1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
|
# Author: Kostiantyn Maksymenko <kostiantyn.maksymenko@gmail.com>
# Samuel Deslauriers-Gauthier <sam.deslauriers@gmail.com>
#
# License: BSD (3-clause)
import os.path as op
import numpy as np
from numpy.testing import (assert_array_almost_equal, assert_array_equal,
assert_equal)
import pytest
from mne.datasets import testing
from mne import (read_label, read_forward_solution, pick_types_forward,
convert_forward_solution)
from mne.label import Label
from mne.simulation.source import simulate_stc, simulate_sparse_stc
from mne.simulation.source import SourceSimulator
from mne.utils import run_tests_if_main, check_version
data_path = testing.data_path(download=False)
fname_fwd = op.join(data_path, 'MEG', 'sample',
'sample_audvis_trunc-meg-eeg-oct-6-fwd.fif')
label_names = ['Aud-lh', 'Aud-rh', 'Vis-rh']
subjects_dir = op.join(data_path, 'subjects')
@pytest.fixture(scope="module", params=[testing._pytest_param()])
def _get_fwd_labels():
fwd = read_forward_solution(fname_fwd)
fwd = convert_forward_solution(fwd, force_fixed=True, use_cps=True)
fwd = pick_types_forward(fwd, meg=True, eeg=False)
labels = [read_label(op.join(data_path, 'MEG', 'sample', 'labels',
'%s.label' % label)) for label in label_names]
return fwd, labels
def _get_idx_label_stc(label, stc):
hemi_idx_mapping = dict(lh=0, rh=1)
hemi_idx = hemi_idx_mapping[label.hemi]
idx = np.intersect1d(stc.vertices[hemi_idx], label.vertices)
idx = np.searchsorted(stc.vertices[hemi_idx], idx)
if hemi_idx == 1:
idx += len(stc.vertices[0])
return idx
def test_simulate_stc(_get_fwd_labels):
"""Test generation of source estimate."""
fwd, labels = _get_fwd_labels
mylabels = []
for i, label in enumerate(labels):
new_label = Label(vertices=label.vertices,
pos=label.pos,
values=2 * i * np.ones(len(label.values)),
hemi=label.hemi,
comment=label.comment)
mylabels.append(new_label)
n_times = 10
tmin = 0
tstep = 1e-3
stc_data = np.ones((len(labels), n_times))
stc = simulate_stc(fwd['src'], mylabels, stc_data, tmin, tstep)
assert_equal(stc.subject, 'sample')
for label in labels:
idx = _get_idx_label_stc(label, stc)
assert (np.all(stc.data[idx] == 1.0))
assert (stc.data[idx].shape[1] == n_times)
# test with function
def fun(x):
return x ** 2
stc = simulate_stc(fwd['src'], mylabels, stc_data, tmin, tstep, fun)
# the first label has value 0, the second value 2, the third value 6
for i, label in enumerate(labels):
idx = _get_idx_label_stc(label, stc)
res = ((2. * i) ** 2.) * np.ones((len(idx), n_times))
assert_array_almost_equal(stc.data[idx], res)
# degenerate conditions
label_subset = mylabels[:2]
data_subset = stc_data[:2]
stc = simulate_stc(fwd['src'], label_subset, data_subset, tmin, tstep, fun)
pytest.raises(ValueError, simulate_stc, fwd['src'],
label_subset, data_subset[:-1], tmin, tstep, fun)
pytest.raises(RuntimeError, simulate_stc, fwd['src'], label_subset * 2,
np.concatenate([data_subset] * 2, axis=0), tmin, tstep, fun)
i = np.where(fwd['src'][0]['inuse'] == 0)[0][0]
label_single_vert = Label(vertices=[i],
pos=fwd['src'][0]['rr'][i:i + 1, :],
hemi='lh')
stc = simulate_stc(fwd['src'], [label_single_vert], stc_data[:1], tmin,
tstep)
assert_equal(len(stc.lh_vertno), 1)
def test_simulate_sparse_stc(_get_fwd_labels):
"""Test generation of sparse source estimate."""
fwd, labels = _get_fwd_labels
n_times = 10
tmin = 0
tstep = 1e-3
times = np.arange(n_times, dtype=np.float) * tstep + tmin
pytest.raises(ValueError, simulate_sparse_stc, fwd['src'], len(labels),
times, labels=labels, location='center', subject='sample',
subjects_dir=subjects_dir) # no non-zero values
mylabels = []
for label in labels:
this_label = label.copy()
this_label.values.fill(1.)
