File: test_filter.py

package info (click to toggle)
python-mne 0.19.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 100,440 kB
  • sloc: python: 120,243; pascal: 1,861; makefile: 225; sh: 15
file content (761 lines) | stat: -rw-r--r-- 32,216 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
import os.path as op

import numpy as np
from numpy.testing import (assert_array_almost_equal, assert_almost_equal,
                           assert_array_equal, assert_allclose,
                           assert_array_less)
import pytest
from scipy.signal import resample as sp_resample, butter, freqz

from mne import create_info
from mne.fixes import _sosfreqz, fft, fftfreq
from mne.io import RawArray, read_raw_fif
from mne.io.pick import _DATA_CH_TYPES_SPLIT
from mne.filter import (filter_data, resample, _resample_stim_channels,
                        construct_iir_filter, notch_filter, detrend,
                        _overlap_add_filter, _smart_pad, design_mne_c_filter,
                        estimate_ringing_samples, create_filter, _Interp2)

from mne.utils import (sum_squared, run_tests_if_main,
                       catch_logging, requires_version, _TempDir,
                       requires_mne, run_subprocess)

rng = np.random.RandomState(0)


def test_filter_array():
    """Test filtering an array."""
    for data in (np.zeros((11, 1, 10)), np.zeros((9, 1, 10))):
        filter_data(data, 512., 8, 12, method='iir',
                    iir_params=dict(ftype='butterworth', order=2))


@requires_mne
def test_mne_c_design():
    """Test MNE-C filter design."""
    tempdir = _TempDir()
    temp_fname = op.join(tempdir, 'test_raw.fif')
    out_fname = op.join(tempdir, 'test_c_raw.fif')
    x = np.zeros((1, 10001))
    x[0, 5000] = 1.
    time_sl = slice(5000 - 4096, 5000 + 4097)
    sfreq = 1000.
    RawArray(x, create_info(1, sfreq, 'eeg')).save(temp_fname)

    tols = dict(rtol=1e-4, atol=1e-4)
    cmd = ('mne_process_raw', '--projoff', '--raw', temp_fname,
           '--save', out_fname)
    run_subprocess(cmd)
    h = design_mne_c_filter(sfreq, None, 40)
    h_c = read_raw_fif(out_fname)[0][0][0][time_sl]
    assert_allclose(h, h_c, **tols)

    run_subprocess(cmd + ('--highpass', '5', '--highpassw', '2.5'))
    h = design_mne_c_filter(sfreq, 5, 40, 2.5)
    h_c = read_raw_fif(out_fname)[0][0][0][time_sl]
    assert_allclose(h, h_c, **tols)

    run_subprocess(cmd + ('--lowpass', '1000', '--highpass', '10'))
    h = design_mne_c_filter(sfreq, 10, None, verbose=True)
    h_c = read_raw_fif(out_fname)[0][0][0][time_sl]
    assert_allclose(h, h_c, **tols)


def test_estimate_ringing():
    """Test our ringing estimation function."""
    # Actual values might differ based on system, so let's be approximate
    for kind in ('ba', 'sos'):
        for thresh, lims in ((0.1, (30, 60)),  # 47
                             (0.01, (300, 600)),  # 475
                             (0.001, (3000, 6000)),  # 4758
                             (0.0001, (30000, 60000))):  # 37993
            n_ring = estimate_ringing_samples(butter(3, thresh, output=kind))
            assert lims[0] <= n_ring <= lims[1], (
                '%s %s: %s <= %s <= %s'
                % (kind, thresh, lims[0], n_ring, lims[1]))
    with pytest.warns(RuntimeWarning, match='properly estimate'):
        assert estimate_ringing_samples(butter(4, 0.00001)) == 100000


