1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
|
# Authors: Jaakko Leppakangas <jaeilepp@student.jyu.fi>
#
# License: BSD 3 clause
from datetime import datetime
from itertools import repeat
from collections import OrderedDict
import os.path as op
import pytest
from pytest import approx
from numpy.testing import (assert_equal, assert_array_equal,
assert_array_almost_equal, assert_allclose)
import numpy as np
import mne
from mne import create_info, read_annotations, events_from_annotations
from mne import Epochs, Annotations
from mne.utils import (run_tests_if_main, _TempDir, requires_version,
catch_logging)
from mne.utils import assert_and_remove_boundary_annot, _raw_annot
from mne.io import read_raw_fif, RawArray, concatenate_raws
from mne.annotations import (_sync_onset, _handle_meas_date,
_read_annotations_txt_parse_header)
from mne.datasets import testing
data_dir = op.join(testing.data_path(download=False), 'MEG', 'sample')
fif_fname = op.join(op.dirname(__file__), '..', 'io', 'tests', 'data',
'test_raw.fif')
first_samps = pytest.mark.parametrize('first_samp', (0, 10000))
def test_basics():
"""Test annotation class."""
raw = read_raw_fif(fif_fname)
assert raw.annotations is not None # XXX to be fixed in #5416
assert len(raw.annotations.onset) == 0 # XXX to be fixed in #5416
pytest.raises(IOError, read_annotations, fif_fname)
onset = np.array(range(10))
duration = np.ones(10)
description = np.repeat('test', 10)
dt = datetime.utcnow()
meas_date = raw.info['meas_date']
# Test time shifts.
for orig_time in [None, dt, meas_date[0], meas_date]:
annot = Annotations(onset, duration, description, orig_time)
pytest.raises(ValueError, Annotations, onset, duration, description[:9])
pytest.raises(ValueError, Annotations, [onset, 1], duration, description)
pytest.raises(ValueError, Annotations, onset, [duration, 1], description)
# Test combining annotations with concatenate_raws
raw2 = raw.copy()
delta = raw.times[-1] + 1. / raw.info['sfreq']
orig_time = (meas_date[0] + meas_date[1] * 1e-6 + raw2._first_time)
offset = orig_time - _handle_meas_date(raw2.info['meas_date'])
annot = Annotations(onset, duration, description, orig_time)
assert ' segments' in repr(annot)
raw2.set_annotations(annot)
assert_array_equal(raw2.annotations.onset, onset + offset)
assert id(raw2.annotations) != id(annot)
concatenate_raws([raw, raw2])
assert_and_remove_boundary_annot(raw)
assert_allclose(onset + offset + delta, raw.annotations.onset, rtol=1e-5)
assert_array_equal(annot.duration, raw.annotations.duration)
assert_array_equal(raw.annotations.description, np.repeat('test', 10))
def test_raw_array_orig_times():
"""Test combining with RawArray and orig_times."""
data = np.random.randn(2, 1000) * 10e-12
sfreq = 100.
info = create_info(ch_names=['MEG1', 'MEG2'], ch_types=['grad'] * 2,
sfreq=sfreq)
info['meas_date'] = (np.pi, 0)
raws = []
for first_samp in [12300, 100, 12]:
raw = RawArray(data.copy(), info, first_samp=first_samp)
ants = Annotations([1., 2.], [.5, .5], 'x', np.pi + first_samp / sfreq)
raw.set_annotations(ants)
raws.append(raw)
raw = RawArray(data.copy(), info)
raw.set_annotations(Annotations([1.], [.5], 'x', None))
raws.append(raw)
raw = concatenate_raws(raws, verbose='debug')
assert_and_remove_boundary_annot(raw, 3)
assert_array_equal(raw.annotations.onset, [124., 125., 134., 135.,
144., 145., 154.])
raw.annotations.delete(2)
assert_array_equal(raw.annotations.onset, [124., 125., 135., 144.,
145., 154.])
raw.annotations.append(5, 1.5, 'y')
assert_array_equal(raw.annotations.onset,
[5., 124., 125., 135., 144., 145., 154.])
assert_array_equal(raw.annotations.duration,
[1.5, .5, .5, .5, .5, .5, .5])
assert_array_equal(raw.annotations.description,
['y', 'x', 'x', 'x', 'x', 'x', 'x'])
# These three things should be equivalent
expected_orig_time = (raw.info['meas_date'][0] +
raw.info['meas_date'][1] / 1000000)
for empty_annot in (
Annotations([], [], [], expected_orig_time),
Annotations([], [], [], None),
None):
raw.set_annotations(empty_annot)
assert isinstance(raw.annotations, Annotations)
assert len(raw.annotations) == 0
assert raw.annotations.orig_time == expected_orig_time
def test_crop():
"""Test cropping with annotations."""
raw = read_raw_fif(fif_fname)
events = mne.find_events(raw)
onset = events[events[:, 2] == 1, 0] / raw.info['sfreq']
duration = np.full_like(onset, 0.5)
description = ['bad %d' % k for k in range(len(onset))]
annot = mne.Annotations(onset, duration, description,
orig_time=raw.info['meas_date'])
raw.set_annotations(annot)
split_time = raw.times[-1] / 2. + 2.
