction
fwd = convert_forward_solution(fwd, surf_ori=True, force_fixed=True,
use_cps=use_cps, verbose=False)
interper['fwd'] = fwd['sol']['data']
assert fwd['sol']['data'].shape[0] == len(meeg_picks)
if fi == 0:
# Actually restrict the STC based on vertices obtained during calc
stc_data, stim_data, _ = _stc_data_event(
stc_counted, 1, info['sfreq'], fwd['src'])
continue
assert 0 <= fi <= len(offsets)
start = offsets[fi - 1]
stop = np.inf if fi == len(offsets) else offsets[fi]
interper.n_samp = stop - start
logger.info(' Simulating data for forward operator %d/%d'
% (fi, len(offsets) - 1))
# To avoid a blowup of memory, process in chunk sizes equal to
# STC length (which will hopefully be a reasonable memory / number
# of iterations tradeoff)
this_start = start
while this_start < stop:
this_stop = min(this_start + stc_data.shape[1], stop)
logger.info(' Interval %0.3f-%0.3f sec'
% (this_start / info['sfreq'],
this_stop / info['sfreq']))
n_doing = this_stop - this_start
assert n_doing > 0
this_data = np.zeros((len(info['ch_names']), n_doing))
raw_datas.append(this_data)
# Stim channel
if event_ch is not None:
this_data[event_ch, :] = stim_data[:n_doing]
# Brain data
interp_sl = slice(this_start - start, this_stop - start)
interper.interpolate('fwd', stc_data[:, :n_doing],
this_data, meeg_picks, interp_sl)
# Increment parameters based on what we accomplished
this_start += n_doing
if n_doing < stc_data.shape[1]:
# Shift the buffer
stc_data = stc_data[:, n_doing:]
stim_data = stim_data[n_doing:]
else:
# Get more data (if necessary)
assert n_doing == stc_data.shape[1]
try:
stc_counted = next(stc_enum)
except StopIteration:
if n_samples is not None and this_stop < n_samples:
raise RuntimeError('Iterable did not provide stc[%d] '
'required to cover the raw duration'
' %s sec'
% (stc_counted[0] + 1,
n_samples / info['sfreq']))
logger.info(' %d STC iteration%s provided'
% (n, _pl(n)))
break
n += 1
stc_data, stim_data, _ = _stc_data_event(
stc_counted, fi, info['sfreq'], fwd['src'], verts)
if n_samples is not None and this_stop >= n_samples - 1:
break
if n > max_iter:
raise RuntimeError('Maximum number of STC iterations (%d) '
'exceeded' % (n,))
del fwd
raw_data = np.concatenate(raw_datas, axis=-1)
raw = RawArray(raw_data, info, first_samp=first_samp, verbose=False)
if blink:
add_eog(raw, head_pos, interp, n_jobs, random_state)
if ecg:
add_ecg(raw, head_pos, interp, n_jobs, random_state)
if chpi:
add_chpi(raw, head_pos, interp, n_jobs)
if cov is not None:
add_noise(raw, cov, iir_filter, random_state)
if n_samples is not None:
raw.crop(0, (n_samples - 1.) / raw.info['sfreq'])
raw.set_annotations(raw.annotations)
raw.verbose = raw_verbose
logger.info('Done')
return raw
@verbose
def add_eog(raw, head_pos=None, interp='cos2', n_jobs=1, random_state=None,
verbose=None):
"""Add blink noise to raw data.
Parameters
----------
raw : instance of Raw
The raw instance to modify.
%(head_pos)s
%(interp)s
%(n_jobs)s
%(random_state)s
The random generator state used for blink, ECG, and sensor noise
randomization.
%(verbose)s
Returns
-------
raw : instance of Raw
The instance, modified in place.
