1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
|
# Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Martin Luessi <mluessi@nmr.mgh.harvard.edu>
# Daniel Strohmeier <daniel.strohmeier@tu-ilmenau.de>
# Nathalie Gayraud <nat.gayraud@gmail.com>
# Kostiantyn Maksymenko <kostiantyn.maksymenko@gmail.com>
# Samuel Deslauriers-Gauthier <sam.deslauriers@gmail.com>
# Ivana Kojcic <ivana.kojcic@gmail.com>
#
# License: BSD (3-clause)
import numpy as np
from ..source_estimate import SourceEstimate, VolSourceEstimate
from ..source_space import _ensure_src
from ..fixes import rng_uniform
from ..utils import check_random_state, warn, _check_option, fill_doc
from ..label import Label
from ..surface import _compute_nearest
@fill_doc
def select_source_in_label(src, label, random_state=None, location='random',
subject=None, subjects_dir=None, surf='sphere'):
"""Select source positions using a label.
Parameters
----------
src : list of dict
The source space
label : Label
the label (read with mne.read_label)
%(random_state)s
location : str
The label location to choose. Can be 'random' (default) or 'center'
to use :func:`mne.Label.center_of_mass` (restricting to vertices
both in the label and in the source space). Note that for 'center'
mode the label values are used as weights.
.. versionadded:: 0.13
subject : string | None
The subject the label is defined for.
Only used with ``location='center'``.
.. versionadded:: 0.13
subjects_dir : str, or None
Path to the SUBJECTS_DIR. If None, the path is obtained by using
the environment variable SUBJECTS_DIR.
Only used with ``location='center'``.
.. versionadded:: 0.13
surf : str
The surface to use for Euclidean distance center of mass
finding. The default here is "sphere", which finds the center
of mass on the spherical surface to help avoid potential issues
with cortical folding.
.. versionadded:: 0.13
Returns
-------
lh_vertno : list
selected source coefficients on the left hemisphere
rh_vertno : list
selected source coefficients on the right hemisphere
"""
lh_vertno = list()
rh_vertno = list()
_check_option('location', location, ['random', 'center'])
rng = check_random_state(random_state)
if label.hemi == 'lh':
vertno = lh_vertno
hemi_idx = 0
else:
vertno = rh_vertno
hemi_idx = 1
src_sel = np.intersect1d(src[hemi_idx]['vertno'], label.vertices)
if location == 'random':
idx = src_sel[rng_uniform(rng)(0, len(src_sel), 1)[0]]
else: # 'center'
idx = label.center_of_mass(
subject, restrict_vertices=src_sel, subjects_dir=subjects_dir,
surf=surf)
vertno.append(idx)
return lh_vertno, rh_vertno
@fill_doc
def simulate_sparse_stc(src, n_dipoles, times,
data_fun=lambda t: 1e-7 * np.sin(20 * np.pi * t),
labels=None, random_state=None, location='random',
subject=None, subjects_dir=None, surf='sphere'):
"""Generate sparse (n_dipoles) sources time courses from data_fun.
This function randomly selects ``n_dipoles`` vertices in the whole
cortex or one single vertex (randomly in or in the center of) each
label if ``labels is not None``. It uses ``data_fun`` to generate
waveforms for each vertex.
Parameters
----------
src : instance of SourceSpaces
The source space.
n_dipoles : int
Number of dipoles to simulate.
times : array
Time array
data_fun : callable
Function to generate the waveforms. The default is a 100 nAm, 10 Hz
sinusoid as ``1e-7 * np.sin(20 * pi * t)``. The function should take
as input the array of time samples in seconds and return an array of
the same length containing the time courses.
labels : None | list of Label
The labels. The default is None, otherwise its size must be n_dipoles.
%(random_state)s
location : str
The label location to choose. Can be 'random' (default) or 'center'
to use :func:`mne.Label.center_of_mass`. Note that for 'center'
mode the label values are used as weights.
.. versionadded:: 0.13
subject : string | None
The subject the label is defined for.
Only used with ``location='center'``.
.. versionadded:: 0.13
subjects_dir : str, or None
Path to the SUBJECTS_DIR. If None, the path is obtained by using
the environment variable SUBJECTS_DIR.
Only used with ``location='center'``.