split_idx = len(onset) // 2 + 1
raw_cropped_left = raw.copy().crop(0., split_time - 1. / raw.info['sfreq'])
assert_array_equal(raw_cropped_left.annotations.description,
raw.annotations.description[:split_idx])
assert_allclose(raw_cropped_left.annotations.duration,
raw.annotations.duration[:split_idx])
assert_allclose(raw_cropped_left.annotations.onset,
raw.annotations.onset[:split_idx])
raw_cropped_right = raw.copy().crop(split_time, None)
assert_array_equal(raw_cropped_right.annotations.description,
raw.annotations.description[split_idx:])
assert_allclose(raw_cropped_right.annotations.duration,
raw.annotations.duration[split_idx:])
assert_allclose(raw_cropped_right.annotations.onset,
raw.annotations.onset[split_idx:])
raw_concat = mne.concatenate_raws([raw_cropped_left, raw_cropped_right],
verbose='debug')
assert_allclose(raw_concat.times, raw.times)
assert_allclose(raw_concat[:][0], raw[:][0], atol=1e-20)
assert_and_remove_boundary_annot(raw_concat)
# Ensure we annotations survive round-trip crop->concat
assert_array_equal(raw_concat.annotations.description,
raw.annotations.description)
for attr in ('onset', 'duration'):
assert_allclose(getattr(raw_concat.annotations, attr),
getattr(raw.annotations, attr),
err_msg='Failed for %s:' % (attr,))
raw.set_annotations(None) # undo
# Test concatenating annotations with and without orig_time.
raw2 = raw.copy()
raw.set_annotations(Annotations([45.], [3], 'test', raw.info['meas_date']))
raw2.set_annotations(Annotations([2.], [3], 'BAD', None))
expected_onset = [45., 2. + raw._last_time]
raw = concatenate_raws([raw, raw2])
assert_and_remove_boundary_annot(raw)
assert_array_almost_equal(raw.annotations.onset, expected_onset, decimal=2)
# Test IO
tempdir = _TempDir()
fname = op.join(tempdir, 'test-annot.fif')
raw.annotations.save(fname)
annot_read = read_annotations(fname)
for attr in ('onset', 'duration', 'orig_time'):
assert_allclose(getattr(annot_read, attr),
getattr(raw.annotations, attr))
assert_array_equal(annot_read.description, raw.annotations.description)
annot = Annotations((), (), ())
annot.save(fname)
pytest.raises(IOError, read_annotations, fif_fname) # none in old raw
annot = read_annotations(fname)
assert isinstance(annot, Annotations)
assert len(annot) == 0
annot.crop() # test if cropping empty annotations doesn't raise an error
# Test that empty annotations can be saved with an object
fname = op.join(tempdir, 'test_raw.fif')
raw.set_annotations(annot)
raw.save(fname)
raw_read = read_raw_fif(fname)
assert isinstance(raw_read.annotations, Annotations)
assert len(raw_read.annotations) == 0
raw.set_annotations(None)
raw.save(fname, overwrite=True)
raw_read = read_raw_fif(fname)
assert raw_read.annotations is not None # XXX to be fixed in #5416
assert len(raw_read.annotations.onset) == 0 # XXX to be fixed in #5416
@first_samps
def test_chunk_duration(first_samp):
"""Test chunk_duration."""
# create dummy raw
raw = RawArray(data=np.empty([10, 10], dtype=np.float64),
info=create_info(ch_names=10, sfreq=1.),
first_samp=first_samp)
raw.info['meas_date'] = 0
raw.set_annotations(Annotations(description='foo', onset=[0],
duration=[10], orig_time=None))
# expected_events = [[0, 0, 1], [0, 0, 1], [1, 0, 1], [1, 0, 1], ..
# [9, 0, 1], [9, 0, 1]]
expected_events = np.atleast_2d(np.repeat(range(10), repeats=2)).T
expected_events = np.insert(expected_events, 1, 0, axis=1)
expected_events = np.insert(expected_events, 2, 1, axis=1)
expected_events[:, 0] += first_samp
events, events_id = events_from_annotations(raw, chunk_duration=.5,
use_rounding=False)
assert_array_equal(events, expected_events)
# test chunk durations that do not fit equally in annotation duration
expected_events = np.zeros((3, 3))
expected_events[:, -1] = 1
expected_events[:, 0] = np.arange(0, 9, step=3) + first_samp
events, events_id = events_from_annotations(raw, chunk_duration=3.)
assert_array_equal(events, expected_events)
def test_crop_more():
"""Test more cropping."""
