File: source.py

package info (click to toggle)
python-mne 0.19.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 100,440 kB
  • sloc: python: 120,243; pascal: 1,861; makefile: 225; sh: 15
file content (530 lines) | stat: -rw-r--r-- 20,223 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
# Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr>
#          Martin Luessi <mluessi@nmr.mgh.harvard.edu>
#          Daniel Strohmeier <daniel.strohmeier@tu-ilmenau.de>
#          Nathalie Gayraud <nat.gayraud@gmail.com>
#          Kostiantyn Maksymenko <kostiantyn.maksymenko@gmail.com>
#          Samuel Deslauriers-Gauthier <sam.deslauriers@gmail.com>
#          Ivana Kojcic <ivana.kojcic@gmail.com>
#
# License: BSD (3-clause)

import numpy as np

from ..source_estimate import SourceEstimate, VolSourceEstimate
from ..source_space import _ensure_src
from ..fixes import rng_uniform
from ..utils import check_random_state, warn, _check_option, fill_doc
from ..label import Label
from ..surface import _compute_nearest


@fill_doc
def select_source_in_label(src, label, random_state=None, location='random',
                           subject=None, subjects_dir=None, surf='sphere'):
    """Select source positions using a label.

    Parameters
    ----------
    src : list of dict
        The source space
    label : Label
        the label (read with mne.read_label)
    %(random_state)s
    location : str
        The label location to choose. Can be 'random' (default) or 'center'
        to use :func:`mne.Label.center_of_mass` (restricting to vertices
        both in the label and in the source space). Note that for 'center'
        mode the label values are used as weights.

        .. versionadded:: 0.13

    subject : string | None
        The subject the label is defined for.
        Only used with ``location='center'``.

        .. versionadded:: 0.13

    subjects_dir : str, or None
        Path to the SUBJECTS_DIR. If None, the path is obtained by using
        the environment variable SUBJECTS_DIR.
        Only used with ``location='center'``.

        .. versionadded:: 0.13

    surf : str
        The surface to use for Euclidean distance center of mass
        finding. The default here is "sphere", which finds the center
        of mass on the spherical surface to help avoid potential issues
        with cortical folding.

        .. versionadded:: 0.13

    Returns
    -------
    lh_vertno : list
        selected source coefficients on the left hemisphere
    rh_vertno : list
        selected source coefficients on the right hemisphere
    """
    lh_vertno = list()
    rh_vertno = list()
    _check_option('location', location, ['random', 'center'])

    rng = check_random_state(random_state)
    if label.hemi == 'lh':
        vertno = lh_vertno
        hemi_idx = 0
    else:
        vertno = rh_vertno
        hemi_idx = 1
    src_sel = np.intersect1d(src[hemi_idx]['vertno'], label.vertices)
    if location == 'random':
        idx = src_sel[rng_uniform(rng)(0, len(src_sel), 1)[0]]
    else:  # 'center'
        idx = label.center_of_mass(
            subject, restrict_vertices=src_sel, subjects_dir=subjects_dir,
            surf=surf)
    vertno.append(idx)
    return lh_vertno, rh_vertno


@fill_doc
def simulate_sparse_stc(src, n_dipoles, times,
                        data_fun=lambda t: 1e-7 * np.sin(20 * np.pi * t),
                        labels=None, random_state=None, location='random',
                        subject=None, subjects_dir=None, surf='sphere'):
    """Generate sparse (n_dipoles) sources time courses from data_fun.

    This function randomly selects ``n_dipoles`` vertices in the whole
    cortex or one single vertex (randomly in or in the center of) each
    label if ``labels is not None``. It uses ``data_fun`` to generate
    waveforms for each vertex.

    Parameters
    ----------
    src : instance of SourceSpaces
        The source space.
    n_dipoles : int
        Number of dipoles to simulate.
    times : array
        Time array
    data_fun : callable
        Function to generate the waveforms. The default is a 100 nAm, 10 Hz
        sinusoid as ``1e-7 * np.sin(20 * pi * t)``. The function should take
        as input the array of time samples in seconds and return an array of
        the same length containing the time courses.
    labels : None | list of Label
        The labels. The default is None, otherwise its size must be n_dipoles.
    %(random_state)s
    location : str
        The label location to choose. Can be 'random' (default) or 'center'
        to use :func:`mne.Label.center_of_mass`. Note that for 'center'
        mode the label values are used as weights.

        .. versionadded:: 0.13

    subject : string | None
        The subject the label is defined for.
        Only used with ``location='center'``.

