File: test_source.py

package info (click to toggle)
python-mne 0.19.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 100,440 kB
  • sloc: python: 120,243; pascal: 1,861; makefile: 225; sh: 15
file content (389 lines) | stat: -rw-r--r-- 14,146 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
# Author: Kostiantyn Maksymenko <kostiantyn.maksymenko@gmail.com>
#         Samuel Deslauriers-Gauthier <sam.deslauriers@gmail.com>
#
# License: BSD (3-clause)

import os.path as op

import numpy as np
from numpy.testing import (assert_array_almost_equal, assert_array_equal,
                           assert_equal)
import pytest

from mne.datasets import testing
from mne import (read_label, read_forward_solution, pick_types_forward,
                 convert_forward_solution)
from mne.label import Label
from mne.simulation.source import simulate_stc, simulate_sparse_stc
from mne.simulation.source import SourceSimulator
from mne.utils import run_tests_if_main, check_version


data_path = testing.data_path(download=False)
fname_fwd = op.join(data_path, 'MEG', 'sample',
                    'sample_audvis_trunc-meg-eeg-oct-6-fwd.fif')
label_names = ['Aud-lh', 'Aud-rh', 'Vis-rh']

subjects_dir = op.join(data_path, 'subjects')


@pytest.fixture(scope="module", params=[testing._pytest_param()])
def _get_fwd_labels():
    fwd = read_forward_solution(fname_fwd)
    fwd = convert_forward_solution(fwd, force_fixed=True, use_cps=True)
    fwd = pick_types_forward(fwd, meg=True, eeg=False)
    labels = [read_label(op.join(data_path, 'MEG', 'sample', 'labels',
                         '%s.label' % label)) for label in label_names]
    return fwd, labels


def _get_idx_label_stc(label, stc):
    hemi_idx_mapping = dict(lh=0, rh=1)

    hemi_idx = hemi_idx_mapping[label.hemi]

    idx = np.intersect1d(stc.vertices[hemi_idx], label.vertices)
    idx = np.searchsorted(stc.vertices[hemi_idx], idx)

    if hemi_idx == 1:
        idx += len(stc.vertices[0])
    return idx


def test_simulate_stc(_get_fwd_labels):
    """Test generation of source estimate."""
    fwd, labels = _get_fwd_labels
    mylabels = []
    for i, label in enumerate(labels):
        new_label = Label(vertices=label.vertices,
                          pos=label.pos,
                          values=2 * i * np.ones(len(label.values)),
                          hemi=label.hemi,
                          comment=label.comment)
        mylabels.append(new_label)

    n_times = 10
    tmin = 0
    tstep = 1e-3

    stc_data = np.ones((len(labels), n_times))
    stc = simulate_stc(fwd['src'], mylabels, stc_data, tmin, tstep)
    assert_equal(stc.subject, 'sample')

    for label in labels:
        idx = _get_idx_label_stc(label, stc)
        assert (np.all(stc.data[idx] == 1.0))
        assert (stc.data[idx].shape[1] == n_times)

    # test with function
    def fun(x):
        return x ** 2

    stc = simulate_stc(fwd['src'], mylabels, stc_data, tmin, tstep, fun)

    # the first label has value 0, the second value 2, the third value 6

    for i, label in enumerate(labels):
        idx = _get_idx_label_stc(label, stc)
        res = ((2. * i) ** 2.) * np.ones((len(idx), n_times))
        assert_array_almost_equal(stc.data[idx], res)