raw = mne.io.read_raw_fif(fif_fname).crop(0, 11).load_data()
raw._data[:] = np.random.RandomState(0).randn(*raw._data.shape)
onset = np.array([0.47058824, 2.49773765, 6.67873287, 9.15837097])
duration = np.array([0.89592767, 1.13574672, 1.09954739, 0.48868752])
annotations = mne.Annotations(onset, duration, 'BAD')
raw.set_annotations(annotations)
assert len(raw.annotations) == 4
delta = 1. / raw.info['sfreq']
offset = raw.first_samp * delta
raw_concat = mne.concatenate_raws(
[raw.copy().crop(0, 4 - delta),
raw.copy().crop(4, 8 - delta),
raw.copy().crop(8, None)])
assert_allclose(raw_concat.times, raw.times)
assert_allclose(raw_concat[:][0], raw[:][0])
assert raw_concat.first_samp == raw.first_samp
assert_and_remove_boundary_annot(raw_concat, 2)
assert len(raw_concat.annotations) == 4
assert_array_equal(raw_concat.annotations.description,
raw.annotations.description)
assert_allclose(raw.annotations.duration, duration)
assert_allclose(raw_concat.annotations.duration, duration)
assert_allclose(raw.annotations.onset, onset + offset)
assert_allclose(raw_concat.annotations.onset, onset + offset,
atol=1. / raw.info['sfreq'])
@testing.requires_testing_data
def test_read_brainstorm_annotations():
"""Test reading for Brainstorm events file."""
fname = op.join(data_dir, 'events_sample_audvis_raw_bst.mat')
annot = read_annotations(fname)
assert len(annot) == 238
assert annot.onset.min() > 40 # takes into account first_samp
assert np.unique(annot.description).size == 5
@first_samps
def test_raw_reject(first_samp):
"""Test raw data getter with annotation reject."""
sfreq = 100.
info = create_info(['a', 'b', 'c', 'd', 'e'], sfreq, ch_types='eeg')
raw = RawArray(np.ones((5, 15000)), info, first_samp=first_samp)
with pytest.warns(RuntimeWarning, match='outside the data range'):
raw.set_annotations(Annotations([2, 100, 105, 148],
[2, 8, 5, 8], 'BAD'))
data, times = raw.get_data([0, 1, 3, 4], 100, 11200, # 1-112 sec
'omit', return_times=True)
bad_times = np.concatenate([np.arange(200, 400),
np.arange(10000, 10800),
np.arange(10500, 11000)])
expected_times = np.setdiff1d(np.arange(100, 11200), bad_times) / sfreq
assert_allclose(times, expected_times)
# with orig_time and complete overlap
raw = read_raw_fif(fif_fname)
raw.set_annotations(Annotations(onset=[1, 4, 5] + raw._first_time,
duration=[1, 3, 1],
description='BAD',
orig_time=raw.info['meas_date']))
t_stop = 18.
assert raw.times[-1] > t_stop
n_stop = int(round(t_stop * raw.info['sfreq']))
n_drop = int(round(4 * raw.info['sfreq']))
assert len(raw.times) >= n_stop
data, times = raw.get_data(range(10), 0, n_stop, 'omit', True)
assert data.shape == (10, n_stop - n_drop)
assert times[-1] == raw.times[n_stop - 1]
assert_array_equal(data[:, -100:], raw[:10, n_stop - 100:n_stop][0])
data, times = raw.get_data(range(10), 0, n_stop, 'NaN', True)
assert_array_equal(data.shape, (10, n_stop))
assert times[-1] == raw.times[n_stop - 1]
t_1, t_2 = raw.time_as_index([1, 2], use_rounding=True)
assert np.isnan(data[:, t_1:t_2]).all() # 1s -2s
assert not np.isnan(data[:, :t_1].any())
assert not np.isnan(data[:, t_2:].any())
assert_array_equal(data[:, -100:], raw[:10, n_stop - 100:n_stop][0])
assert_array_equal(raw.get_data(), raw[:][0])
# Test _sync_onset
times = [10, -88, 190]
onsets = _sync_onset(raw, times)
assert_array_almost_equal(onsets, times - raw.first_samp /
raw.info['sfreq'])
assert_array_almost_equal(times, _sync_onset(raw, onsets, True))
@first_samps
def test_annotation_filtering(first_samp):
"""Test that annotations work properly with filtering."""
