File: parametric.py

package info (click to toggle)
python-mne 0.19.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 100,440 kB
  • sloc: python: 120,243; pascal: 1,861; makefile: 225; sh: 15
file content (386 lines) | stat: -rw-r--r-- 13,504 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
# Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr>
#          Denis Engemann <denis.engemann@gmail.com>
#          Eric Larson <larson.eric.d@gmail.com>
#
# License: Simplified BSD

import numpy as np
from functools import reduce
from string import ascii_uppercase
from ..utils import _check_option

# The following function is a rewriting of scipy.stats.f_oneway
# Contrary to the scipy.stats.f_oneway implementation it does not
# copy the data while keeping the inputs unchanged.


def ttest_1samp_no_p(X, sigma=0, method='relative'):
    """Perform one-sample t-test.

    This is a modified version of :func:`scipy.stats.ttest_1samp` that avoids
    a (relatively) time-consuming p-value calculation, and can adjust
    for implausibly small variance values [1]_.

    Parameters
    ----------
    X : array
        Array to return t-values for.
    sigma : float
        The variance estate will be given by "var + sigma * max(var)" or
        "var + sigma", depending on "method". By default this is 0 (no
        adjustment). See Notes for details.
    method : str
        If 'relative', the minimum variance estimate will be sigma * max(var),
        if 'absolute' the minimum variance estimate will be sigma.

    Returns
    -------
    t : array
        t-values, potentially adjusted using the hat method.

    Notes
    -----
    To use the "hat" adjustment method [1]_, a value of ``sigma=1e-3`` may be a
    reasonable choice.

    You can use the conversion from ``scipy.stats.distributions.t.ppf``::

        thresh = -scipy.stats.distributions.t.ppf(p_thresh, n_samples - 1) / 2.

    to convert a desired p-value threshold to 2-tailed t-value threshold.
    For one-tailed tests, ``thresh`` in the above should be multiplied by 2
    (and for ``tail=-1``, multiplied by ``-1``).

    References
    ----------
    .. [1] Ridgway et al. 2012 "The problem of low variance voxels in
       statistical parametric mapping; a new hat avoids a 'haircut'",
       NeuroImage. 2012 Feb 1;59(3):2131-41.
    """
    _check_option('method', method, ['absolute', 'relative'])
    var = np.var(X, axis=0, ddof=1)
    if sigma > 0:
        limit = sigma * np.max(var) if method == 'relative' else sigma
        var += limit
    return np.mean(X, axis=0) / np.sqrt(var / X.shape[0])


def f_oneway(*args):
    """Perform a 1-way ANOVA.

    The one-way ANOVA tests the null hypothesis that 2 or more groups have
    the same population mean. The test is applied to samples from two or
    more groups, possibly with differing sizes [1]_.

    This is a modified version of :func:`scipy.stats.f_oneway` that avoids
    computing the associated p-value.

    Parameters
    ----------
    *args : array_like
        The sample measurements should be given as arguments.

    Returns
    -------
    F-value : float
        The computed F-value of the test.

    Notes
    -----
    The ANOVA test has important assumptions that must be satisfied in order
    for the associated p-value to be valid.

    1. The samples are independent
    2. Each sample is from a normally distributed population
    3. The population standard deviations of the groups are all equal.  This
       property is known as homocedasticity.

    If these assumptions are not true for a given set of data, it may still be
    possible to use the Kruskal-Wallis H-test (:func:`scipy.stats.kruskal`)
    although with some loss of power

    The algorithm is from Heiman [2]_, pp.394-7.

    References
    ----------
    .. [1] Lowry, Richard.  "Concepts and Applications of Inferential
           Statistics". Chapter 14.
    .. [2] Heiman, G.W.  Research Methods in Statistics. 2002.

    """
    n_classes = len(args)
    n_samples_per_class = np.array([len(a) for a in args])
    n_samples = np.sum(n_samples_per_class)
    ss_alldata = reduce(lambda x, y: x + y,
                        [np.sum(a ** 2, axis=0) for a in args])
    sums_args = [np.sum(a, axis=0) for a in args]
    square_of_sums_alldata = reduce(lambda x, y: x + y, sums_args) ** 2
    square_of_sums_args = [s ** 2 for s in sums_args]
    sstot = ss_alldata - square_of_sums_alldata / float(n_samples)
    ssbn = 0
    for k, _ in enumerate(args):
        ssbn += square_of_sums_args[k] / n_samples_per_class[k]
    ssbn -= square_of_sums_alldata / float(n_samples)
    sswn = sstot - ssbn
    dfbn = n_classes - 1
    dfwn = n_samples - n_classes
    msb = ssbn / float(dfbn)
    msw = sswn / float(dfwn)
    f = msb / msw
    return f