def test_1d_filter():
    """Test our private overlap-add filtering function."""
    # make some random signals and filters
    for n_signal in (1, 2, 3, 5, 10, 20, 40):
        x = rng.randn(n_signal)
        for n_filter in (1, 2, 3, 5, 10, 11, 20, 21, 40, 41, 100, 101):
            for filter_type in ('identity', 'random'):
                if filter_type == 'random':
                    h = rng.randn(n_filter)
                else:  # filter_type == 'identity'
                    h = np.concatenate([[1.], np.zeros(n_filter - 1)])
                # ensure we pad the signal the same way for both filters
                n_pad = n_filter - 1
                x_pad = _smart_pad(x, (n_pad, n_pad))
                for phase in ('zero', 'linear', 'zero-double'):
                    # compute our expected result the slow way
                    if phase == 'zero':
                        # only allow zero-phase for odd-length filters
                        if n_filter % 2 == 0:
                            pytest.raises(RuntimeError, _overlap_add_filter,
                                          x[np.newaxis], h, phase=phase)
                            continue
                        shift = (len(h) - 1) // 2
                        x_expected = np.convolve(x_pad, h)
                        x_expected = x_expected[shift:len(x_expected) - shift]
                    elif phase == 'zero-double':
                        shift = len(h) - 1
                        x_expected = np.convolve(x_pad, h)
                        x_expected = np.convolve(x_expected[::-1], h)[::-1]
                        x_expected = x_expected[shift:len(x_expected) - shift]
                        shift = 0
                    else:
                        shift = 0
                        x_expected = np.convolve(x_pad, h)
                        x_expected = x_expected[:len(x_expected) - len(h) + 1]
                    # remove padding
                    if n_pad > 0:
                        x_expected = x_expected[n_pad:len(x_expected) - n_pad]
                    assert len(x_expected) == len(x)
                    # make sure we actually set things up reasonably
                    if filter_type == 'identity':
                        out = x_pad.copy()
                        out = out[shift + n_pad:]
                        out = out[:len(x)]
                        out = np.concatenate((out, np.zeros(max(len(x) -
                                                                len(out), 0))))
                        assert len(out) == len(x)
                        assert_allclose(out, x_expected)
                    assert len(x_expected) == len(x)

                    # compute our version
                    for n_fft in (None, 32, 128, 129, 1023, 1024, 1025, 2048):
                        # need to use .copy() b/c signal gets modified inplace
                        x_copy = x[np.newaxis, :].copy()
                        min_fft = 2 * n_filter - 1
                        if phase == 'zero-double':
                            min_fft = 2 * min_fft - 1
                        if n_fft is not None and n_fft < min_fft:
                            pytest.raises(ValueError, _overlap_add_filter,
                                          x_copy, h, n_fft, phase=phase)
                        else:
                            x_filtered = _overlap_add_filter(
                                x_copy, h, n_fft, phase=phase)[0]
                            assert_allclose(x_filtered, x_expected, atol=1e-13)


def test_iir_stability():
    """Test IIR filter stability check."""
    sig = np.random.RandomState(0).rand(1000)
    sfreq = 1000
    # This will make an unstable filter, should throw RuntimeError
    pytest.raises(RuntimeError, filter_data, sig, sfreq, 0.6, None,
                  method='iir', iir_params=dict(ftype='butter', order=8,
                                                output='ba'))
    # This one should work just fine
    filter_data(sig, sfreq, 0.6, None, method='iir',
                iir_params=dict(ftype='butter', order=8, output='sos'))
    # bad system type
    pytest.raises(ValueError, filter_data, sig, sfreq, 0.6, None, method='iir',
                  iir_params=dict(ftype='butter', order=8, output='foo'))
    # missing ftype
    pytest.raises(RuntimeError, filter_data, sig, sfreq, 0.6, None,
                  method='iir', iir_params=dict(order=8, output='sos'))
    # bad ftype
    pytest.raises(RuntimeError, filter_data, sig, sfreq, 0.6, None,
                  method='iir',
                  iir_params=dict(order=8, ftype='foo', output='sos'))
    # missing gstop
    pytest.raises(RuntimeError, filter_data, sig, sfreq, 0.6, None,
                  method='iir', iir_params=dict(gpass=0.5, output='sos'))
    # can't pass iir_params if method='fft'
    pytest.raises(ValueError, filter_data, sig, sfreq, 0.1, None,
                  method='fft', iir_params=dict(ftype='butter', order=2,
                                                output='sos'))
    # method must be string
    pytest.raises(TypeError, filter_data, sig, sfreq, 0.1, None,
                  method=1)
    # unknown method
    pytest.raises(ValueError, filter_data, sig, sfreq, 0.1, None,
                  method='blah')
    # bad iir_params
    pytest.raises(TypeError, filter_data, sig, sfreq, 0.1, None,
                  method='iir', iir_params='blah')
    pytest.raises(ValueError, filter_data, sig, sfreq, 0.1, None,
                  method='fir', iir_params=dict())