# Create data with just a DC component
data = np.ones((1, 1000))
info = create_info(1, 1000., 'eeg')
raws = [RawArray(data * (ii + 1), info, first_samp=first_samp)
for ii in range(4)]
kwargs_pass = dict(l_freq=None, h_freq=50., fir_design='firwin')
kwargs_stop = dict(l_freq=50., h_freq=None, fir_design='firwin')
# lowpass filter, which should not modify the data
raws_pass = [raw.copy().filter(**kwargs_pass) for raw in raws]
# highpass filter, which should zero it out
raws_stop = [raw.copy().filter(**kwargs_stop) for raw in raws]
# concat the original and the filtered segments
raws_concat = concatenate_raws([raw.copy() for raw in raws])
raws_zero = raws_concat.copy().apply_function(lambda x: x * 0)
raws_pass_concat = concatenate_raws(raws_pass)
raws_stop_concat = concatenate_raws(raws_stop)
# make sure we did something reasonable with our individual-file filtering
assert_allclose(raws_concat[0][0], raws_pass_concat[0][0], atol=1e-14)
assert_allclose(raws_zero[0][0], raws_stop_concat[0][0], atol=1e-14)
# ensure that our Annotations cut up the filtering properly
raws_concat_pass = raws_concat.copy().filter(skip_by_annotation='edge',
**kwargs_pass)
assert_allclose(raws_concat[0][0], raws_concat_pass[0][0], atol=1e-14)
raws_concat_stop = raws_concat.copy().filter(skip_by_annotation='edge',
**kwargs_stop)
assert_allclose(raws_zero[0][0], raws_concat_stop[0][0], atol=1e-14)
# one last test: let's cut out a section entirely:
# here the 1-3 second window should be skipped
raw = raws_concat.copy()
raw.annotations.append(1., 2., 'foo')
with catch_logging() as log:
raw.filter(l_freq=50., h_freq=None, fir_design='firwin',
skip_by_annotation='foo', verbose='info')
log = log.getvalue()
assert '2 contiguous segments' in log
raw.annotations.append(2., 1., 'foo') # shouldn't change anything
with catch_logging() as log:
raw.filter(l_freq=50., h_freq=None, fir_design='firwin',
skip_by_annotation='foo', verbose='info')
log = log.getvalue()
assert '2 contiguous segments' in log
# our filter will zero out anything not skipped:
mask = np.concatenate((np.zeros(1000), np.ones(2000), np.zeros(1000)))
expected_data = raws_concat[0][0][0] * mask
assert_allclose(raw[0][0][0], expected_data, atol=1e-14)
# Let's try another one
raw = raws[0].copy()
raw.set_annotations(Annotations([0.], [0.5], ['BAD_ACQ_SKIP']))
my_data, times = raw.get_data(reject_by_annotation='omit',
return_times=True)
assert_allclose(times, raw.times[500:])
assert my_data.shape == (1, 500)
raw_filt = raw.copy().filter(skip_by_annotation='bad_acq_skip',
**kwargs_stop)
expected = data.copy()
expected[:, 500:] = 0
assert_allclose(raw_filt[:][0], expected, atol=1e-14)
raw = raws[0].copy()
raw.set_annotations(Annotations([0.5], [0.5], ['BAD_ACQ_SKIP']))
my_data, times = raw.get_data(reject_by_annotation='omit',
return_times=True)
assert_allclose(times, raw.times[:500])
assert my_data.shape == (1, 500)
raw_filt = raw.copy().filter(skip_by_annotation='bad_acq_skip',
**kwargs_stop)
expected = data.copy()
expected[:, :500] = 0
assert_allclose(raw_filt[:][0], expected, atol=1e-14)
@first_samps
def test_annotation_omit(first_samp):
"""Test raw.get_data with annotations."""
data = np.concatenate([np.ones((1, 1000)), 2 * np.ones((1, 1000))], -1)
info = create_info(1, 1000., 'eeg')
raw = RawArray(data, info, first_samp=first_samp)
raw.set_annotations(Annotations([0.5], [1], ['bad']))
expected = raw[0][0]
assert_allclose(raw.get_data(reject_by_annotation=None), expected)
# nan
expected[0, 500:1500] = np.nan
assert_allclose(raw.get_data(reject_by_annotation='nan'), expected)
got = np.concatenate([raw.get_data(start=start, stop=stop,
reject_by_annotation='nan')
for start, stop in ((0, 1000), (1000, 2000))], -1)
assert_allclose(got, expected)
# omit
expected = expected[:, np.isfinite(expected[0])]
assert_allclose(raw.get_data(reject_by_annotation='omit'), expected)
got = np.concatenate([raw.get_data(start=start, stop=stop,
reject_by_annotation='omit')
for start, stop in ((0, 1000), (1000, 2000))], -1)
assert_allclose(got, expected)
pytest.raises(ValueError, raw.get_data, reject_by_annotation='foo')
def test_annotation_epoching():
"""Test that annotations work properly with concatenated edges."""
# Create data with just a DC component
data = np.ones((1, 1000))
info = create_info(1, 1000., 'eeg')
raw = concatenate_raws([RawArray(data, info) for ii in range(3)])
assert raw.annotations is not None
assert len(raw.annotations) == 4
assert np.in1d(raw.annotations.description, ['BAD boundary']).sum() == 2
assert np.in1d(raw.annotations.description, ['EDGE boundary']).sum() == 2
assert_array_equal(raw.annotations.duration, 0.)
events = np.array([[a, 0, 1] for a in [0, 500, 1000, 1500, 2000]])
epochs = Epochs(raw, events, tmin=0, tmax=0.999, baseline=None,
preload=True) # 1000 samples long
assert_equal(len(epochs.drop_log), len(events))
assert_equal(len(epochs), 3)
assert_equal([0, 2, 4], epochs.selection)
def test_annotation_concat():
"""Test if two Annotations objects can be concatenated."""