See Also
--------
add_chpi
add_ecg
add_noise
simulate_raw
Notes
-----
The blink artifacts are generated by:
1. Random activation times are drawn from an inhomogeneous poisson
process whose blink rate oscillates between 4.5 blinks/minute
and 17 blinks/minute based on the low (reading) and high (resting)
blink rates from [1]_.
2. The activation kernel is a 250 ms Hanning window.
3. Two activated dipoles are located in the z=0 plane (in head
coordinates) at ±30 degrees away from the y axis (nasion).
4. Activations affect MEG and EEG channels.
The scale-factor of the activation function was chosen based on
visual inspection to yield amplitudes generally consistent with those
seen in experimental data. Noisy versions of the activation will be
stored in the first EOG channel in the raw instance, if it exists.
References
----------
.. [1] Bentivoglio et al. "Analysis of blink rate patterns in normal
subjects" Movement Disorders, 1997 Nov;12(6):1028-34.
"""
return _add_exg(raw, 'blink', head_pos, interp, n_jobs, random_state)
@verbose
def add_ecg(raw, head_pos=None, interp='cos2', n_jobs=1, random_state=None,
verbose=None):
"""Add ECG noise to raw data.
Parameters
----------
raw : instance of Raw
The raw instance to modify.
%(head_pos)s
%(interp)s
%(n_jobs)s
%(random_state)s
The random generator state used for blink, ECG, and sensor noise
randomization.
%(verbose)s
Returns
-------
raw : instance of Raw
The instance, modified in place.
See Also
--------
add_chpi
add_eog
add_noise
simulate_raw
Notes
-----
The ECG artifacts are generated by:
1. Random inter-beat intervals are drawn from a uniform distribution
of times corresponding to 40 and 80 beats per minute.
2. The activation function is the sum of three Hanning windows with
varying durations and scales to make a more complex waveform.
3. The activated dipole is located one (estimated) head radius to
the left (-x) of head center and three head radii below (+z)
head center; this dipole is oriented in the +x direction.
4. Activations only affect MEG channels.
The scale-factor of the activation function was chosen based on
visual inspection to yield amplitudes generally consistent with those
seen in experimental data. Noisy versions of the activation will be
stored in the first EOG channel in the raw instance, if it exists.
.. versionadded:: 0.18
"""
return _add_exg(raw, 'ecg', head_pos, interp, n_jobs, random_state)
def _add_exg(raw, kind, head_pos, interp, n_jobs, random_state):
assert isinstance(kind, str) and kind in ('ecg', 'blink')
_validate_type(raw, BaseRaw, 'raw')
_check_preload(raw, 'Adding %s noise ' % (kind,))
rng = check_random_state(random_state)
info, times, first_samp = raw.info, raw.times, raw.first_samp
data = raw._data
meg_picks = pick_types(info, meg=True, eeg=False, exclude=())
meeg_picks = pick_types(info, meg=True, eeg=True, exclude=())
interper = _Interp2(interp)
R, r0 = fit_sphere_to_headshape(info, units='m', verbose=False)[:2]
bem = make_sphere_model(r0, head_radius=R,
relative_radii=(0.97, 0.98, 0.99, 1.),
sigmas=(0.33, 1.0, 0.004, 0.33), verbose=False)
trans = None
dev_head_ts, offsets = _check_head_pos(head_pos, info, first_samp, times)
if kind == 'blink':
# place dipoles at 45 degree angles in z=0 plane
exg_rr = np.array([[np.cos(np.pi / 3.), np.sin(np.pi / 3.), 0.],
[-np.cos(np.pi / 3.), np.sin(np.pi / 3), 0.]])
exg_rr /= np.sqrt(np.sum(exg_rr * exg_rr, axis=1, keepdims=True))
exg_rr *= 0.96 * R
exg_rr += r0
# oriented upward
blink_nn = np.array([[0., 0., 1.], [0., 0., 1.]])