.. versionadded:: 0.13
surf : str
The surface to use for Euclidean distance center of mass
finding. The default here is "sphere", which finds the center
of mass on the spherical surface to help avoid potential issues
with cortical folding.
.. versionadded:: 0.13
Returns
-------
stc : SourceEstimate
The generated source time courses.
See Also
--------
simulate_raw
simulate_evoked
simulate_stc
Notes
-----
.. versionadded:: 0.10.0
"""
rng = check_random_state(random_state)
src = _ensure_src(src, verbose=False)
subject_src = src[0].get('subject_his_id')
if subject is None:
subject = subject_src
elif subject_src is not None and subject != subject_src:
raise ValueError('subject argument (%s) did not match the source '
'space subject_his_id (%s)' % (subject, subject_src))
data = np.zeros((n_dipoles, len(times)))
for i_dip in range(n_dipoles):
data[i_dip, :] = data_fun(times)
if labels is None:
# can be vol or surface source space
offsets = np.linspace(0, n_dipoles, len(src) + 1).astype(int)
n_dipoles_ss = np.diff(offsets)
# don't use .choice b/c not on old numpy
vs = [s['vertno'][np.sort(rng.permutation(np.arange(s['nuse']))[:n])]
for n, s in zip(n_dipoles_ss, src)]
datas = data
elif n_dipoles > len(labels):
raise ValueError('Number of labels (%d) smaller than n_dipoles (%d) '
'is not allowed.' % (len(labels), n_dipoles))
else:
if n_dipoles != len(labels):
warn('The number of labels is different from the number of '
'dipoles. %s dipole(s) will be generated.'
% min(n_dipoles, len(labels)))
labels = labels[:n_dipoles] if n_dipoles < len(labels) else labels
vertno = [[], []]
lh_data = [np.empty((0, data.shape[1]))]
rh_data = [np.empty((0, data.shape[1]))]
for i, label in enumerate(labels):
lh_vertno, rh_vertno = select_source_in_label(
src, label, rng, location, subject, subjects_dir, surf)
vertno[0] += lh_vertno
vertno[1] += rh_vertno
if len(lh_vertno) != 0:
lh_data.append(data[i][np.newaxis])
elif len(rh_vertno) != 0:
rh_data.append(data[i][np.newaxis])
else:
raise ValueError('No vertno found.')
vs = [np.array(v) for v in vertno]
datas = [np.concatenate(d) for d in [lh_data, rh_data]]
# need to sort each hemi by vertex number
for ii in range(2):
order = np.argsort(vs[ii])
vs[ii] = vs[ii][order]
if len(order) > 0: # fix for old numpy
datas[ii] = datas[ii][order]
datas = np.concatenate(datas)
tmin, tstep = times[0], np.diff(times[:2])[0]
assert datas.shape == data.shape
cls = SourceEstimate if len(vs) == 2 else VolSourceEstimate
stc = cls(datas, vertices=vs, tmin=tmin, tstep=tstep, subject=subject)
return stc
def simulate_stc(src, labels, stc_data, tmin, tstep, value_fun=None,
allow_overlap=False):
"""Simulate sources time courses from waveforms and labels.
This function generates a source estimate with extended sources by
filling the labels with the waveforms given in stc_data.
Parameters
----------
src : instance of SourceSpaces
The source space
labels : list of Label
The labels
stc_data : array, shape (n_labels, n_times)
The waveforms
tmin : float
The beginning of the timeseries
tstep : float
The time step (1 / sampling frequency)
value_fun : callable | None
Function to apply to the label values to obtain the waveform
scaling for each vertex in the label. If None (default), uniform
scaling is used.
allow_overlap : bool
Allow overlapping labels or not. Default value is False
.. versionadded:: 0.18
Returns
-------
stc : SourceEstimate
The generated source time courses.