mylabels.append(this_label)
for location in ('random', 'center'):
random_state = 0 if location == 'random' else None
stc_1 = simulate_sparse_stc(fwd['src'], len(mylabels), times,
labels=mylabels, random_state=random_state,
location=location,
subjects_dir=subjects_dir)
assert_equal(stc_1.subject, 'sample')
assert (stc_1.data.shape[0] == len(mylabels))
assert (stc_1.data.shape[1] == n_times)
# make sure we get the same result when using the same seed
stc_2 = simulate_sparse_stc(fwd['src'], len(mylabels), times,
labels=mylabels, random_state=random_state,
location=location,
subjects_dir=subjects_dir)
assert_array_equal(stc_1.lh_vertno, stc_2.lh_vertno)
assert_array_equal(stc_1.rh_vertno, stc_2.rh_vertno)
# Degenerate cases
pytest.raises(ValueError, simulate_sparse_stc, fwd['src'], len(mylabels),
times, labels=mylabels, location='center', subject='foo',
subjects_dir=subjects_dir) # wrong subject
del fwd['src'][0]['subject_his_id'] # remove subject
pytest.raises(ValueError, simulate_sparse_stc, fwd['src'], len(mylabels),
times, labels=mylabels, location='center',
subjects_dir=subjects_dir) # no subject
fwd['src'][0]['subject_his_id'] = 'sample' # put back subject
pytest.raises(ValueError, simulate_sparse_stc, fwd['src'], len(mylabels),
times, labels=mylabels, location='foo') # bad location
err_str = 'Number of labels'
with pytest.raises(ValueError, match=err_str):
simulate_sparse_stc(
fwd['src'], len(mylabels) + 1, times, labels=mylabels,
random_state=random_state, location=location,
subjects_dir=subjects_dir)
def test_generate_stc_single_hemi(_get_fwd_labels):
"""Test generation of source estimate, single hemi."""
fwd, labels = _get_fwd_labels
labels_single_hemi = labels[1:] # keep only labels in one hemisphere
mylabels = []
for i, label in enumerate(labels_single_hemi):
new_label = Label(vertices=label.vertices,
pos=label.pos,
values=2 * i * np.ones(len(label.values)),
hemi=label.hemi,
comment=label.comment)
mylabels.append(new_label)
n_times = 10
tmin = 0
tstep = 1e-3
stc_data = np.ones((len(labels_single_hemi), n_times))
stc = simulate_stc(fwd['src'], mylabels, stc_data, tmin, tstep)
for label in labels_single_hemi:
idx = _get_idx_label_stc(label, stc)
assert (np.all(stc.data[idx] == 1.0))
assert (stc.data[idx].shape[1] == n_times)
# test with function
def fun(x):
return x ** 2
stc = simulate_stc(fwd['src'], mylabels, stc_data, tmin, tstep, fun)
# the first label has value 0, the second value 2, the third value 6
for i, label in enumerate(labels_single_hemi):
if label.hemi == 'lh':
hemi_idx = 0
else:
hemi_idx = 1
idx = np.intersect1d(stc.vertices[hemi_idx], label.vertices)
idx = np.searchsorted(stc.vertices[hemi_idx], idx)
if hemi_idx == 1:
idx += len(stc.vertices[0])
res = ((2. * i) ** 2.) * np.ones((len(idx), n_times))
assert_array_almost_equal(stc.data[idx], res)
def test_simulate_sparse_stc_single_hemi(_get_fwd_labels):
"""Test generation of sparse source estimate."""
fwd, labels = _get_fwd_labels
labels_single_hemi = labels[1:] # keep only labels in one hemisphere
n_times = 10
tmin = 0
tstep = 1e-3
times = np.arange(n_times, dtype=np.float) * tstep + tmin
stc_1 = simulate_sparse_stc(fwd['src'], len(labels_single_hemi), times,
labels=labels_single_hemi, random_state=0)
assert (stc_1.data.shape[0] == len(labels_single_hemi))
assert (stc_1.data.shape[1] == n_times)
# make sure we get the same result when using the same seed
stc_2 = simulate_sparse_stc(fwd['src'], len(labels_single_hemi), times,
labels=labels_single_hemi, random_state=0)
assert_array_equal(stc_1.lh_vertno, stc_2.lh_vertno)
assert_array_equal(stc_1.rh_vertno, stc_2.rh_vertno)
# smoke test for new API
if check_version('numpy', '1.17'):
simulate_sparse_stc(fwd['src'], len(labels_single_hemi), times,
labels=labels_single_hemi,
random_state=np.random.default_rng(0))
@testing.requires_testing_data
def test_simulate_stc_labels_overlap(_get_fwd_labels):
"""Test generation of source estimate, overlapping labels."""
fwd, labels = _get_fwd_labels
mylabels = []
for i, label in enumerate(labels):
new_label = Label(vertices=label.vertices,
pos=label.pos,
values=2 * i * np.ones(len(label.values)),
hemi=label.hemi,
comment=label.comment)
mylabels.append(new_label)
# Adding the last label twice
mylabels.append(new_label)
n_times = 10
tmin = 0
tstep = 1e-3
stc_data = np.ones((len(mylabels), n_times))
# Test false
with pytest.raises(RuntimeError, match='must be non-overlapping'):
simulate_stc(fwd['src'], mylabels, stc_data, tmin, tstep,
allow_overlap=False)
# test True
stc = simulate_stc(fwd['src'], mylabels, stc_data, tmin, tstep,
allow_overlap=True)
assert_equal(stc.subject, 'sample')
assert (stc.data.shape[1] == n_times)
# Some of the elements should be equal to 2 since we have duplicate labels
assert (2 in stc.data)
def test_source_simulator(_get_fwd_labels):
"""Test Source Simulator."""