# Blink times drawn from an inhomogeneous poisson process
# by 1) creating the rate and 2) pulling random numbers
blink_rate = (1 + np.cos(2 * np.pi * 1. / 60. * times)) / 2.
blink_rate *= 12.5 / 60.
blink_rate += 4.5 / 60.
blink_data = rng.uniform(size=len(times)) < blink_rate / info['sfreq']
blink_data = blink_data * (rng.uniform(size=len(times)) + 0.5) # amps
# Activation kernel is a simple hanning window
blink_kernel = np.hanning(int(0.25 * info['sfreq']))
exg_data = np.convolve(blink_data, blink_kernel,
'same')[np.newaxis, :] * 1e-7
# Add rescaled noisy data to EOG ch
ch = pick_types(info, meg=False, eeg=False, eog=True)
picks = meeg_picks
del blink_kernel, blink_rate, blink_data
else:
if len(meg_picks) == 0:
raise RuntimeError('Can only add ECG artifacts if MEG data '
'channels are present')
exg_rr = np.array([[-R, 0, -3 * R]])
max_beats = int(np.ceil(times[-1] * 80. / 60.))
# activation times with intervals drawn from a uniform distribution
# based on activation rates between 40 and 80 beats per minute
cardiac_idx = np.cumsum(rng.uniform(60. / 80., 60. / 40., max_beats) *
info['sfreq']).astype(int)
cardiac_idx = cardiac_idx[cardiac_idx < len(times)]
cardiac_data = np.zeros(len(times))
cardiac_data[cardiac_idx] = 1
# kernel is the sum of three hanning windows
cardiac_kernel = np.concatenate([
2 * np.hanning(int(0.04 * info['sfreq'])),
-0.3 * np.hanning(int(0.05 * info['sfreq'])),
0.2 * np.hanning(int(0.26 * info['sfreq']))], axis=-1)
exg_data = np.convolve(cardiac_data, cardiac_kernel,
'same')[np.newaxis, :] * 15e-8
# Add rescaled noisy data to ECG ch
ch = pick_types(info, meg=False, eeg=False, ecg=True)
picks = meg_picks
del cardiac_data, cardiac_kernel, max_beats, cardiac_idx
del meg_picks, meeg_picks
noise = rng.standard_normal(exg_data.shape[1]) * 5e-6
if len(ch) >= 1:
ch = ch[-1]
data[ch, :] = exg_data * 1e3 + noise
else:
ch = None
nn = np.zeros_like(exg_rr)
nn[:, 2] = 1
src = setup_volume_source_space(pos=dict(rr=exg_rr, nn=nn))
_log_ch('%s simulated and trace' % kind, info, ch)
del ch, nn, noise
used = np.zeros(len(raw.times), bool)
for fi, fwd in enumerate(_iter_forward_solutions(
info, trans, src, bem, dev_head_ts, 0.005, n_jobs, None,
picks)):
fwd = fwd['sol']['data']
if kind == 'blink':
fwd = np.sum([np.dot(fwd[:, 3 * ii:3 * (ii + 1)], blink_nn[ii])
for ii in range(len(exg_rr))], axis=0,
keepdims=True).T
else:
# just use one arbitrary direction
fwd = fwd[:, [0]]
assert fwd.shape == (len(picks), 1)
interper['fwd'] = fwd
if fi == 0:
continue
start = offsets[fi - 1]
stop = None if fi == len(offsets) else offsets[fi]
interper.n_samp = (stop or np.inf) - start
interper.interpolate('fwd', exg_data[:, start:stop],
data[:, start:stop], picks)
assert not used[start:stop].any()
used[start:stop] = True
assert used.all()
@verbose
def add_chpi(raw, head_pos=None, interp='cos2', n_jobs=1, verbose=None):
"""Add cHPI activations to raw data.
Parameters
----------
raw : instance of Raw
The raw instance to be modified.
%(head_pos)s
%(interp)s
%(n_jobs)s
%(verbose)s
Returns
-------
raw : instance of Raw
The instance, modified in place.