a = Annotations([1, 2, 3], [5, 5, 8], ["a", "b", "c"])
b = Annotations([11, 12, 13], [1, 2, 2], ["x", "y", "z"])
# test + operator (does not modify a or b)
c = a + b
assert_array_equal(c.onset, [1, 2, 3, 11, 12, 13])
assert_array_equal(c.duration, [5, 5, 8, 1, 2, 2])
assert_array_equal(c.description, ["a", "b", "c", "x", "y", "z"])
assert_equal(len(a), 3)
assert_equal(len(b), 3)
assert_equal(len(c), 6)
# test += operator (modifies a in place)
a += b
assert_array_equal(a.onset, [1, 2, 3, 11, 12, 13])
assert_array_equal(a.duration, [5, 5, 8, 1, 2, 2])
assert_array_equal(a.description, ["a", "b", "c", "x", "y", "z"])
assert_equal(len(a), 6)
assert_equal(len(b), 3)
# test += operator (modifies a in place)
b.orig_time = 1038942070.7201
with pytest.raises(ValueError, match='orig_time should be the same'):
a += b
def test_annotations_crop():
"""Test basic functionality of annotation crop."""
onset = np.arange(1, 10)
duration = np.full_like(onset, 10)
description = ["yy"] * onset.shape[0]
a = Annotations(onset=onset,
duration=duration,
description=description,
orig_time=0)
# cropping window larger than annotations --> do not modify
a_ = a.copy().crop(tmin=-10, tmax=42)
assert_array_equal(a_.onset, a.onset)
assert_array_equal(a_.duration, a.duration)
# cropping with left shifted window
with pytest.warns(None) as w:
a_ = a.copy().crop(tmin=0, tmax=4.2)
assert_array_equal(a_.onset, [1., 2., 3., 4.])
assert_allclose(a_.duration, [3.2, 2.2, 1.2, 0.2])
assert len(w) == 0
# cropping with right shifted window
with pytest.warns(None) as w:
a_ = a.copy().crop(tmin=17.8, tmax=22)
assert_array_equal(a_.onset, [17.8, 17.8])
assert_allclose(a_.duration, [0.2, 1.2])
assert len(w) == 0
# cropping with centered small window
a_ = a.copy().crop(tmin=11, tmax=12)
assert_array_equal(a_.onset, [11, 11, 11, 11, 11, 11, 11, 11, 11])
assert_array_equal(a_.duration, [0, 1, 1, 1, 1, 1, 1, 1, 1])
# cropping with out-of-bounds window
with pytest.warns(None) as w:
a_ = a.copy().crop(tmin=42, tmax=100)
assert_array_equal(a_.onset, [])
assert_array_equal(a_.duration, [])
assert len(w) == 0
# test error raising
with pytest.raises(ValueError, match='tmax should be greater than tmin'):
a.copy().crop(tmin=42, tmax=0)
# test warnings
with pytest.warns(RuntimeWarning, match='Omitted .* were outside'):
a.copy().crop(tmin=42, tmax=100, emit_warning=True)
with pytest.warns(RuntimeWarning, match='Limited .* expanding outside'):
a.copy().crop(tmin=0, tmax=12, emit_warning=True)
@testing.requires_testing_data
def test_events_from_annot_in_raw_objects():
"""Test basic functionality of events_fron_annot for raw objects."""
raw = read_raw_fif(fif_fname)
events = mne.find_events(raw)
event_id = {
'Auditory/Left': 1,
'Auditory/Right': 2,
'Visual/Left': 3,
'Visual/Right': 4,
'Visual/Smiley': 32,
'Motor/Button': 5
}
event_map = {v: k for k, v in event_id.items()}
annot = Annotations(onset=raw.times[events[:, 0] - raw.first_samp],
duration=np.zeros(len(events)),
description=[event_map[vv] for vv in events[:, 2]],
orig_time=None)
raw.set_annotations(annot)
events2, event_id2 = \
events_from_annotations(raw, event_id=event_id, regexp=None)
assert_array_equal(events, events2)
assert_equal(event_id, event_id2)
events3, event_id3 = \
events_from_annotations(raw, event_id=None, regexp=None)
assert_array_equal(events[:, 0], events3[:, 0])
assert set(event_id.keys()) == set(event_id3.keys())
# ensure that these actually got sorted properly
expected_event_id = {
desc: idx + 1 for idx, desc in enumerate(sorted(event_id.keys()))}
assert event_id3 == expected_event_id
first = np.unique(events3[:, 2])
second = np.arange(1, len(event_id) + 1, 1).astype(first.dtype)
assert_array_equal(first, second)
first = np.unique(list(event_id3.values()))
second = np.arange(1, len(event_id) + 1, 1).astype(first.dtype)
assert_array_equal(first, second)
events4, event_id4 =\
events_from_annotations(raw, event_id=None, regexp='.*Left')
expected_event_id4 = {k: v for k, v in event_id.items() if 'Left' in k}
assert_equal(event_id4.keys(), expected_event_id4.keys())
expected_events4 = events[(events[:, 2] == 1) | (events[:, 2] == 3)]
assert_array_equal(expected_events4[:, 0], events4[:, 0])
events5, event_id5 = \
events_from_annotations(raw, event_id=event_id, regexp='.*Left')
expected_event_id5 = {k: v for k, v in event_id.items() if 'Left' in k}
assert_equal(event_id5, expected_event_id5)
expected_events5 = events[(events[:, 2] == 1) | (events[:, 2] == 3)]
assert_array_equal(expected_events5, events5)
with pytest.raises(ValueError, match='not find any of the events'):
events_from_annotations(raw, regexp='not_there')
with pytest.raises(ValueError, match='Invalid input event_id'):
events_from_annotations(raw, event_id='wrong')
# concat does not introduce BAD or EDGE
raw_concat = concatenate_raws([raw.copy(), raw.copy()])
_, event_id = events_from_annotations(raw_concat)
assert isinstance(event_id, dict)
assert len(event_id) > 0
for kind in ('BAD', 'EDGE'):
assert '%s boundary' % kind in raw_concat.annotations.description
for key in event_id.keys():
assert kind not in key
# remove all events
raw.set_annotations(None)
events7, _ = events_from_annotations(raw)
assert_array_equal(events7, np.empty((0, 3), dtype=int))
def test_events_from_annot_onset_alingment():
"""Test events and annotations onset are the same."""