def _map_effects(n_factors, effects):
    """Map effects to indices."""
    if n_factors > len(ascii_uppercase):
        raise ValueError('Maximum number of factors supported is 26')

    factor_names = list(ascii_uppercase[:n_factors])

    if isinstance(effects, str):
        if '*' in effects and ':' in effects:
            raise ValueError('Not "*" and ":" permitted in effects')
        elif '+' in effects and ':' in effects:
            raise ValueError('Not "+" and ":" permitted in effects')
        elif effects == 'all':
            effects = None
        elif len(effects) == 1 or ':' in effects:
            effects = [effects]
        elif '+' in effects:
            # all main effects
            effects = effects.split('+')
        elif '*' in effects:
            pass  # handle later
        else:
            raise ValueError('"{}" is not a valid option for "effects"'
                             .format(effects))
    if isinstance(effects, list):
        bad_names = [e for e in effects if e not in factor_names]
        if len(bad_names) > 1:
            raise ValueError('Effect names: {} are not valid. They should '
                             'the first `n_factors` ({}) characters from the'
                             'alphabet'.format(bad_names, n_factors))

    indices = list(np.arange(2 ** n_factors - 1))
    names = list()
    for this_effect in indices:
        contrast_idx = _get_contrast_indices(this_effect + 1, n_factors)
        this_code = (n_factors - 1) - np.where(contrast_idx == 1)[0]
        this_name = [factor_names[e] for e in this_code]
        this_name.sort()
        names.append(':'.join(this_name))

    if effects is None or isinstance(effects, str):
        effects_ = names
    else:
        effects_ = effects

    selection = [names.index(sel) for sel in effects_]
    names = [names[sel] for sel in selection]

    if isinstance(effects, str):
        if '*' in effects:
            # hierarchical order of effects
            # the * based effect can be used as stop index
            sel_ind = names.index(effects.replace('*', ':')) + 1
            names = names[:sel_ind]
            selection = selection[:sel_ind]

    return selection, names


def _get_contrast_indices(effect_idx, n_factors):  # noqa: D401
    """Henson's factor coding, see num2binvec."""
    binrepr = np.binary_repr(effect_idx, n_factors)
    return np.array([int(i) for i in binrepr], dtype=int)


def _iter_contrasts(n_subjects, factor_levels, effect_picks):
    """Set up contrasts."""
    from scipy.signal import detrend
    sc = []
    n_factors = len(factor_levels)
    # prepare computation of Kronecker products
    for n_levels in factor_levels:
        # for each factor append
        # 1) column vector of length == number of levels,
        # 2) square matrix with diagonal == number of levels

        # main + interaction effects for contrasts
        sc.append([np.ones([n_levels, 1]),
                   detrend(np.eye(n_levels), type='constant')])

    for this_effect in effect_picks:
        contrast_idx = _get_contrast_indices(this_effect + 1, n_factors)
        c_ = sc[0][contrast_idx[n_factors - 1]]
        for i_contrast in range(1, n_factors):
            this_contrast = contrast_idx[(n_factors - 1) - i_contrast]
            c_ = np.kron(c_, sc[i_contrast][this_contrast])
        df1 = np.linalg.matrix_rank(c_)
        df2 = df1 * (n_subjects - 1)
        yield c_, df1, df2


def f_threshold_mway_rm(n_subjects, factor_levels, effects='A*B',
                        pvalue=0.05):
    """Compute F-value thresholds for a two-way ANOVA.

    Parameters
    ----------
    n_subjects : int
        The number of subjects to be analyzed.
    factor_levels : list-like
        The number of levels per factor.
    effects : str
        A string denoting the effect to be returned. The following
        mapping is currently supported:

            * ``'A'``: main effect of A
            * ``'B'``: main effect of B
            * ``'A:B'``: interaction effect
            * ``'A+B'``: both main effects
            * ``'A*B'``: all three effects

    pvalue : float
        The p-value to be thresholded.

    Returns
    -------
    F_threshold : list | float
        list of F-values for each effect if the number of effects
        requested > 2, else float.