    # degenerate conditions
    label_subset = mylabels[:2]
    data_subset = stc_data[:2]
    stc = simulate_stc(fwd['src'], label_subset, data_subset, tmin, tstep, fun)

    pytest.raises(ValueError, simulate_stc, fwd['src'],
                  label_subset, data_subset[:-1], tmin, tstep, fun)
    pytest.raises(RuntimeError, simulate_stc, fwd['src'], label_subset * 2,
                  np.concatenate([data_subset] * 2, axis=0), tmin, tstep, fun)

    i = np.where(fwd['src'][0]['inuse'] == 0)[0][0]
    label_single_vert = Label(vertices=[i],
                              pos=fwd['src'][0]['rr'][i:i + 1, :],
                              hemi='lh')
    stc = simulate_stc(fwd['src'], [label_single_vert], stc_data[:1], tmin,
                       tstep)
    assert_equal(len(stc.lh_vertno), 1)


def test_simulate_sparse_stc(_get_fwd_labels):
    """Test generation of sparse source estimate."""
    fwd, labels = _get_fwd_labels
    n_times = 10
    tmin = 0
    tstep = 1e-3
    times = np.arange(n_times, dtype=np.float) * tstep + tmin

    pytest.raises(ValueError, simulate_sparse_stc, fwd['src'], len(labels),
                  times, labels=labels, location='center', subject='sample',
                  subjects_dir=subjects_dir)  # no non-zero values

    mylabels = []
    for label in labels:
        this_label = label.copy()
        this_label.values.fill(1.)
        mylabels.append(this_label)

    for location in ('random', 'center'):
        random_state = 0 if location == 'random' else None
        stc_1 = simulate_sparse_stc(fwd['src'], len(mylabels), times,
                                    labels=mylabels, random_state=random_state,
                                    location=location,
                                    subjects_dir=subjects_dir)
        assert_equal(stc_1.subject, 'sample')

        assert (stc_1.data.shape[0] == len(mylabels))
        assert (stc_1.data.shape[1] == n_times)

        # make sure we get the same result when using the same seed
        stc_2 = simulate_sparse_stc(fwd['src'], len(mylabels), times,
                                    labels=mylabels, random_state=random_state,
                                    location=location,
                                    subjects_dir=subjects_dir)

        assert_array_equal(stc_1.lh_vertno, stc_2.lh_vertno)
        assert_array_equal(stc_1.rh_vertno, stc_2.rh_vertno)

    # Degenerate cases
    pytest.raises(ValueError, simulate_sparse_stc, fwd['src'], len(mylabels),
                  times, labels=mylabels, location='center', subject='foo',
                  subjects_dir=subjects_dir)  # wrong subject
    del fwd['src'][0]['subject_his_id']  # remove subject
    pytest.raises(ValueError, simulate_sparse_stc, fwd['src'], len(mylabels),
                  times, labels=mylabels, location='center',
                  subjects_dir=subjects_dir)  # no subject
    fwd['src'][0]['subject_his_id'] = 'sample'  # put back subject
    pytest.raises(ValueError, simulate_sparse_stc, fwd['src'], len(mylabels),
                  times, labels=mylabels, location='foo')  # bad location
    err_str = 'Number of labels'
    with pytest.raises(ValueError, match=err_str):
        simulate_sparse_stc(
            fwd['src'], len(mylabels) + 1, times, labels=mylabels,
            random_state=random_state, location=location,
            subjects_dir=subjects_dir)


def test_generate_stc_single_hemi(_get_fwd_labels):
    """Test generation of source estimate, single hemi."""
    fwd, labels = _get_fwd_labels
    labels_single_hemi = labels[1:]  # keep only labels in one hemisphere

    mylabels = []
    for i, label in enumerate(labels_single_hemi):
        new_label = Label(vertices=label.vertices,
                          pos=label.pos,
                          values=2 * i * np.ones(len(label.values)),
                          hemi=label.hemi,
                          comment=label.comment)
        mylabels.append(new_label)

    n_times = 10
    tmin = 0
    tstep = 1e-3

    stc_data = np.ones((len(labels_single_hemi), n_times))
    stc = simulate_stc(fwd['src'], mylabels, stc_data, tmin, tstep)

    for label in labels_single_hemi:
        idx = _get_idx_label_stc(label, stc)
        assert (np.all(stc.data[idx] == 1.0))
        assert (stc.data[idx].shape[1] == n_times)