raw = _raw_annot(meas_date=1, orig_time=1.5)
# sec 0 1 2 3
# raw . |--------XXXXXXXXX
# annot . |---XX
# raw.annot . |--------XX
# latency . 0 1 2
# . 0 0
assert raw.annotations.orig_time == 1
assert raw.annotations.onset[0] == 1
assert raw.first_samp == 10
event_latencies, event_id = events_from_annotations(raw)
assert event_latencies[0, 0] == 10
assert raw.first_samp == event_latencies[0, 0]
def _create_annotation_based_on_descr(description, annotation_start_sampl=0,
duration=0, orig_time=0):
"""Create a raw object with annotations from descriptions.
The returning raw object contains as many annotations as description given.
All starting at `annotation_start_sampl`.
"""
# create dummy raw
raw = RawArray(data=np.empty([10, 10], dtype=np.float64),
info=create_info(ch_names=10, sfreq=1000.),
first_samp=0)
raw.info['meas_date'] = 0
# create dummy annotations based on the descriptions
onset = raw.times[annotation_start_sampl]
onset_matching_desc = np.full_like(description, onset, dtype=type(onset))
duration_matching_desc = np.full_like(description, duration,
dtype=type(duration))
annot = Annotations(description=description,
onset=onset_matching_desc,
duration=duration_matching_desc,
orig_time=orig_time)
if duration != 0:
with pytest.warns(RuntimeWarning, match='Limited.*expanding outside'):
# duration 0.1s is larger than the raw data expand
raw.set_annotations(annot)
else:
raw.set_annotations(annot)
# Make sure that set_annotations(annot) works
assert all(raw.annotations.onset == onset)
if duration != 0:
expected_duration = (len(raw.times) / raw.info['sfreq']) - onset
else:
expected_duration = 0
_duration = raw.annotations.duration[0]
assert _duration == approx(expected_duration)
assert all(raw.annotations.duration == _duration)
assert all(raw.annotations.description == description)
return raw
def test_event_id_function_default():
"""Test[unit_test] for event_id_function default in event_from_annotations.
The expected behavior is give numeric label for all those annotations not
present in event_id, starting at 1.
"""
# No event_id given
description = ['a', 'b', 'c', 'd', 'e', 'f', 'g']
expected_event_id = dict(zip(description, range(1, 100)))
expected_events = np.array([[3, 3, 3, 3, 3, 3, 3],
[0, 0, 0, 0, 0, 0, 0],
[1, 2, 3, 4, 5, 6, 7]]).T
raw = _create_annotation_based_on_descr(description,
annotation_start_sampl=3,
duration=100)
events, event_id = events_from_annotations(raw, event_id=None)
assert_array_equal(events, expected_events)
assert event_id == expected_event_id
def test_event_id_function_using_custom_function():
"""Test [unit_test] arbitrary function to create the ids."""
def _constant_id(*args, **kwargs):
return 42
description = ['a', 'b', 'c', 'd', 'e', 'f', 'g']
expected_event_id = dict(zip(description, repeat(42)))
expected_events = np.repeat([[0, 0, 42]], len(description), axis=0)
raw = _create_annotation_based_on_descr(description)
events, event_id = events_from_annotations(raw, event_id=_constant_id)
assert_array_equal(events, expected_events)
assert event_id == expected_event_id
# Test for IO with .csv files
def _assert_annotations_equal(a, b):
assert_array_equal(a.onset, b.onset)
assert_array_equal(a.duration, b.duration)
assert_array_equal(a.description, b.description)
assert a.orig_time == b.orig_time
@pytest.fixture(scope='session')
def dummy_annotation_csv_file(tmpdir_factory):
"""Create csv file for testing."""
content = ("onset,duration,description\n"
"2002-12-03 19:01:11.720100,1.0,AA\n"
"2002-12-03 19:01:20.720100,2.425,BB")
fname = tmpdir_factory.mktemp('data').join('annotations.csv')
fname.write(content)
return fname
@pytest.fixture(scope='session')
def dummy_broken_annotation_csv_file(tmpdir_factory):
"""Create csv file for testing."""