    See Also
    --------
    f_oneway
    f_mway_rm

    Notes
    -----
    .. versionadded:: 0.10
    """
    from scipy.stats import f
    effect_picks, _ = _map_effects(len(factor_levels), effects)

    F_threshold = []
    for _, df1, df2 in _iter_contrasts(n_subjects, factor_levels,
                                       effect_picks):
        F_threshold.append(f(df1, df2).isf(pvalue))

    return F_threshold if len(F_threshold) > 1 else F_threshold[0]


def f_mway_rm(data, factor_levels, effects='all',
              correction=False, return_pvals=True):
    """Compute M-way repeated measures ANOVA for fully balanced designs.

    Parameters
    ----------
    data : ndarray
        3D array where the first two dimensions are compliant
        with a subjects X conditions scheme where the first
        factor repeats slowest::

                        A1B1 A1B2 A2B1 A2B2
            subject 1   1.34 2.53 0.97 1.74
            subject ... .... .... .... ....
            subject k   2.45 7.90 3.09 4.76

        The last dimensions is thought to carry the observations
        for mass univariate analysis.
    factor_levels : list-like
        The number of levels per factor.
    effects : str | list
        A string denoting the effect to be returned. The following
        mapping is currently supported (example with 2 factors):

            * ``'A'``: main effect of A
            * ``'B'``: main effect of B
            * ``'A:B'``: interaction effect
            * ``'A+B'``: both main effects
            * ``'A*B'``: all three effects
            * ``'all'``: all effects (equals 'A*B' in a 2 way design)

        If list, effect names are used: ``['A', 'B', 'A:B']``.
    correction : bool
        The correction method to be employed if one factor has more than two
        levels. If True, sphericity correction using the Greenhouse-Geisser
        method will be applied.
    return_pvals : bool
        If True, return p-values corresponding to F-values.

    Returns
    -------
    F_vals : ndarray
        An array of F-statistics with length corresponding to the number
        of effects estimated. The shape depends on the number of effects
        estimated.
    p_vals : ndarray
        If not requested via return_pvals, defaults to an empty array.

    See Also
    --------
    f_oneway
    f_threshold_mway_rm

    Notes
    -----
    .. versionadded:: 0.10
    """
    from scipy.stats import f

    if data.ndim == 2:  # general purpose support, e.g. behavioural data
        data = data[:, :, np.newaxis]
    elif data.ndim > 3:  # let's allow for some magic here.
        data = data.reshape(
            data.shape[0], data.shape[1], np.prod(data.shape[2:]))

    effect_picks, _ = _map_effects(len(factor_levels), effects)
    n_obs = data.shape[2]
    n_replications = data.shape[0]

    # put last axis in front to 'iterate' over mass univariate instances.
    data = np.rollaxis(data, 2)
    fvalues, pvalues = [], []
    for c_, df1, df2 in _iter_contrasts(n_replications, factor_levels,
                                        effect_picks):
        y = np.dot(data, c_)
        b = np.mean(y, axis=1)[:, np.newaxis, :]
        ss = np.sum(np.sum(y * b, axis=2), axis=1)
        mse = (np.sum(np.sum(y * y, axis=2), axis=1) - ss) / (df2 / df1)
        fvals = ss / mse
        fvalues.append(fvals)
        if correction:
            # sample covariances, leave off "/ (y.shape[1] - 1)" norm because
            # it falls out.
            v = np.array([np.dot(y_.T, y_) for y_ in y])
            v = (np.array([np.trace(vv) for vv in v]) ** 2 /
                 (df1 * np.sum(np.sum(v * v, axis=2), axis=1)))
            eps = v

        df1, df2 = np.zeros(n_obs) + df1, np.zeros(n_obs) + df2
        if correction:
            # numerical imprecision can cause eps=0.99999999999999989
            # even with a single category, so never let our degrees of
            # freedom drop below 1.
            df1, df2 = [np.maximum(d[None, :] * eps, 1.) for d in (df1, df2)]

        if return_pvals:
            pvals = f(df1, df2).sf(fvals)
        else:
            pvals = np.empty(0)
        pvalues.append(pvals)

    # handle single effect returns
    return [np.squeeze(np.asarray(vv)) for vv in (fvalues, pvalues)]


def _parametric_ci(arr, ci=.95):
    """Calculate the `ci`% parametric confidence interval for `arr`."""
    mean = arr.mean(0)
    if len(arr) < 2:  # can't compute standard error
        sigma = np.full_like(mean, np.nan)
        return mean, sigma
    from scipy import stats
    sigma = stats.sem(arr, 0)
    return stats.t.interval(ci, loc=mean, scale=sigma, df=arr.shape[0])