        .. versionadded:: 0.13

    subjects_dir : str, or None
        Path to the SUBJECTS_DIR. If None, the path is obtained by using
        the environment variable SUBJECTS_DIR.
        Only used with ``location='center'``.

        .. versionadded:: 0.13

    surf : str
        The surface to use for Euclidean distance center of mass
        finding. The default here is "sphere", which finds the center
        of mass on the spherical surface to help avoid potential issues
        with cortical folding.

        .. versionadded:: 0.13

    Returns
    -------
    stc : SourceEstimate
        The generated source time courses.

    See Also
    --------
    simulate_raw
    simulate_evoked
    simulate_stc

    Notes
    -----
    .. versionadded:: 0.10.0
    """
    rng = check_random_state(random_state)
    src = _ensure_src(src, verbose=False)
    subject_src = src[0].get('subject_his_id')
    if subject is None:
        subject = subject_src
    elif subject_src is not None and subject != subject_src:
        raise ValueError('subject argument (%s) did not match the source '
                         'space subject_his_id (%s)' % (subject, subject_src))
    data = np.zeros((n_dipoles, len(times)))
    for i_dip in range(n_dipoles):
        data[i_dip, :] = data_fun(times)

    if labels is None:
        # can be vol or surface source space
        offsets = np.linspace(0, n_dipoles, len(src) + 1).astype(int)
        n_dipoles_ss = np.diff(offsets)
        # don't use .choice b/c not on old numpy
        vs = [s['vertno'][np.sort(rng.permutation(np.arange(s['nuse']))[:n])]
              for n, s in zip(n_dipoles_ss, src)]
        datas = data
    elif n_dipoles > len(labels):
        raise ValueError('Number of labels (%d) smaller than n_dipoles (%d) '
                         'is not allowed.' % (len(labels), n_dipoles))
    else:
        if n_dipoles != len(labels):
            warn('The number of labels is different from the number of '
                 'dipoles. %s dipole(s) will be generated.'
                 % min(n_dipoles, len(labels)))
        labels = labels[:n_dipoles] if n_dipoles < len(labels) else labels

        vertno = [[], []]
        lh_data = [np.empty((0, data.shape[1]))]
        rh_data = [np.empty((0, data.shape[1]))]
        for i, label in enumerate(labels):
            lh_vertno, rh_vertno = select_source_in_label(
                src, label, rng, location, subject, subjects_dir, surf)
            vertno[0] += lh_vertno
            vertno[1] += rh_vertno
            if len(lh_vertno) != 0:
                lh_data.append(data[i][np.newaxis])
            elif len(rh_vertno) != 0:
                rh_data.append(data[i][np.newaxis])
            else:
                raise ValueError('No vertno found.')
        vs = [np.array(v) for v in vertno]
        datas = [np.concatenate(d) for d in [lh_data, rh_data]]
        # need to sort each hemi by vertex number
        for ii in range(2):
            order = np.argsort(vs[ii])
            vs[ii] = vs[ii][order]
            if len(order) > 0:  # fix for old numpy
                datas[ii] = datas[ii][order]
        datas = np.concatenate(datas)

    tmin, tstep = times[0], np.diff(times[:2])[0]
    assert datas.shape == data.shape
    cls = SourceEstimate if len(vs) == 2 else VolSourceEstimate
    stc = cls(datas, vertices=vs, tmin=tmin, tstep=tstep, subject=subject)
    return stc


def simulate_stc(src, labels, stc_data, tmin, tstep, value_fun=None,
                 allow_overlap=False):
    """Simulate sources time courses from waveforms and labels.

    This function generates a source estimate with extended sources by
    filling the labels with the waveforms given in stc_data.

    Parameters
    ----------
    src : instance of SourceSpaces
        The source space
    labels : list of Label
        The labels
    stc_data : array, shape (n_labels, n_times)
        The waveforms
    tmin : float
        The beginning of the timeseries
    tstep : float
        The time step (1 / sampling frequency)
    value_fun : callable | None
        Function to apply to the label values to obtain the waveform
        scaling for each vertex in the label. If None (default), uniform
        scaling is used.
    allow_overlap : bool
        Allow overlapping labels or not. Default value is False

        .. versionadded:: 0.18

    Returns
    -------
    stc : SourceEstimate
        The generated source time courses.