    # should pass because default trans_bandwidth is not relevant
    iir_params = dict(ftype='butter', order=2, output='sos')
    x_sos = filter_data(sig, 250, 0.5, None, method='iir',
                        iir_params=iir_params)
    iir_params_sos = construct_iir_filter(iir_params, f_pass=0.5, sfreq=250,
                                          btype='highpass')
    x_sos_2 = filter_data(sig, 250, 0.5, None, method='iir',
                          iir_params=iir_params_sos)
    assert_allclose(x_sos[100:-100], x_sos_2[100:-100])
    x_ba = filter_data(sig, 250, 0.5, None, method='iir',
                       iir_params=dict(ftype='butter', order=2, output='ba'))
    # Note that this will fail for higher orders (e.g., 6) showing the
    # hopefully decreased numerical error of SOS
    assert_allclose(x_sos[100:-100], x_ba[100:-100])


def test_notch_filters():
    """Test notch filters."""
    # let's use an ugly, prime sfreq for fun
    sfreq = 487.0
    sig_len_secs = 20
    t = np.arange(0, int(sig_len_secs * sfreq)) / sfreq
    freqs = np.arange(60, 241, 60)

    # make a "signal"
    a = rng.randn(int(sig_len_secs * sfreq))
    orig_power = np.sqrt(np.mean(a ** 2))
    # make line noise
    a += np.sum([np.sin(2 * np.pi * f * t) for f in freqs], axis=0)

    # only allow None line_freqs with 'spectrum_fit' mode
    pytest.raises(ValueError, notch_filter, a, sfreq, None, 'fft')
    pytest.raises(ValueError, notch_filter, a, sfreq, None, 'iir')
    methods = ['spectrum_fit', 'spectrum_fit', 'fft', 'fft', 'iir']
    filter_lengths = ['auto', 'auto', 'auto', 8192, 'auto']
    line_freqs = [None, freqs, freqs, freqs, freqs]
    tols = [2, 1, 1, 1]
    for meth, lf, fl, tol in zip(methods, line_freqs, filter_lengths, tols):
        with catch_logging() as log_file:
            with pytest.warns(None):
                b = notch_filter(a, sfreq, lf, fl, method=meth,
                                 fir_design='firwin', verbose=True)
        if lf is None:
            out = log_file.getvalue().split('\n')[:-1]
            if len(out) != 2 and len(out) != 3:  # force_serial: len(out) == 3
                raise ValueError('Detected frequencies not logged properly')
            out = np.fromstring(out[-1], sep=', ')
            assert_array_almost_equal(out, freqs)
        new_power = np.sqrt(sum_squared(b) / b.size)
        assert_almost_equal(new_power, orig_power, tol)


def test_resample():
    """Test resampling."""
    x = rng.normal(0, 1, (10, 10, 10))
    x_rs = resample(x, 1, 2, 10)
    assert x.shape == (10, 10, 10)
    assert x_rs.shape == (10, 10, 5)

    x_2 = x.swapaxes(0, 1)
    x_2_rs = resample(x_2, 1, 2, 10)
    assert_array_equal(x_2_rs.swapaxes(0, 1), x_rs)

    x_3 = x.swapaxes(0, 2)
    x_3_rs = resample(x_3, 1, 2, 10, 0)
    assert_array_equal(x_3_rs.swapaxes(0, 2), x_rs)

    # make sure we cast to array if necessary
    assert_array_equal(resample([0., 0.], 2, 1), [0., 0., 0., 0.])


@requires_version('scipy', '1.0')  # earlier versions have a Nyquist bug
def test_resample_scipy():
    """Test resampling against SciPy."""
    n_jobs_test = (1, 'cuda')
    for window in ('boxcar', 'hann'):
        for N in (100, 101, 102, 103):
            x = np.arange(N).astype(float)
            err_msg = '%s: %s' % (N, window)
            x_2_sp = sp_resample(x, 2 * N, window=window)
            for n_jobs in n_jobs_test:
                x_2 = resample(x, 2, 1, 0, window=window, n_jobs=n_jobs)
                assert_allclose(x_2, x_2_sp, atol=1e-12, err_msg=err_msg)
            new_len = int(round(len(x) * (1. / 2.)))
            x_p5_sp = sp_resample(x, new_len, window=window)
            for n_jobs in n_jobs_test:
                x_p5 = resample(x, 1, 2, 0, window=window, n_jobs=n_jobs)
                assert_allclose(x_p5, x_p5_sp, atol=1e-12, err_msg=err_msg)


