File: test_evoked.py

package info (click to toggle)
python-mne 0.19.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 100,440 kB
  • sloc: python: 120,243; pascal: 1,861; makefile: 225; sh: 15
file content (163 lines) | stat: -rw-r--r-- 6,546 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
#
# License: BSD (3-clause)

import os.path as op

import numpy as np
from numpy.testing import (assert_array_almost_equal, assert_array_equal,
                           assert_equal, assert_allclose)
import pytest

from mne import (read_cov, read_forward_solution, convert_forward_solution,
                 pick_types_forward, read_evokeds, pick_types, EpochsArray,
                 compute_covariance, compute_raw_covariance)
from mne.datasets import testing
from mne.simulation import simulate_sparse_stc, simulate_evoked, add_noise
from mne.io import read_raw_fif
from mne.io.pick import pick_channels_cov
from mne.cov import regularize, whiten_evoked
from mne.utils import run_tests_if_main, catch_logging, check_version

data_path = testing.data_path(download=False)
fwd_fname = op.join(data_path, 'MEG', 'sample',
                    'sample_audvis_trunc-meg-eeg-oct-6-fwd.fif')
raw_fname = op.join(op.dirname(__file__), '..', '..', 'io', 'tests',
                    'data', 'test_raw.fif')
ave_fname = op.join(op.dirname(__file__), '..', '..', 'io', 'tests',
                    'data', 'test-ave.fif')
cov_fname = op.join(op.dirname(__file__), '..', '..', 'io', 'tests',
                    'data', 'test-cov.fif')


@testing.requires_testing_data
def test_simulate_evoked():
    """Test simulation of evoked data."""
    raw = read_raw_fif(raw_fname)
    fwd = read_forward_solution(fwd_fname)
    fwd = convert_forward_solution(fwd, force_fixed=True, use_cps=False)
    fwd = pick_types_forward(fwd, meg=True, eeg=True, exclude=raw.info['bads'])
    cov = read_cov(cov_fname)

    evoked_template = read_evokeds(ave_fname, condition=0, baseline=None)
    evoked_template.pick_types(meg=True, eeg=True, exclude=raw.info['bads'])

    cov = regularize(cov, evoked_template.info)
    nave = evoked_template.nave

    tmin = -0.1
    sfreq = 1000.  # Hz
    tstep = 1. / sfreq
    n_samples = 600
    times = np.linspace(tmin, tmin + n_samples * tstep, n_samples)

    # Generate times series for 2 dipoles
    stc = simulate_sparse_stc(fwd['src'], n_dipoles=2, times=times,
                              random_state=42)

    # Generate noisy evoked data
    iir_filter = [1, -0.9]
    evoked = simulate_evoked(fwd, stc, evoked_template.info, cov,
                             iir_filter=iir_filter, nave=nave)
    assert_array_almost_equal(evoked.times, stc.times)
    assert len(evoked.data) == len(fwd['sol']['data'])
    assert_equal(evoked.nave, nave)
    assert len(evoked.info['projs']) == len(cov['projs'])
    evoked_white = whiten_evoked(evoked, cov)
    assert abs(evoked_white.data[:, 0].std() - 1.) < 0.1

    # make a vertex that doesn't exist in fwd, should throw error
    stc_bad = stc.copy()
    mv = np.max(fwd['src'][0]['vertno'][fwd['src'][0]['inuse']])
    stc_bad.vertices[0][0] = mv + 1

    pytest.raises(RuntimeError, simulate_evoked, fwd, stc_bad,
                  evoked_template.info, cov)
    evoked_1 = simulate_evoked(fwd, stc, evoked_template.info, cov,
                               nave=np.inf)
    evoked_2 = simulate_evoked(fwd, stc, evoked_template.info, cov,
                               nave=np.inf)
    assert_array_equal(evoked_1.data, evoked_2.data)

    cov['names'] = cov.ch_names[:-2]  # Error channels are different.
    with pytest.raises(RuntimeError, match='Not all channels present'):
        simulate_evoked(fwd, stc, evoked_template.info, cov)


# We don't use an avg ref here, but let's ignore it. Also we know we have
# few samples, and that our epochs are not baseline corrected.
@pytest.mark.filterwarnings('ignore:No average EEG reference present')
@pytest.mark.filterwarnings('ignore:Too few samples')
@pytest.mark.filterwarnings('ignore:Epochs are not baseline corrected')
def test_add_noise():
    """Test noise addition."""
    if check_version('numpy', '1.17'):
        rng = np.random.default_rng(0)
    else:
        rng = np.random.RandomState(0)
    raw = read_raw_fif(raw_fname)
    raw.del_proj()
    picks = pick_types(raw.info, eeg=True, exclude=())
    cov = compute_raw_covariance(raw, picks=picks)
    with pytest.raises(RuntimeError, match='to be loaded'):
        add_noise(raw, cov)
    raw.crop(0, 1).load_data()
    with pytest.raises(TypeError, match='Raw, Epochs, or Evoked'):
        add_noise(0., cov)
    with pytest.raises(TypeError, match='Covariance'):
        add_noise(raw, 0.)
    # test a no-op (data preserved)
    orig_data = raw[:][0]
    zero_cov = cov.copy()
    zero_cov['data'].fill(0)
    add_noise(raw, zero_cov)
    new_data = raw[:][0]
    assert_allclose(orig_data, new_data, atol=1e-30)
    # set to zero to make comparisons easier
    raw._data[:] = 0.
    epochs = EpochsArray(np.zeros((1, len(raw.ch_names), 100)),
                         raw.info.copy())
    epochs.info['bads'] = []
    evoked = epochs.average(picks=np.arange(len(raw.ch_names)))
    for inst in (raw, epochs, evoked):
        with catch_logging() as log:
            add_noise(inst, cov, random_state=rng, verbose=True)
        log = log.getvalue()
        want = ('to {0}/{1} channels ({0}'
                .format(len(cov['names']), len(raw.ch_names)))
        assert want in log
        if inst is evoked:
            inst = EpochsArray(inst.data[np.newaxis], inst.info)
        if inst is raw:
            cov_new = compute_raw_covariance(inst, picks=picks)
        else:
            cov_new = compute_covariance(inst)
        assert cov['names'] == cov_new['names']
        r = np.corrcoef(cov['data'].ravel(), cov_new['data'].ravel())[0, 1]
        assert r > 0.99


def test_rank_deficiency():
    """Test adding noise from M/EEG float32 (I/O) cov with projectors."""
    # See gh-5940
    evoked = read_evokeds(ave_fname, 0, baseline=(None, 0))
    evoked.info['bads'] = ['MEG 2443']
    evoked.info['lowpass'] = 20  # fake for decim
    picks = pick_types(evoked.info, meg=True, eeg=False)
    picks = picks[::16]
    evoked.pick_channels([evoked.ch_names[pick] for pick in picks])
    evoked.info.normalize_proj()
    cov = read_cov(cov_fname)
    cov['projs'] = []
    cov = regularize(cov, evoked.info, rank=None)
    cov = pick_channels_cov(cov, evoked.ch_names)
    evoked.data[:] = 0
    add_noise(evoked, cov)
    cov_new = compute_covariance(
        EpochsArray(evoked.data[np.newaxis], evoked.info), verbose='error')
    assert cov['names'] == cov_new['names']
    r = np.corrcoef(cov['data'].ravel(), cov_new['data'].ravel())[0, 1]
    assert r > 0.98


run_tests_if_main()