    See Also
    --------
    simulate_raw
    simulate_evoked
    simulate_sparse_stc
    """
    if len(labels) != len(stc_data):
        raise ValueError('labels and stc_data must have the same length')

    vertno = [[], []]
    stc_data_extended = [[], []]
    hemi_to_ind = {'lh': 0, 'rh': 1}
    for i, label in enumerate(labels):
        hemi_ind = hemi_to_ind[label.hemi]
        src_sel = np.intersect1d(src[hemi_ind]['vertno'],
                                 label.vertices)
        if len(src_sel) == 0:
            idx = src[hemi_ind]['inuse'].astype('bool')
            xhs = src[hemi_ind]['rr'][idx]
            rr = src[hemi_ind]['rr'][label.vertices]
            closest_src = _compute_nearest(xhs, rr)
            src_sel = src[hemi_ind]['vertno'][np.unique(closest_src)]

        if value_fun is not None:
            idx_sel = np.searchsorted(label.vertices, src_sel)
            values_sel = np.array([value_fun(v) for v in
                                   label.values[idx_sel]])

            data = np.outer(values_sel, stc_data[i])
        else:
            data = np.tile(stc_data[i], (len(src_sel), 1))
        # If overlaps are allowed, deal with them
        if allow_overlap:
            # Search for duplicate vertex indices
            # in the existing vertex matrix vertex.
            duplicates = []
            for src_ind, vertex_ind in enumerate(src_sel):
                ind = np.where(vertex_ind == vertno[hemi_ind])[0]
                if len(ind) > 0:
                    assert (len(ind) == 1)
                    # Add the new data to the existing one
                    stc_data_extended[hemi_ind][ind[0]] += data[src_ind]
                    duplicates.append(src_ind)
            # Remove the duplicates from both data and selected vertices
            data = np.delete(data, duplicates, axis=0)
            src_sel = list(np.delete(np.array(src_sel), duplicates))
        # Extend the existing list instead of appending it so that we can
        # index its elements
        vertno[hemi_ind].extend(src_sel)
        stc_data_extended[hemi_ind].extend(np.atleast_2d(data))

    vertno = [np.array(v) for v in vertno]
    if not allow_overlap:
        for v, hemi in zip(vertno, ('left', 'right')):
            d = len(v) - len(np.unique(v))
            if d > 0:
                raise RuntimeError('Labels had %s overlaps in the %s '
                                   'hemisphere, '
                                   'they must be non-overlapping' % (d, hemi))
    # the data is in the order left, right
    data = list()
    for i in range(2):
        if len(stc_data_extended[i]) != 0:
            stc_data_extended[i] = np.vstack(stc_data_extended[i])
            # Order the indices of each hemisphere
            idx = np.argsort(vertno[i])
            data.append(stc_data_extended[i][idx])
            vertno[i] = vertno[i][idx]

    subject = src[0].get('subject_his_id')
    stc = SourceEstimate(np.concatenate(data), vertices=vertno, tmin=tmin,
                         tstep=tstep, subject=subject)
    return stc


class SourceSimulator(object):
    """Class to generate simulated Source Estimates.

    Parameters
    ----------
    src : instance of SourceSpaces
        Source space.
    tstep : float
        Time step between successive samples in data. Default is 0.001 sec.
    duration : float | None
        Time interval during which the simulation takes place in seconds.
        If None, it is computed using existing events and waveform lengths.

    Attributes
    ----------
    duration : float
        The duration of the simulation in seconds.
    n_times : int
        The number of time samples of the simulation.
    """

    def __init__(self, src, tstep=1e-3, duration=None):
        self._src = src
        self._tstep = tstep
        self._labels = []
        self._waveforms = []
        self._events = np.empty((0, 3), dtype=int)
        self._duration = duration
        self._last_samples = []
        self._chk_duration = 1000

    @property
    def duration(self):
        """Duration of the simulation"""
        # If not, the precomputed maximum last sample is used
        if self._duration is None:
            return np.max(self._last_samples) * self._tstep
        return self._duration

    @property
    def n_times(self):
        """Number of time samples in the simulation"""
        return int(self.duration / self._tstep)

    def add_data(self, label, waveform, events):
        """Add data to the simulation.

        Data should be added in the form of a triplet of
        Label (Where) - Waveform(s) (What) - Event(s) (When)

        Parameters
        ----------
        label : Label
            The label (as created for example by mne.read_label). If the label
            does not match any sources in the SourceEstimate, a ValueError is
            raised.
        waveform : array, shape (n_times,) or (n_events, n_times) | list
            The waveform(s) describing the activity on the label vertices.
            If list, it must have the same length as events
        events: array of int, shape (n_events, 3)
            Events associated to the waveform(s) to specify when the activity
            should occur.
        """
        if not isinstance(label, Label):
            raise ValueError('label must be a Label,'
                             'not %s' % type(label))