See Also
--------
simulate_raw
simulate_evoked
simulate_sparse_stc
"""
if len(labels) != len(stc_data):
raise ValueError('labels and stc_data must have the same length')
vertno = [[], []]
stc_data_extended = [[], []]
hemi_to_ind = {'lh': 0, 'rh': 1}
for i, label in enumerate(labels):
hemi_ind = hemi_to_ind[label.hemi]
src_sel = np.intersect1d(src[hemi_ind]['vertno'],
label.vertices)
if len(src_sel) == 0:
idx = src[hemi_ind]['inuse'].astype('bool')
xhs = src[hemi_ind]['rr'][idx]
rr = src[hemi_ind]['rr'][label.vertices]
closest_src = _compute_nearest(xhs, rr)
src_sel = src[hemi_ind]['vertno'][np.unique(closest_src)]
if value_fun is not None:
idx_sel = np.searchsorted(label.vertices, src_sel)
values_sel = np.array([value_fun(v) for v in
label.values[idx_sel]])
data = np.outer(values_sel, stc_data[i])
else:
data = np.tile(stc_data[i], (len(src_sel), 1))
# If overlaps are allowed, deal with them
if allow_overlap:
# Search for duplicate vertex indices
# in the existing vertex matrix vertex.
duplicates = []
for src_ind, vertex_ind in enumerate(src_sel):
ind = np.where(vertex_ind == vertno[hemi_ind])[0]
if len(ind) > 0:
assert (len(ind) == 1)
# Add the new data to the existing one
stc_data_extended[hemi_ind][ind[0]] += data[src_ind]
duplicates.append(src_ind)
# Remove the duplicates from both data and selected vertices
data = np.delete(data, duplicates, axis=0)
src_sel = list(np.delete(np.array(src_sel), duplicates))
# Extend the existing list instead of appending it so that we can
# index its elements
vertno[hemi_ind].extend(src_sel)
stc_data_extended[hemi_ind].extend(np.atleast_2d(data))
vertno = [np.array(v) for v in vertno]
if not allow_overlap:
for v, hemi in zip(vertno, ('left', 'right')):
d = len(v) - len(np.unique(v))
if d > 0:
raise RuntimeError('Labels had %s overlaps in the %s '
'hemisphere, '
'they must be non-overlapping' % (d, hemi))
# the data is in the order left, right
data = list()
for i in range(2):
if len(stc_data_extended[i]) != 0:
stc_data_extended[i] = np.vstack(stc_data_extended[i])
# Order the indices of each hemisphere
idx = np.argsort(vertno[i])
data.append(stc_data_extended[i][idx])
vertno[i] = vertno[i][idx]
subject = src[0].get('subject_his_id')
stc = SourceEstimate(np.concatenate(data), vertices=vertno, tmin=tmin,
tstep=tstep, subject=subject)
return stc
class SourceSimulator(object):
"""Class to generate simulated Source Estimates.
Parameters
----------
src : instance of SourceSpaces
Source space.
tstep : float
Time step between successive samples in data. Default is 0.001 sec.
duration : float | None
Time interval during which the simulation takes place in seconds.
If None, it is computed using existing events and waveform lengths.
Attributes
----------
duration : float
The duration of the simulation in seconds.
n_times : int
The number of time samples of the simulation.
"""
def __init__(self, src, tstep=1e-3, duration=None):
self._src = src
self._tstep = tstep
self._labels = []
self._waveforms = []
self._events = np.empty((0, 3), dtype=int)
self._duration = duration
self._last_samples = []
self._chk_duration = 1000
@property
def duration(self):
"""Duration of the simulation"""
# If not, the precomputed maximum last sample is used
if self._duration is None:
return np.max(self._last_samples) * self._tstep
return self._duration
@property
def n_times(self):
"""Number of time samples in the simulation"""
return int(self.duration / self._tstep)
def add_data(self, label, waveform, events):
"""Add data to the simulation.
Data should be added in the form of a triplet of
Label (Where) - Waveform(s) (What) - Event(s) (When)
Parameters
----------
label : Label
The label (as created for example by mne.read_label). If the label
does not match any sources in the SourceEstimate, a ValueError is
raised.
waveform : array, shape (n_times,) or (n_events, n_times) | list
The waveform(s) describing the activity on the label vertices.
If list, it must have the same length as events
events: array of int, shape (n_events, 3)
Events associated to the waveform(s) to specify when the activity
should occur.