Notes
-----
.. versionadded:: 0.18
"""
_validate_type(raw, BaseRaw, 'raw')
_check_preload(raw, 'Adding cHPI signals ')
info, first_samp, times = raw.info, raw.first_samp, raw.times
meg_picks = pick_types(info, meg=True, eeg=False, exclude=[]) # for CHPI
if len(meg_picks) == 0:
raise RuntimeError('Cannot add cHPI if no MEG picks are present')
dev_head_ts, offsets = _check_head_pos(head_pos, info, first_samp, times)
hpi_freqs, hpi_pick, hpi_ons = _get_hpi_info(info)
hpi_rrs = _get_hpi_initial_fit(info, verbose='error')
hpi_nns = hpi_rrs / np.sqrt(np.sum(hpi_rrs * hpi_rrs,
axis=1))[:, np.newaxis]
# turn on cHPI in file
data = raw._data
data[hpi_pick, :] = hpi_ons.sum()
_log_ch('cHPI status bits enbled and', info, hpi_pick)
interper = _Interp2(interp)
sinusoids = 70e-9 * np.sin(2 * np.pi * hpi_freqs[:, np.newaxis] *
(np.arange(len(times)) / info['sfreq']))
info = pick_info(info, meg_picks)
info.update(projs=[], bads=[]) # Ensure no 'projs' or 'bads'
megcoils, _, _, _ = _prep_meg_channels(info, ignore_ref=False)
used = np.zeros(len(raw.times), bool)
dev_head_ts.append(dev_head_ts[-1]) # ZOH after time ends
for fi, dev_head_t in enumerate(dev_head_ts):
_transform_orig_meg_coils(megcoils, dev_head_t)
fwd = _magnetic_dipole_field_vec(hpi_rrs, megcoils).T
# align cHPI magnetic dipoles in approx. radial direction
fwd = np.array([np.dot(fwd[:, 3 * ii:3 * (ii + 1)], hpi_nns[ii])
for ii in range(len(hpi_rrs))]).T
interper['fwd'] = fwd
if fi == 0:
continue
start = offsets[fi - 1]
stop = None if fi == len(offsets) else offsets[fi]
interper.n_samp = (stop or np.inf) - start
interper.interpolate('fwd', sinusoids[:, start:stop],
data[:, start:stop], meg_picks)
assert not used[start:stop].any()
used[start:stop] = True
assert used.all()
return raw
def _stc_data_event(stc_counted, head_idx, sfreq, src=None, verts=None):
stc_idx, stc = stc_counted
if isinstance(stc, (list, tuple)):
if len(stc) != 2:
raise ValueError('stc, if tuple, must be length 2, got %s'
% (len(stc),))
stc, stim_data = stc
else:
stim_data = None
_validate_type(stc, _BaseSourceEstimate, 'stc',
'SourceEstimate or tuple with first entry SourceEstimate')
# Convert event data
if stim_data is None:
stim_data = np.zeros(len(stc.times), int)
stim_data[np.argmin(np.abs(stc.times))] = head_idx
del head_idx
_validate_type(stim_data, np.ndarray, 'stim_data')
if stim_data.dtype.kind != 'i':
raise ValueError('stim_data in a stc tuple must be an integer ndarray,'
' got dtype %s' % (stim_data.dtype,))
if stim_data.shape != (len(stc.times),):
raise ValueError('event data had shape %s but needed to be (%s,) to'
'match stc' % (stim_data.shape, len(stc.times)))
# Validate STC
if not np.allclose(sfreq, 1. / stc.tstep):
raise ValueError('stc and info must have same sample rate, '
'got %s and %s' % (1. / stc.tstep, sfreq))
if len(stc.times) <= 2: # to ensure event encoding works
raise ValueError('stc must have at least three time points, got %s'
% (len(stc.times),))
verts_ = stc._vertices_list
if verts is None:
assert stc_idx == 0
else:
if len(verts) != len(verts_) or not all(
np.array_equal(a, b) for a, b in zip(verts, verts_)):
raise RuntimeError('Vertex mismatch for stc[%d], '
'all stc.vertices must match' % (stc_idx,))
stc_data = stc.data
if src is None:
assert stc_idx == 0
else:
# on_missing depends on whether or not this is the first iteration
on_missing = 'warn' if verts is None else 'ignore'
_, stc_sel, _ = _stc_src_sel(src, stc, on_missing=on_missing)
stc_data = stc_data[stc_sel]
return stc_data, stim_data, verts_
def _iter_forward_solutions(info, trans, src, bem, dev_head_ts, mindist,
n_jobs, forward, picks):
"""Calculate a forward solution for a subject."""
