1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
|
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
#
# License: BSD (3-clause)
import os.path as op
import numpy as np
from numpy.testing import (assert_array_almost_equal, assert_array_equal,
assert_equal, assert_allclose)
import pytest
from mne import (read_cov, read_forward_solution, convert_forward_solution,
pick_types_forward, read_evokeds, pick_types, EpochsArray,
compute_covariance, compute_raw_covariance)
from mne.datasets import testing
from mne.simulation import simulate_sparse_stc, simulate_evoked, add_noise
from mne.io import read_raw_fif
from mne.io.pick import pick_channels_cov
from mne.cov import regularize, whiten_evoked
from mne.utils import run_tests_if_main, catch_logging, check_version
data_path = testing.data_path(download=False)
fwd_fname = op.join(data_path, 'MEG', 'sample',
'sample_audvis_trunc-meg-eeg-oct-6-fwd.fif')
raw_fname = op.join(op.dirname(__file__), '..', '..', 'io', 'tests',
'data', 'test_raw.fif')
ave_fname = op.join(op.dirname(__file__), '..', '..', 'io', 'tests',
'data', 'test-ave.fif')
cov_fname = op.join(op.dirname(__file__), '..', '..', 'io', 'tests',
'data', 'test-cov.fif')
@testing.requires_testing_data
def test_simulate_evoked():
"""Test simulation of evoked data."""
raw = read_raw_fif(raw_fname)
fwd = read_forward_solution(fwd_fname)
fwd = convert_forward_solution(fwd, force_fixed=True, use_cps=False)
fwd = pick_types_forward(fwd, meg=True, eeg=True, exclude=raw.info['bads'])
cov = read_cov(cov_fname)
evoked_template = read_evokeds(ave_fname, condition=0, baseline=None)
evoked_template.pick_types(meg=True, eeg=True, exclude=raw.info['bads'])
cov = regularize(cov, evoked_template.info)
nave = evoked_template.nave
tmin = -0.1
sfreq = 1000. # Hz
tstep = 1. / sfreq
n_samples = 600
times = np.linspace(tmin, tmin + n_samples * tstep, n_samples)
# Generate times series for 2 dipoles
stc = simulate_sparse_stc(fwd['src'], n_dipoles=2, times=times,
random_state=42)
# Generate noisy evoked data
iir_filter = [1, -0.9]
evoked = simulate_evoked(fwd, stc, evoked_template.info, cov,
iir_filter=iir_filter, nave=nave)
assert_array_almost_equal(evoked.times, stc.times)
assert len(evoked.data) == len(fwd['sol']['data'])
assert_equal(evoked.nave, nave)
assert len(evoked.info['projs']) == len(cov['projs'])
evoked_white = whiten_evoked(evoked, cov)
assert abs(evoked_white.data[:, 0].std() - 1.) < 0.1
# make a vertex that doesn't exist in fwd, should throw error
stc_bad = stc.copy()
mv = np.max(fwd['src'][0]['vertno'][fwd['src'][0]['inuse']])
stc_bad.vertices[0][0] = mv + 1
pytest.raises(RuntimeError, simulate_evoked, fwd, stc_bad,
evoked_template.info, cov)
evoked_1 = simulate_evoked(fwd, stc, evoked_template.info, cov,
nave=np.inf)
evoked_2 = simulate_evoked(fwd, stc, evoked_template.info, cov,
nave=np.inf)
assert_array_equal(evoked_1.data, evoked_2.data)
cov['names'] = cov.ch_names[:-2] # Error channels are different.
with pytest.raises(RuntimeError, match='Not all channels present'):
simulate_evoked(fwd, stc, evoked_template.info, cov)
# We don't use an avg ref here, but let's ignore it. Also we know we have
# few samples, and that our epochs are not baseline corrected.
@pytest.mark.filterwarnings('ignore:No average EEG reference present')
@pytest.mark.filterwarnings('ignore:Too few samples')
@pytest.mark.filterwarnings('ignore:Epochs are not baseline corrected')
def test_add_noise():
"""Test noise addition."""
if check_version('numpy', '1.17'):
rng = np.random.default_rng(0)
else:
rng = np.random.RandomState(0)
raw = read_raw_fif(raw_fname)
raw.del_proj()
picks = pick_types(raw.info, eeg=True, exclude=())
cov = compute_raw_covariance(raw, picks=picks)
with pytest.raises(RuntimeError, match='to be loaded'):
add_noise(raw, cov)
raw.crop(0, 1).load_data()
with pytest.raises(TypeError, match='Raw, Epochs, or Evoked'):
add_noise(0., cov)
with pytest.raises(TypeError, match='Covariance'):
add_noise(raw, 0.)
# test a no-op (data preserved)
orig_data = raw[:][0]
zero_cov = cov.copy()
zero_cov['data'].fill(0)
add_noise(raw, zero_cov)
new_data = raw[:][0]
assert_allclose(orig_data, new_data, atol=1e-30)
# set to zero to make comparisons easier
raw._data[:] = 0.
epochs = EpochsArray(np.zeros((1, len(raw.ch_names), 100)),
raw.info.copy())
epochs.info['bads'] = []
evoked = epochs.average(picks=np.arange(len(raw.ch_names)))
for inst in (raw, epochs, evoked):
with catch_logging() as log:
add_noise(inst, cov, random_state=rng, verbose=True)
log = log.getvalue()
want = ('to {0}/{1} channels ({0}'
.format(len(cov['names']), len(raw.ch_names)))
assert want in log
if inst is evoked:
inst = EpochsArray(inst.data[np.newaxis], inst.info)
if inst is raw:
cov_new = compute_raw_covariance(inst, picks=picks)
else:
cov_new = compute_covariance(inst)
assert cov['names'] == cov_new['names']
r = np.corrcoef(cov['data'].ravel(), cov_new['data'].ravel())[0, 1]
assert r > 0.99
def test_rank_deficiency():
"""Test adding noise from M/EEG float32 (I/O) cov with projectors."""
# See gh-5940
evoked = read_evokeds(ave_fname, 0, baseline=(None, 0))
evoked.info['bads'] = ['MEG 2443']
evoked.info['lowpass'] = 20 # fake for decim
picks = pick_types(evoked.info, meg=True, eeg=False)
picks = picks[::16]
evoked.pick_channels([evoked.ch_names[pick] for pick in picks])
evoked.info.normalize_proj()
cov = read_cov(cov_fname)
cov['projs'] = []
cov = regularize(cov, evoked.info, rank=None)
cov = pick_channels_cov(cov, evoked.ch_names)
evoked.data[:] = 0
add_noise(evoked, cov)
cov_new = compute_covariance(
EpochsArray(evoked.data[np.newaxis], evoked.info), verbose='error')
assert cov['names'] == cov_new['names']
r = np.corrcoef(cov['data'].ravel(), cov_new['data'].ravel())[0, 1]
assert r > 0.98
run_tests_if_main()
|