content = ("onset,duration,description\n"
"1.,1.0,AA\n"
"3.,2.425,BB")
fname = tmpdir_factory.mktemp('data').join('annotations_broken.csv')
fname.write(content)
return fname
@requires_version('pandas', '0.16')
def test_io_annotation_csv(dummy_annotation_csv_file,
dummy_broken_annotation_csv_file,
tmpdir_factory):
"""Test CSV input/output."""
annot = read_annotations(str(dummy_annotation_csv_file))
assert annot.orig_time == 1038942071.7201
assert_array_equal(annot.onset, np.array([0., 9.], dtype=np.float32))
assert_array_almost_equal(annot.duration, [1., 2.425])
assert_array_equal(annot.description, ['AA', 'BB'])
# Now test writing
fname = str(tmpdir_factory.mktemp('data').join('annotations.csv'))
annot.save(fname)
annot2 = read_annotations(fname)
_assert_annotations_equal(annot, annot2)
# Now without an orig_time
annot.orig_time = None
annot.save(fname)
annot2 = read_annotations(fname)
_assert_annotations_equal(annot, annot2)
# Test broken .csv that does not use timestamps
with pytest.warns(RuntimeWarning, match='save your CSV as a TXT'):
annot2 = read_annotations(str(dummy_broken_annotation_csv_file))
# Test for IO with .txt files
@pytest.fixture(scope='session')
def dummy_annotation_txt_file(tmpdir_factory):
"""Create txt file for testing."""
content = ("3.14, 42, AA \n"
"6.28, 48, BB")
fname = tmpdir_factory.mktemp('data').join('annotations.txt')
fname.write(content)
return fname
def test_io_annotation_txt(dummy_annotation_txt_file, tmpdir_factory):
"""Test TXT input/output."""
annot = read_annotations(str(dummy_annotation_txt_file))
assert annot.orig_time is None
assert_array_equal(annot.onset, [3.14, 6.28])
assert_array_equal(annot.duration, [42., 48])
assert_array_equal(annot.description, ['AA', 'BB'])
# Now test writing
fname = str(tmpdir_factory.mktemp('data').join('annotations.txt'))
annot.save(fname)
annot2 = read_annotations(fname)
_assert_annotations_equal(annot, annot2)
# Now with an orig_time
annot.orig_time = 1038942071.7201
annot.save(fname)
annot2 = read_annotations(fname)
_assert_annotations_equal(annot, annot2)
@pytest.fixture(scope='session')
def dummy_annotation_txt_header(tmpdir_factory):
"""Create txt header."""
content = ("# A something \n"
"# orig_time : 42\n"
"# orig_time : 2002-12-03 19:01:11.720100\n"
"# orig_time : 42\n"
"# C\n"
"Done")
fname = tmpdir_factory.mktemp('data').join('header.txt')
fname.write(content)
return str(fname)
@pytest.mark.parametrize('meas_date, out', [
pytest.param('toto', 0, id='invalid string'),
pytest.param(None, 0, id='None'),
pytest.param(42, 42.0, id='Scalar'),
pytest.param(3.14, 3.14, id='Float'),
pytest.param((3, 140000), 3.14, id='Scalar touple'),
pytest.param('2002-12-03 19:01:11.720100', 1038942071.7201,
id='valid iso8601 string'),
pytest.param('2002-12-03T19:01:11.720100', 0,
id='invalid iso8601 string')])
def test_handle_meas_date(meas_date, out):
"""Test meas date formats."""
assert _handle_meas_date(meas_date) == out
def test_read_annotation_txt_header(dummy_annotation_txt_header):
"""Test TXT orig_time recovery."""
orig_time = _read_annotations_txt_parse_header(dummy_annotation_txt_header)
assert orig_time == 1038942071.7201
@pytest.fixture(scope='session')
def dummy_annotation_txt_file_with_orig_time(tmpdir_factory):
"""Create TXT annotations with header."""
content = ("# MNE-Annotations\n"
"# orig_time : 2002-12-03 19:01:11.720100\n"
"# onset, duration, description\n"
"3.14, 42, AA \n"
"6.28, 48, BB")
fname = tmpdir_factory.mktemp('data').join('annotations.txt')
fname.write(content)
return fname
def test_read_annotation_txt_orig_time(
dummy_annotation_txt_file_with_orig_time):
"""Test TXT input/output."""
annot = read_annotations(str(dummy_annotation_txt_file_with_orig_time))
assert annot.orig_time == 1038942071.7201
assert_array_equal(annot.onset, [3.14, 6.28])
assert_array_equal(annot.duration, [42., 48])
assert_array_equal(annot.description, ['AA', 'BB'])
def test_annotations_simple_iteration():
"""Test indexing Annotations."""