logger.info('Setting up forward solutions')
info = pick_info(info, picks)
info.update(projs=[], bads=[]) # Ensure no 'projs' or 'bads'
mri_head_t, trans = _get_trans(trans)
megcoils, meg_info, compcoils, megnames, eegels, eegnames, rr, info, \
update_kwargs, bem = _prepare_for_forward(
src, mri_head_t, info, bem, mindist, n_jobs, allow_bem_none=True,
verbose=False)
del (src, mindist)
if forward is None:
eegfwd = _compute_forwards(rr, bem, [eegels], [None],
[None], ['eeg'], n_jobs, verbose=False)[0]
eegfwd = _to_forward_dict(eegfwd, eegnames)
else:
if len(eegnames) > 0:
eegfwd = pick_channels_forward(forward, eegnames, verbose=False)
else:
eegfwd = None
# short circuit here if there are no MEG channels (don't need to iterate)
if len(pick_types(info, meg=True)) == 0:
eegfwd.update(**update_kwargs)
for _ in dev_head_ts:
yield eegfwd
yield eegfwd
return
coord_frame = FIFF.FIFFV_COORD_HEAD
if bem is not None and not bem['is_sphere']:
idx = np.where(np.array([s['id'] for s in bem['surfs']]) ==
FIFF.FIFFV_BEM_SURF_ID_BRAIN)[0]
assert len(idx) == 1
# make a copy so it isn't mangled in use
bem_surf = transform_surface_to(bem['surfs'][idx[0]], coord_frame,
mri_head_t, copy=True)
for ti, dev_head_t in enumerate(dev_head_ts):
# Could be *slightly* more efficient not to do this N times,
# but the cost here is tiny compared to actual fwd calculation
logger.info('Computing gain matrix for transform #%s/%s'
% (ti + 1, len(dev_head_ts)))
_transform_orig_meg_coils(megcoils, dev_head_t)
_transform_orig_meg_coils(compcoils, dev_head_t)
# Make sure our sensors are all outside our BEM
coil_rr = np.array([coil['r0'] for coil in megcoils])
# Compute forward
if forward is None:
if not bem['is_sphere']:
outside = ~_CheckInside(bem_surf)(coil_rr, n_jobs,
verbose=False)
elif bem.radius is not None:
d = coil_rr - bem['r0']
outside = np.sqrt(np.sum(d * d, axis=1)) > bem.radius
else: # only r0 provided
outside = np.ones(len(coil_rr), bool)
if not outside.all():
raise RuntimeError('%s MEG sensors collided with inner skull '
'surface for transform %s'
% (np.sum(~outside), ti))
megfwd = _compute_forwards(rr, bem, [megcoils], [compcoils],
[meg_info], ['meg'], n_jobs,
verbose=False)[0]
megfwd = _to_forward_dict(megfwd, megnames)
else:
megfwd = pick_channels_forward(forward, megnames, verbose=False)
fwd = _merge_meg_eeg_fwds(megfwd, eegfwd, verbose=False)
fwd.update(**update_kwargs)
yield fwd
# need an extra one to fill last buffer
yield fwd
|