fwd, _ = _get_fwd_labels
src = fwd['src']
hemi_to_ind = {'lh': 0, 'rh': 1}
tstep = 1. / 6.
label_vertices = [[], [], []]
label_vertices[0] = np.arange(1000)
label_vertices[1] = np.arange(500, 1500)
label_vertices[2] = np.arange(1000)
hemis = ['lh', 'lh', 'rh']
mylabels = []
src_vertices = []
for i, vert in enumerate(label_vertices):
new_label = Label(vertices=vert, hemi=hemis[i])
mylabels.append(new_label)
src_vertices.append(np.intersect1d(
src[hemi_to_ind[hemis[i]]]['vertno'],
new_label.vertices))
wfs = [[], [], []]
wfs[0] = np.array([0, 1., 0]) # 1d array
wfs[1] = [np.array([0, 1., 0]), # list
np.array([0, 1.5, 0])]
wfs[2] = np.array([[1, 1, 1.]]) # 2d array
events = [[], [], []]
events[0] = np.array([[0, 0, 1], [3, 0, 1]])
events[1] = np.array([[0, 0, 1], [3, 0, 1]])
events[2] = np.array([[0, 0, 1], [2, 0, 1]])
verts_lh = np.intersect1d(range(1500), src[0]['vertno'])
verts_rh = np.intersect1d(range(1000), src[1]['vertno'])
diff_01 = len(np.setdiff1d(src_vertices[0], src_vertices[1]))
diff_10 = len(np.setdiff1d(src_vertices[1], src_vertices[0]))
inter_10 = len(np.intersect1d(src_vertices[1], src_vertices[0]))
output_data_lh = np.zeros([len(verts_lh), 6])
tmp = np.array([0, 1., 0, 0, 1, 0])
output_data_lh[:diff_01, :] = np.tile(tmp, (diff_01, 1))
tmp = np.array([0, 2, 0, 0, 2.5, 0])
output_data_lh[diff_01:diff_01 + inter_10, :] = np.tile(tmp, (inter_10, 1))
tmp = np.array([0, 1, 0, 0, 1.5, 0])
output_data_lh[diff_01 + inter_10:, :] = np.tile(tmp, (diff_10, 1))
data_rh_wf = np.array([1., 1, 2, 1, 1, 0])
output_data_rh = np.tile(data_rh_wf, (len(src_vertices[2]), 1))
output_data = np.vstack([output_data_lh, output_data_rh])
ss = SourceSimulator(src, tstep)
for i in range(3):
ss.add_data(mylabels[i], wfs[i], events[i])
stc = ss.get_stc()
stim_channel = ss.get_stim_channel()
# Stim channel data must have the same size as stc time samples
assert len(stim_channel) == stc.data.shape[1]
stim_channel = ss.get_stim_channel(0, 0)
assert len(stim_channel) == 0
assert np.all(stc.vertices[0] == verts_lh)
assert np.all(stc.vertices[1] == verts_rh)
assert_array_almost_equal(stc.lh_data, output_data_lh)
assert_array_almost_equal(stc.rh_data, output_data_rh)
assert_array_almost_equal(stc.data, output_data)
counter = 0
for stc, stim in ss:
assert stc.data.shape[1] == 6
counter += 1
assert counter == 1
half_ss = SourceSimulator(src, tstep, duration=0.5)
for i in range(3):
half_ss.add_data(mylabels[i], wfs[i], events[i])
half_stc = half_ss.get_stc()
assert_array_almost_equal(stc.data[:, :3], half_stc.data)
ss = SourceSimulator(src)
with pytest.raises(ValueError, match='No simulation parameters'):
ss.get_stc()
with pytest.raises(ValueError, match='label must be a Label'):
ss.add_data(1, wfs, events)
with pytest.raises(ValueError, match='Number of waveforms and events '
'should match'):
ss.add_data(mylabels[0], wfs[:2], events)
# Verify that the chunks have the correct length.
source_simulator = SourceSimulator(src, tstep=tstep, duration=10 * tstep)
source_simulator.add_data(mylabels[0], np.array([1, 1, 1]), [[0, 0, 0]])
source_simulator._chk_duration = 6 # Quick hack to get short chunks.
stcs = [stc for stc, _ in source_simulator]
assert len(stcs) == 2
assert stcs[0].data.shape[1] == 6
assert stcs[1].data.shape[1] == 4
run_tests_if_main()
|