        # If it is not a list then make it one
        if not isinstance(waveform, list) and np.ndim(waveform) == 2:
            waveform = list(waveform)
        if not isinstance(waveform, list) and np.ndim(waveform) == 1:
            waveform = [waveform]
        if len(waveform) == 1:
            waveform = waveform * len(events)
        # The length is either equal to the length of events, or 1
        if len(waveform) != len(events):
            raise ValueError('Number of waveforms and events should match or '
                             'there should be a single waveform (%d != %d).' %
                             (len(waveform), len(events)))
        # Update the maximum duration possible based on the events
        self._labels.extend([label] * len(events))
        self._waveforms.extend(waveform)
        self._events = np.vstack([self._events, events])
        # First sample per waveform is the first column of events
        # Last is computed below
        self._last_samples = np.array([self._events[i, 0] + len(w)
                                      for i, w in enumerate(self._waveforms)])

    def get_stim_channel(self, start_sample=0, stop_sample=None):
        """Get the stim channel from the provided data.

        Returns the stim channel data according to the simulation parameters
        which should be added through function add_data. If both start_sample
        and stop_sample are not specified, the entire duration is used.

        Parameters
        ----------
        start_sample : int
            First sample in chunk. Default is 0.
        stop_sample : int | None
            The stop sample of the returned stc. This sample is not part of the
            output to follow slicing semantics. If None, then all samples past
            start_sample is returned.

        Returns
        -------
        stim_data : ndarray of int, shape (n_samples,)
            The stimulation channel data.
        """
        if stop_sample is None:
            stop_sample = self.n_times
        n_samples = stop_sample - start_sample

        # Initialize the stim data array
        stim_data = np.zeros(n_samples, dtype=int)

        # Select only events in the time chunk
        stim_ind = np.where(np.logical_and(
            self._events[:, 0] >= start_sample,
            self._events[:, 0] < stop_sample))[0]

        if len(stim_ind) > 0:
            relative_ind = self._events[stim_ind, 0].astype(int) - start_sample
            stim_data[relative_ind] = self._events[stim_ind, 2]

        return stim_data

    def get_stc(self, start_sample=0, stop_sample=None):
        """Simulate a SourceEstimate from the provided data.

        Returns a SourceEstimate object constructed according to the simulation
        parameters which should be added through function add_data. If both
        start_sample and stop_sample are not specified, the entire duration is
        used.

        Parameters
        ----------
        start_sample : int
            First sample in chunk. Default is 0.
        stop_sample : int | None
            The stop sample of the returned stc. This sample is not part of the
            output to follow slicing semantics. If None, then all samples past
            start_sample is returned.

        Returns
        -------
        stc : SourceEstimate object
            The generated source time courses.
        """
        if len(self._labels) == 0:
            raise ValueError('No simulation parameters were found. Please use '
                             'function add_data to add simulation parameters.')
        if stop_sample is None:
            stop_sample = self.n_times

        n_samples = stop_sample - start_sample

        # Initialize the stc_data array
        stc_data = np.zeros((len(self._labels), n_samples))

        # Select only the indices that have events in the time chunk
        ind = np.where(np.logical_and(self._last_samples >= start_sample,
                                      self._events[:, 0] < stop_sample))[0]

        # Loop only over the items that are in the time chunk
        subset_waveforms = [self._waveforms[i] for i in ind]
        for i, (waveform, event) in enumerate(zip(subset_waveforms,
                                                  self._events[ind])):
            # We retrieve the first and last sample of each waveform
            # According to the corresponding event
            wf_start = event[0]
            wf_stop = self._last_samples[ind[i]]

            # Recover the indices of the event that should be in the chunk
            waveform_ind = np.in1d(np.arange(wf_start, wf_stop),
                                   np.arange(start_sample, stop_sample))

            # Recover the indices that correspond to the overlap
            stc_ind = np.in1d(np.arange(start_sample, stop_sample),
                              np.arange(wf_start, wf_stop))

            # add the resulting waveform chunk to the corresponding label
            stc_data[ind[i]][stc_ind] += waveform[waveform_ind]

        stc = simulate_stc(self._src, self._labels, stc_data,
                           start_sample * self._tstep, self._tstep,
                           allow_overlap=True)

        return stc

    def __iter__(self):
        """Iterate over 1 second STCs."""
        # Arbitrary chunk size, can be modified later to something else
        # Loop over chunks of 1 second - or, maximum sample size.
        # Can be modified to a different value.
        n_times = self.n_times
        for start_sample in range(0, n_times, self._chk_duration):
            stop_sample = min(start_sample + self._chk_duration, n_times)
            yield (self.get_stc(start_sample, stop_sample),
                   self.get_stim_channel(start_sample, stop_sample))