"""
if not isinstance(label, Label):
raise ValueError('label must be a Label,'
'not %s' % type(label))
# If it is not a list then make it one
if not isinstance(waveform, list) and np.ndim(waveform) == 2:
waveform = list(waveform)
if not isinstance(waveform, list) and np.ndim(waveform) == 1:
waveform = [waveform]
if len(waveform) == 1:
waveform = waveform * len(events)
# The length is either equal to the length of events, or 1
if len(waveform) != len(events):
raise ValueError('Number of waveforms and events should match or '
'there should be a single waveform (%d != %d).' %
(len(waveform), len(events)))
# Update the maximum duration possible based on the events
self._labels.extend([label] * len(events))
self._waveforms.extend(waveform)
self._events = np.vstack([self._events, events])
# First sample per waveform is the first column of events
# Last is computed below
self._last_samples = np.array([self._events[i, 0] + len(w)
for i, w in enumerate(self._waveforms)])
def get_stim_channel(self, start_sample=0, stop_sample=None):
"""Get the stim channel from the provided data.
Returns the stim channel data according to the simulation parameters
which should be added through function add_data. If both start_sample
and stop_sample are not specified, the entire duration is used.
Parameters
----------
start_sample : int
First sample in chunk. Default is 0.
stop_sample : int | None
The stop sample of the returned stc. This sample is not part of the
output to follow slicing semantics. If None, then all samples past
start_sample is returned.
Returns
-------
stim_data : ndarray of int, shape (n_samples,)
The stimulation channel data.
"""
if stop_sample is None:
stop_sample = self.n_times
n_samples = stop_sample - start_sample
# Initialize the stim data array
stim_data = np.zeros(n_samples, dtype=int)
# Select only events in the time chunk
stim_ind = np.where(np.logical_and(
self._events[:, 0] >= start_sample,
self._events[:, 0] < stop_sample))[0]
if len(stim_ind) > 0:
relative_ind = self._events[stim_ind, 0].astype(int) - start_sample
stim_data[relative_ind] = self._events[stim_ind, 2]
return stim_data
def get_stc(self, start_sample=0, stop_sample=None):
"""Simulate a SourceEstimate from the provided data.
Returns a SourceEstimate object constructed according to the simulation
parameters which should be added through function add_data. If both
start_sample and stop_sample are not specified, the entire duration is
used.
Parameters
----------
start_sample : int
First sample in chunk. Default is 0.
stop_sample : int | None
The stop sample of the returned stc. This sample is not part of the
output to follow slicing semantics. If None, then all samples past
start_sample is returned.
Returns
-------
stc : SourceEstimate object
The generated source time courses.
"""
if len(self._labels) == 0:
raise ValueError('No simulation parameters were found. Please use '
'function add_data to add simulation parameters.')
if stop_sample is None:
stop_sample = self.n_times
n_samples = stop_sample - start_sample
# Initialize the stc_data array
stc_data = np.zeros((len(self._labels), n_samples))
# Select only the indices that have events in the time chunk
ind = np.where(np.logical_and(self._last_samples >= start_sample,
self._events[:, 0] < stop_sample))[0]
# Loop only over the items that are in the time chunk
subset_waveforms = [self._waveforms[i] for i in ind]
for i, (waveform, event) in enumerate(zip(subset_waveforms,
self._events[ind])):
# We retrieve the first and last sample of each waveform
# According to the corresponding event
wf_start = event[0]
wf_stop = self._last_samples[ind[i]]
# Recover the indices of the event that should be in the chunk
waveform_ind = np.in1d(np.arange(wf_start, wf_stop),
np.arange(start_sample, stop_sample))
# Recover the indices that correspond to the overlap
stc_ind = np.in1d(np.arange(start_sample, stop_sample),
np.arange(wf_start, wf_stop))
# add the resulting waveform chunk to the corresponding label
stc_data[ind[i]][stc_ind] += waveform[waveform_ind]
stc = simulate_stc(self._src, self._labels, stc_data,
start_sample * self._tstep, self._tstep,
allow_overlap=True)
return stc
def __iter__(self):
"""Iterate over 1 second STCs."""
# Arbitrary chunk size, can be modified later to something else
# Loop over chunks of 1 second - or, maximum sample size.
# Can be modified to a different value.
n_times = self.n_times
for start_sample in range(0, n_times, self._chk_duration):
stop_sample = min(start_sample + self._chk_duration, n_times)
yield (self.get_stc(start_sample, stop_sample),
self.get_stim_channel(start_sample, stop_sample))
|