@pytest.mark.parametrize('n_jobs', (2, 'cuda'))
def test_n_jobs(n_jobs):
    """Test resampling against SciPy."""
    x = np.random.RandomState(0).randn(4, 100)
    y1 = resample(x, 2, 1, n_jobs=1)
    y2 = resample(x, 2, 1, n_jobs=n_jobs)
    assert_allclose(y1, y2)
    y1 = filter_data(x, 100., 0, 40, n_jobs=1)
    y2 = filter_data(x, 100., 0, 40, n_jobs=n_jobs)
    assert_allclose(y1, y2)


def test_resamp_stim_channel():
    """Test resampling of stim channels."""
    # Downsampling
    assert_array_equal(
        _resample_stim_channels([1, 0, 0, 0, 2, 0, 0, 0], 1, 2),
        [[1, 0, 2, 0]])
    assert_array_equal(
        _resample_stim_channels([1, 0, 0, 0, 2, 0, 0, 0], 1, 1.5),
        [[1, 0, 0, 2, 0]])
    assert_array_equal(
        _resample_stim_channels([1, 0, 0, 1, 2, 0, 0, 1], 1, 2),
        [[1, 1, 2, 1]])

    # Upsampling
    assert_array_equal(
        _resample_stim_channels([1, 2, 3], 2, 1), [[1, 1, 2, 2, 3, 3]])
    assert_array_equal(
        _resample_stim_channels([1, 2, 3], 2.5, 1), [[1, 1, 1, 2, 2, 3, 3, 3]])

    # Proper number of samples in stim channel resampling from io/base.py
    data_chunk = np.zeros((1, 315600))
    for new_data_len in (52598, 52599, 52600, 52601, 315599, 315600):
        new_data = _resample_stim_channels(data_chunk, new_data_len,
                                           data_chunk.shape[1])
        assert new_data.shape[1] == new_data_len


def test_resample_raw():
    """Test resampling using RawArray."""
    x = np.zeros((1, 1001))
    sfreq = 2048.
    raw = RawArray(x, create_info(1, sfreq, 'eeg'))
    raw.resample(128, npad=10)
    data = raw.get_data()
    assert data.shape == (1, 63)


@pytest.mark.slowtest
def test_filters():
    """Test low-, band-, high-pass, and band-stop filters plus resampling."""
    sfreq = 100
    sig_len_secs = 15

    a = rng.randn(2, sig_len_secs * sfreq)

    # let's test our catchers
    for fl in ['blah', [0, 1], 1000.5, '10ss', '10']:
        pytest.raises(ValueError, filter_data, a, sfreq, 4, 8, None, fl,
                      1.0, 1.0, fir_design='firwin')
    for nj in ['blah', 0.5]:
        pytest.raises(ValueError, filter_data, a, sfreq, 4, 8, None, 1000,
                      1.0, 1.0, n_jobs=nj, phase='zero', fir_design='firwin')
    pytest.raises(ValueError, filter_data, a, sfreq, 4, 8, None, 100,
                  1., 1., fir_window='foo')
    pytest.raises(ValueError, filter_data, a, sfreq, 4, 8, None, 10,
                  1., 1., fir_design='firwin')  # too short
    # > Nyq/2
    pytest.raises(ValueError, filter_data, a, sfreq, 4, sfreq / 2., None,
                  100, 1.0, 1.0, fir_design='firwin')
    pytest.raises(ValueError, filter_data, a, sfreq, -1, None, None,
                  100, 1.0, 1.0, fir_design='firwin')
    # these should work
    create_filter(None, sfreq, None, None)
    create_filter(a, sfreq, None, None, fir_design='firwin')
    create_filter(a, sfreq, None, None, method='iir')

    # check our short-filter warning:
    with pytest.warns(RuntimeWarning, match='attenuation'):
        # Warning for low attenuation
        filter_data(a, sfreq, 1, 8, filter_length=256, fir_design='firwin2')
    with pytest.warns(RuntimeWarning, match='Increase filter_length'):
        # Warning for too short a filter
        filter_data(a, sfreq, 1, 8, filter_length='0.5s', fir_design='firwin2')