    # test with function
    def fun(x):
        return x ** 2
    stc = simulate_stc(fwd['src'], mylabels, stc_data, tmin, tstep, fun)

    # the first label has value 0, the second value 2, the third value 6

    for i, label in enumerate(labels_single_hemi):
        if label.hemi == 'lh':
            hemi_idx = 0
        else:
            hemi_idx = 1

        idx = np.intersect1d(stc.vertices[hemi_idx], label.vertices)
        idx = np.searchsorted(stc.vertices[hemi_idx], idx)

        if hemi_idx == 1:
            idx += len(stc.vertices[0])

        res = ((2. * i) ** 2.) * np.ones((len(idx), n_times))
        assert_array_almost_equal(stc.data[idx], res)


def test_simulate_sparse_stc_single_hemi(_get_fwd_labels):
    """Test generation of sparse source estimate."""
    fwd, labels = _get_fwd_labels
    labels_single_hemi = labels[1:]  # keep only labels in one hemisphere

    n_times = 10
    tmin = 0
    tstep = 1e-3
    times = np.arange(n_times, dtype=np.float) * tstep + tmin

    stc_1 = simulate_sparse_stc(fwd['src'], len(labels_single_hemi), times,
                                labels=labels_single_hemi, random_state=0)

    assert (stc_1.data.shape[0] == len(labels_single_hemi))
    assert (stc_1.data.shape[1] == n_times)

    # make sure we get the same result when using the same seed
    stc_2 = simulate_sparse_stc(fwd['src'], len(labels_single_hemi), times,
                                labels=labels_single_hemi, random_state=0)

    assert_array_equal(stc_1.lh_vertno, stc_2.lh_vertno)
    assert_array_equal(stc_1.rh_vertno, stc_2.rh_vertno)

    # smoke test for new API
    if check_version('numpy', '1.17'):
        simulate_sparse_stc(fwd['src'], len(labels_single_hemi), times,
                            labels=labels_single_hemi,
                            random_state=np.random.default_rng(0))


@testing.requires_testing_data
def test_simulate_stc_labels_overlap(_get_fwd_labels):
    """Test generation of source estimate, overlapping labels."""
    fwd, labels = _get_fwd_labels
    mylabels = []
    for i, label in enumerate(labels):
        new_label = Label(vertices=label.vertices,
                          pos=label.pos,
                          values=2 * i * np.ones(len(label.values)),
                          hemi=label.hemi,
                          comment=label.comment)
        mylabels.append(new_label)
    # Adding the last label twice
    mylabels.append(new_label)

    n_times = 10
    tmin = 0
    tstep = 1e-3

    stc_data = np.ones((len(mylabels), n_times))

    # Test false
    with pytest.raises(RuntimeError, match='must be non-overlapping'):
        simulate_stc(fwd['src'], mylabels, stc_data, tmin, tstep,
                     allow_overlap=False)
    # test True
    stc = simulate_stc(fwd['src'], mylabels, stc_data, tmin, tstep,
                       allow_overlap=True)
    assert_equal(stc.subject, 'sample')
    assert (stc.data.shape[1] == n_times)
    # Some of the elements should be equal to 2 since we have duplicate labels
    assert (2 in stc.data)


def test_source_simulator(_get_fwd_labels):
    """Test Source Simulator."""
    fwd, _ = _get_fwd_labels

    src = fwd['src']
    hemi_to_ind = {'lh': 0, 'rh': 1}
    tstep = 1. / 6.