NUM_ANNOT = 5
EXPECTED_ELEMENTS_TYPE = (np.float64, np.float64, np.str_)
EXPECTED_ONSETS = EXPECTED_DURATIONS = [x for x in range(NUM_ANNOT)]
EXPECTED_DESCS = [x.__repr__() for x in range(NUM_ANNOT)]
annot = Annotations(onset=EXPECTED_ONSETS,
duration=EXPECTED_DURATIONS,
description=EXPECTED_DESCS,
orig_time=None)
for ii, elements in enumerate(annot[:2]):
assert isinstance(elements, OrderedDict)
expected_values = (ii, ii, str(ii))
for elem, expected_type, expected_value in zip(elements.values(),
EXPECTED_ELEMENTS_TYPE,
expected_values):
assert np.isscalar(elem)
assert type(elem) == expected_type
assert elem == expected_value
@requires_version('numpy', '1.12')
def test_annotations_slices():
"""Test indexing Annotations."""
NUM_ANNOT = 5
EXPECTED_ONSETS = EXPECTED_DURATIONS = [x for x in range(NUM_ANNOT)]
EXPECTED_DESCS = [x.__repr__() for x in range(NUM_ANNOT)]
annot = Annotations(onset=EXPECTED_ONSETS,
duration=EXPECTED_DURATIONS,
description=EXPECTED_DESCS,
orig_time=None)
# Indexing returns a copy. So this has no effect in annot
annot[0]['onset'] = 42
annot[0]['duration'] = 3.14
annot[0]['description'] = 'foobar'
annot[:1].onset[0] = 42
annot[:1].duration[0] = 3.14
annot[:1].description[0] = 'foobar'
# Slicing with single element returns a dictionary
for ii in EXPECTED_ONSETS:
assert annot[ii] == dict(zip(['onset', 'duration',
'description', 'orig_time'],
[ii, ii, str(ii), None]))
# Slices should give back Annotations
for current in (annot[slice(0, None, 2)],
annot[[bool(ii % 2) for ii in range(len(annot))]],
annot[:1],
annot[[0, 2, 2]],
annot[(0, 2, 2)],
annot[np.array([0, 2, 2])],
annot[1::2],
):
assert isinstance(current, Annotations)
assert len(current) != len(annot)
for bad_ii in [len(EXPECTED_ONSETS), 42, 'foo']:
with pytest.raises(IndexError):
annot[bad_ii]
def test_sorting():
"""Test annotation sorting."""
annot = Annotations([10, 20, 30], [1, 2, 3], 'BAD')
# assert_array_equal(annot.onset, [0, 5, 10])
annot.append([5, 15, 25, 35], 0.5, 'BAD')
onset = list(range(5, 36, 5))
duration = list(annot.duration)
assert_array_equal(annot.onset, onset)
assert_array_equal(annot.duration, duration)
annot.append([10, 10], [0.1, 9], 'BAD') # 0.1 should be before, 9 after
want_before = onset.index(10)
duration.insert(want_before, 0.1)
duration.insert(want_before + 2, 9)
onset.insert(want_before, 10)
onset.insert(want_before, 10)
assert_array_equal(annot.onset, onset)
assert_array_equal(annot.duration, duration)
def test_date_none(tmpdir):
"""Test that DATE_NONE is used properly."""
# Regression test for gh-5908
n_chans = 139
n_samps = 20
data = np.random.random_sample((n_chans, n_samps))
ch_names = ['E{}'.format(x) for x in range(n_chans)]
ch_types = ['eeg'] * n_chans
info = create_info(ch_names=ch_names, ch_types=ch_types, sfreq=2048)
assert info['meas_date'] is None
raw = RawArray(data=data, info=info)
fname = op.join(str(tmpdir), 'test-raw.fif')
raw.save(fname)
raw_read = read_raw_fif(fname, preload=True)
assert raw_read.info['meas_date'] is None
def test_negative_meas_dates():
"""Test meas_date previous to 1970."""
# Regression test for gh-6621
raw = RawArray(data=np.empty((1, 1), dtype=np.float64),
info=create_info(ch_names=1, sfreq=1.))
raw.info['meas_date'] = (-908196946, 988669)
raw.set_annotations(Annotations(description='foo', onset=[0],
duration=[0], orig_time=None))
events, _ = events_from_annotations(raw)
assert events[:, 0] == 0
def test_crop_when_negative_orig_time():
"""Test croping with orig_time, tmin and tmax previous to 1970."""
# Regression test for gh-6621
orig_time_stamp = -908196945.011331 # 1941-03-22 11:04:14.988669
annot = Annotations(description='foo', onset=np.arange(0, 1, 0.1),
duration=[0], orig_time=orig_time_stamp)
assert annot.orig_time == orig_time_stamp
# do not raise
annot.crop()
# Crop with negative tmin, tmax
tmin, tmax = [orig_time_stamp + t for t in (0.25, .75)]
assert tmin < 0 and tmax < 0
crop_annot = annot.crop(tmin=tmin, tmax=tmax)
assert_allclose(crop_annot.onset, [0.3, 0.4, 0.5, 0.6, 0.7])
assert crop_annot.orig_time == orig_time_stamp # orig_time does not change
run_tests_if_main()
|