    # try new default and old default
    freqs = fftfreq(a.shape[-1], 1. / sfreq)
    A = np.abs(fft(a))
    kwargs = dict(fir_design='firwin')
    for fl in ['auto', '10s', '5000ms', 1024, 1023]:
        bp = filter_data(a, sfreq, 4, 8, None, fl, 1.0, 1.0, **kwargs)
        bs = filter_data(a, sfreq, 8 + 1.0, 4 - 1.0, None, fl, 1.0, 1.0,
                         **kwargs)
        lp = filter_data(a, sfreq, None, 8, None, fl, 10, 1.0, n_jobs=2,
                         **kwargs)
        hp = filter_data(lp, sfreq, 4, None, None, fl, 1.0, 10, **kwargs)
        assert_allclose(hp, bp, rtol=1e-3, atol=1e-3)
        assert_allclose(bp + bs, a, rtol=1e-3, atol=1e-3)
        # Sanity check ttenuation
        mask = (freqs > 5.5) & (freqs < 6.5)
        assert_allclose(np.mean(np.abs(fft(bp)[:, mask]) / A[:, mask]),
                        1., atol=0.02)
        assert_allclose(np.mean(np.abs(fft(bs)[:, mask]) / A[:, mask]),
                        0., atol=0.2)
        # now the minimum-phase versions
        bp = filter_data(a, sfreq, 4, 8, None, fl, 1.0, 1.0,
                         phase='minimum', **kwargs)
        bs = filter_data(a, sfreq, 8 + 1.0, 4 - 1.0, None, fl, 1.0, 1.0,
                         phase='minimum', **kwargs)
        assert_allclose(np.mean(np.abs(fft(bp)[:, mask]) / A[:, mask]),
                        1., atol=0.11)
        assert_allclose(np.mean(np.abs(fft(bs)[:, mask]) / A[:, mask]),
                        0., atol=0.3)

    # and since these are low-passed, downsampling/upsampling should be close
    n_resamp_ignore = 10
    bp_up_dn = resample(resample(bp, 2, 1, n_jobs=2), 1, 2, n_jobs=2)
    assert_array_almost_equal(bp[n_resamp_ignore:-n_resamp_ignore],
                              bp_up_dn[n_resamp_ignore:-n_resamp_ignore], 2)
    # note that on systems without CUDA, this line serves as a test for a
    # graceful fallback to n_jobs=1
    bp_up_dn = resample(resample(bp, 2, 1, n_jobs='cuda'), 1, 2, n_jobs='cuda')
    assert_array_almost_equal(bp[n_resamp_ignore:-n_resamp_ignore],
                              bp_up_dn[n_resamp_ignore:-n_resamp_ignore], 2)
    # test to make sure our resamling matches scipy's
    bp_up_dn = sp_resample(sp_resample(bp, 2 * bp.shape[-1], axis=-1,
                                       window='boxcar'),
                           bp.shape[-1], window='boxcar', axis=-1)
    assert_array_almost_equal(bp[n_resamp_ignore:-n_resamp_ignore],
                              bp_up_dn[n_resamp_ignore:-n_resamp_ignore], 2)

    # make sure we don't alias
    t = np.array(list(range(sfreq * sig_len_secs))) / float(sfreq)
    # make sinusoid close to the Nyquist frequency
    sig = np.sin(2 * np.pi * sfreq / 2.2 * t)
    # signal should disappear with 2x downsampling
    sig_gone = resample(sig, 1, 2)[n_resamp_ignore:-n_resamp_ignore]
    assert_array_almost_equal(np.zeros_like(sig_gone), sig_gone, 2)

    # let's construct some filters
    iir_params = dict(ftype='cheby1', gpass=1, gstop=20, output='ba')
    iir_params = construct_iir_filter(iir_params, 40, 80, 1000, 'low')
    # this should be a third order filter
    assert iir_params['a'].size - 1 == 3
    assert iir_params['b'].size - 1 == 3
    iir_params = dict(ftype='butter', order=4, output='ba')
    iir_params = construct_iir_filter(iir_params, 40, None, 1000, 'low')
    assert iir_params['a'].size - 1 == 4
    assert iir_params['b'].size - 1 == 4
    iir_params = dict(ftype='cheby1', gpass=1, gstop=20)
    iir_params = construct_iir_filter(iir_params, 40, 80, 1000, 'low')
    # this should be a third order filter, which requires 2 SOS ((2, 6))
    assert iir_params['sos'].shape == (2, 6)
    iir_params = dict(ftype='butter', order=4, output='sos')
    iir_params = construct_iir_filter(iir_params, 40, None, 1000, 'low')
    assert iir_params['sos'].shape == (2, 6)

    # check that picks work for 3d array with one channel and picks=[0]
    a = rng.randn(5 * sfreq, 5 * sfreq)
    b = a[:, None, :]

    a_filt = filter_data(a, sfreq, 4, 8, None, 400, 2.0, 2.0,
                         fir_design='firwin')
    b_filt = filter_data(b, sfreq, 4, 8, [0], 400, 2.0, 2.0,
                         fir_design='firwin')

    assert_array_equal(a_filt[:, None, :], b_filt)