    label_vertices = [[], [], []]
    label_vertices[0] = np.arange(1000)
    label_vertices[1] = np.arange(500, 1500)
    label_vertices[2] = np.arange(1000)

    hemis = ['lh', 'lh', 'rh']

    mylabels = []
    src_vertices = []
    for i, vert in enumerate(label_vertices):
        new_label = Label(vertices=vert, hemi=hemis[i])
        mylabels.append(new_label)
        src_vertices.append(np.intersect1d(
                            src[hemi_to_ind[hemis[i]]]['vertno'],
                            new_label.vertices))

    wfs = [[], [], []]

    wfs[0] = np.array([0, 1., 0])  # 1d array
    wfs[1] = [np.array([0, 1., 0]),  # list
              np.array([0, 1.5, 0])]
    wfs[2] = np.array([[1, 1, 1.]])  # 2d array

    events = [[], [], []]
    events[0] = np.array([[0, 0, 1], [3, 0, 1]])
    events[1] = np.array([[0, 0, 1], [3, 0, 1]])
    events[2] = np.array([[0, 0, 1], [2, 0, 1]])

    verts_lh = np.intersect1d(range(1500), src[0]['vertno'])
    verts_rh = np.intersect1d(range(1000), src[1]['vertno'])
    diff_01 = len(np.setdiff1d(src_vertices[0], src_vertices[1]))
    diff_10 = len(np.setdiff1d(src_vertices[1], src_vertices[0]))
    inter_10 = len(np.intersect1d(src_vertices[1], src_vertices[0]))

    output_data_lh = np.zeros([len(verts_lh), 6])
    tmp = np.array([0, 1., 0, 0, 1, 0])
    output_data_lh[:diff_01, :] = np.tile(tmp, (diff_01, 1))

    tmp = np.array([0, 2, 0, 0, 2.5, 0])
    output_data_lh[diff_01:diff_01 + inter_10, :] = np.tile(tmp, (inter_10, 1))
    tmp = np.array([0, 1, 0, 0, 1.5, 0])
    output_data_lh[diff_01 + inter_10:, :] = np.tile(tmp, (diff_10, 1))

    data_rh_wf = np.array([1., 1, 2, 1, 1, 0])
    output_data_rh = np.tile(data_rh_wf, (len(src_vertices[2]), 1))
    output_data = np.vstack([output_data_lh, output_data_rh])

    ss = SourceSimulator(src, tstep)
    for i in range(3):
        ss.add_data(mylabels[i], wfs[i], events[i])

    stc = ss.get_stc()
    stim_channel = ss.get_stim_channel()

    # Stim channel data must have the same size as stc time samples
    assert len(stim_channel) == stc.data.shape[1]

    stim_channel = ss.get_stim_channel(0, 0)
    assert len(stim_channel) == 0

    assert np.all(stc.vertices[0] == verts_lh)
    assert np.all(stc.vertices[1] == verts_rh)
    assert_array_almost_equal(stc.lh_data, output_data_lh)
    assert_array_almost_equal(stc.rh_data, output_data_rh)
    assert_array_almost_equal(stc.data, output_data)

    counter = 0
    for stc, stim in ss:
        assert stc.data.shape[1] == 6
        counter += 1
    assert counter == 1

    half_ss = SourceSimulator(src, tstep, duration=0.5)
    for i in range(3):
        half_ss.add_data(mylabels[i], wfs[i], events[i])
    half_stc = half_ss.get_stc()
    assert_array_almost_equal(stc.data[:, :3], half_stc.data)

    ss = SourceSimulator(src)

    with pytest.raises(ValueError, match='No simulation parameters'):
        ss.get_stc()

    with pytest.raises(ValueError, match='label must be a Label'):
        ss.add_data(1, wfs, events)

    with pytest.raises(ValueError, match='Number of waveforms and events '
                       'should match'):
        ss.add_data(mylabels[0], wfs[:2], events)

    # Verify that the chunks have the correct length.
    source_simulator = SourceSimulator(src, tstep=tstep, duration=10 * tstep)
    source_simulator.add_data(mylabels[0], np.array([1, 1, 1]), [[0, 0, 0]])

    source_simulator._chk_duration = 6  # Quick hack to get short chunks.
    stcs = [stc for stc, _ in source_simulator]
    assert len(stcs) == 2
    assert stcs[0].data.shape[1] == 6
    assert stcs[1].data.shape[1] == 4


run_tests_if_main()