    # check for n-dimensional case
    a = rng.randn(2, 2, 2, 2)
    with pytest.warns(RuntimeWarning, match='longer'):
        pytest.raises(ValueError, filter_data, a, sfreq, 4, 8,
                      np.array([0, 1]), 100, 1.0, 1.0)

    # check corner case (#4693)
    h = create_filter(
        np.empty(10000), 1000., l_freq=None, h_freq=55.,
        h_trans_bandwidth=0.5, method='fir', phase='zero-double',
        fir_design='firwin', verbose=True)
    assert len(h) == 6601


def test_filter_auto():
    """Test filter auto parameters."""
    # test that our overlap-add filtering doesn't introduce strange
    # artifacts (from mne_analyze mailing list 2015/06/25)
    N = 300
    sfreq = 100.
    lp = 10.
    sine_freq = 1.
    x = np.ones(N)
    t = np.arange(N) / sfreq
    x += np.sin(2 * np.pi * sine_freq * t)
    x_orig = x.copy()
    for pad in ('reflect_limited', 'reflect', 'edge'):
        for fir_design in ('firwin2', 'firwin'):
            kwargs = dict(fir_design=fir_design, pad=pad)
            x = x_orig.copy()
            x_filt = filter_data(x, sfreq, None, lp, **kwargs)
            assert_array_equal(x, x_orig)
            n_edge = 10
            assert_allclose(x[n_edge:-n_edge], x_filt[n_edge:-n_edge],
                            atol=1e-2)
            assert_array_equal(x_filt, filter_data(x, sfreq, None, lp, None,
                                                   **kwargs))
            assert_array_equal(x, x_orig)
            assert_array_equal(x_filt, filter_data(x, sfreq, None, lp,
                                                   **kwargs))
            assert_array_equal(x, x_orig)
            assert_array_equal(x_filt, filter_data(x, sfreq, None, lp,
                                                   copy=False, **kwargs))
            assert_array_equal(x, x_filt)

    # degenerate conditions
    pytest.raises(ValueError, filter_data, x, -sfreq, 1, 10)
    pytest.raises(ValueError, filter_data, x, sfreq, 1, sfreq * 0.75)
    with pytest.raises(ValueError, match='Data to be filtered must be real'):
        filter_data(x.astype(np.float32), sfreq, None, 10)
    with pytest.raises(ValueError, match='Data to be filtered must be real'):
        filter_data(1j, 1000., None, 40.)


def test_cuda_fir():
    """Test CUDA-based filtering."""
    # Using `n_jobs='cuda'` on a non-CUDA system should be fine,
    # as it should fall back to using n_jobs=1.
    sfreq = 500
    sig_len_secs = 20
    a = rng.randn(sig_len_secs * sfreq)
    kwargs = dict(fir_design='firwin')

    with catch_logging() as log_file:
        for fl in ['auto', '10s', 2048]:
            args = [a, sfreq, 4, 8, None, fl, 1.0, 1.0]
            bp = filter_data(*args, **kwargs)
            bp_c = filter_data(*args, n_jobs='cuda', verbose='info', **kwargs)
            assert_array_almost_equal(bp, bp_c, 12)

            args = [a, sfreq, 8 + 1.0, 4 - 1.0, None, fl, 1.0, 1.0]
            bs = filter_data(*args, **kwargs)
            bs_c = filter_data(*args, n_jobs='cuda', verbose='info', **kwargs)
            assert_array_almost_equal(bs, bs_c, 12)

            args = [a, sfreq, None, 8, None, fl, 1.0]
            lp = filter_data(*args, **kwargs)
            lp_c = filter_data(*args, n_jobs='cuda', verbose='info', **kwargs)
            assert_array_almost_equal(lp, lp_c, 12)

            args = [lp, sfreq, 4, None, None, fl, 1.0]
            hp = filter_data(*args, **kwargs)
            hp_c = filter_data(*args, n_jobs='cuda', verbose='info', **kwargs)
            assert_array_almost_equal(hp, hp_c, 12)

    # check to make sure we actually used CUDA
    out = log_file.getvalue().split('\n')[:-1]
    # triage based on whether or not we actually expected to use CUDA
    from mne.cuda import _cuda_capable  # allow above funs to set it
    tot = 12 if _cuda_capable else 0
    assert sum(['Using CUDA for FFT FIR filtering' in o for o in out]) == tot
    if not _cuda_capable:
        pytest.skip('CUDA not enabled')


def test_cuda_resampling():
    """Test CUDA resampling."""
    for window in ('boxcar', 'triang'):
        for N in (997, 1000):  # one prime, one even
            a = rng.randn(2, N)
            for fro, to in ((1, 2), (2, 1), (1, 3), (3, 1)):
                a1 = resample(a, fro, to, n_jobs=1, npad='auto',
                              window=window)
                a2 = resample(a, fro, to, n_jobs='cuda', npad='auto',
                              window=window)
                assert_allclose(a1, a2, rtol=1e-7, atol=1e-14)
    assert_array_almost_equal(a1, a2, 14)
    assert_array_equal(resample(np.zeros(2), 2, 1, n_jobs='cuda'), np.zeros(4))


def test_detrend():
    """Test zeroth and first order detrending."""
    x = np.arange(10)
    assert_array_almost_equal(detrend(x, 1), np.zeros_like(x))
    x = np.ones(10)
    assert_array_almost_equal(detrend(x, 0), np.zeros_like(x))


def test_interp2():
    """Test our two-point interpolator."""
    interp = _Interp2('zero')
    x = np.ones((1, 100))
    interp['y'] = np.array([[10.]])
    interp['y'] = np.array([[-10]])
    interp.n_samp = 100
    out = np.zeros_like(x)
    interp.interpolate('y', x, out)
    expected = 10 * x
    assert_allclose(out, expected, atol=1e-7)
    # Linear
    interp.interp = 'linear'
    out.fill(0.)
    interp.interpolate('y', x, out)
    expected = np.linspace(10, -10, 100, endpoint=False)[np.newaxis]
    assert_allclose(out, expected, atol=1e-7)


@pytest.mark.parametrize('output', ('ba', 'sos'))
@pytest.mark.parametrize('ftype', ('butter', 'bessel', 'ellip'))
@pytest.mark.parametrize('btype', ('lowpass', 'bandpass'))
@pytest.mark.parametrize('order', (1, 4))
def test_reporting_iir(ftype, btype, order, output):
    """Test IIR filter reporting."""
    fs = 1000.
    l_freq = 1. if btype == 'bandpass' else None
    iir_params = dict(ftype=ftype, order=order, output=output)
    rs = 20 if order == 1 else 80
    if ftype == 'ellip':
        iir_params['rp'] = 3  # dB
        iir_params['rs'] = rs  # attenuation
        pass_tol = np.log10(iir_params['rp']) + 0.01
    else:
        pass_tol = 0.2
    with catch_logging() as log:
        x = create_filter(None, fs, l_freq, 40., method='iir',
                          iir_params=iir_params, verbose=True)
    order_eff = order * (1 + (btype == 'bandpass'))
    if output == 'ba':
        assert len(x['b']) == order_eff + 1
    log = log.getvalue()
    keys = [
        'IIR',
        'zero-phase',
        'two-pass forward and reverse',
        'non-causal',
        btype,
        ftype,
        'Filter order %d' % (order_eff * 2,),
        'Cutoff ' if btype == 'lowpass' else 'Cutoffs ',
    ]
    dB_decade = -27.74
    if ftype == 'ellip':
        dB_cutoff = -6.0
    elif order == 1 or ftype == 'butter':
        dB_cutoff = -6.02
    else:
        assert ftype == 'bessel'
        assert order == 4
        dB_cutoff = -15.16
    if btype == 'lowpass':
        keys += ['%0.2f dB' % (dB_cutoff,)]
    for key in keys:
        assert key.lower() in log.lower()
    # Verify some of the filter properties
    if output == 'ba':
        w, h = freqz(x['b'], x['a'], worN=10000)
    else:
        w, h = _sosfreqz(x['sos'], worN=10000)
    w *= fs / (2 * np.pi)
    h = np.abs(h)
    # passband
    passes = [np.argmin(np.abs(w - 20))]
    # stopband
    decades = [np.argmin(np.abs(w - 400.))]  # one decade
    # transition
    edges = [np.argmin(np.abs(w - 40.))]
    # put these where they belong based on filter type
    assert w[0] == 0.
    idx_0p1 = np.argmin(np.abs(w - 0.1))
    idx_1 = np.argmin(np.abs(w - 1.))
    if btype == 'bandpass':
        edges += [idx_1]
        decades += [idx_0p1]
    else:
        passes += [idx_0p1, idx_1]

    edge_val = 10 ** (dB_cutoff / 40.)
    assert_allclose(h[edges], edge_val, atol=0.01)
    assert_allclose(h[passes], 1., atol=pass_tol)
    if ftype == 'butter' and btype == 'lowpass':
        attenuation = dB_decade * order
        assert_allclose(h[decades], 10 ** (attenuation / 20.), rtol=0.01)
    elif ftype == 'ellip':
        assert_array_less(h[decades], 10 ** (-rs / 20))


@pytest.mark.parametrize('phase', ('zero', 'zero-double', 'minimum'))
@pytest.mark.parametrize('fir_window', ('hamming', 'blackman'))
@pytest.mark.parametrize('btype', ('lowpass', 'bandpass'))
def test_reporting_fir(phase, fir_window, btype):
    """Test FIR filter reporting."""
    l_freq = 1. if btype == 'bandpass' else None
    fs = 1000.
    with catch_logging() as log:
        x = create_filter(None, fs, l_freq, 40, method='fir',
                          phase=phase, fir_window=fir_window, verbose=True)
    n_taps = len(x)
    log = log.getvalue()
    keys = ['FIR',
            btype,
            fir_window.capitalize(),
            'Filter length: %d samples' % (n_taps,),
            'passband ripple',
            'stopband attenuation',
            ]
    if phase == 'minimum':
        keys += [' causal ']
    else:
        keys += [' non-causal ', ' dB cutoff frequency: 45.00 Hz']
        if btype == 'bandpass':
            keys += [' dB cutoff frequency: 0.50 Hz']
    for key in keys:
        assert key in log
    if phase == 'zero':
        assert '-6 dB cutoff' in log
    elif phase == 'zero-double':
        assert '-12 dB cutoff' in log
    else:
        # XXX Eventually we should figure out where the resulting point is,
        # since the minimum-phase process will change it. For now we don't
        # report it.
        assert phase == 'minimum'
    # Verify some of the filter properties
    if phase == 'zero-double':
        x = np.convolve(x, x)  # effectively what happens
    w, h = freqz(x, worN=10000)
    w *= fs / (2 * np.pi)
    h = np.abs(h)
    # passband
    passes = [np.argmin(np.abs(w - f)) for f in (1, 20, 40)]
    # stopband
    stops = [np.argmin(np.abs(w - 50.))]
    # transition
    mids = [np.argmin(np.abs(w - 45.))]
    # put these where they belong based on filter type
    assert w[0] == 0.
    idx_0 = 0
    idx_0p5 = np.argmin(np.abs(w - 0.5))
    if btype == 'bandpass':
        stops += [idx_0]
        mids += [idx_0p5]
    else:
        passes += [idx_0, idx_0p5]
    assert_allclose(h[passes], 1., atol=0.01)
    attenuation = -20 if phase == 'minimum' else -50
    assert_allclose(h[stops], 0., atol=10 ** (attenuation / 20.))
    if phase != 'minimum':  # haven't worked out the math for this yet
        expected = 0.25 if phase == 'zero-double' else 0.5
        assert_allclose(h[mids], expected, atol=0.01)


def test_filter_picks():
    """Test filter picking."""
    data = np.random.RandomState(0).randn(3, 1000)
    fs = 1000.
    kwargs = dict(l_freq=None, h_freq=40.)
    filt = filter_data(data, fs, **kwargs)
    # don't include seeg or stim in this list because they are in the one below
    # to ensure default cases are treated properly
    for kind in ('eeg', 'grad', 'emg', 'misc'):
        for picks in (None, [-2], kind, 'k'):
            # With always at least one data channel
            info = create_info(['s', 'k', 't'], fs, ['seeg', kind, 'stim'])
            raw = RawArray(data.copy(), info)
            raw.filter(picks=picks, **kwargs)
            if picks is None:
                if kind in _DATA_CH_TYPES_SPLIT:  # should be included
                    want = np.concatenate((filt[:2], data[2:]))
                else:  # shouldn't
                    want = np.concatenate((filt[:1], data[1:]))
            else:  # just the kind of interest ([-2], kind, 'j' should be eq.)
                want = np.concatenate((data[:1], filt[1:2], data[2:]))
            assert_allclose(raw.get_data(), want)

            # Now with sometimes no data channels
            info = create_info(['k', 't'], fs, [kind, 'stim'])
            raw = RawArray(data[1:].copy(), info.copy())
            if picks is None and kind not in _DATA_CH_TYPES_SPLIT:
                with pytest.raises(ValueError, match='yielded no channels'):
                    raw.filter(picks=picks, **kwargs)
            else:
                raw.filter(picks=picks, **kwargs)
                want = want[1:]
                assert_allclose(raw.get_data(), want)


run_tests_if_main()