File: test_rank.py

package info (click to toggle)
python-mne 0.19.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 100,440 kB
  • sloc: python: 120,243; pascal: 1,861; makefile: 225; sh: 15
file content (244 lines) | stat: -rw-r--r-- 10,091 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import os.path as op
import itertools as itt

from numpy.testing import assert_array_equal
import numpy as np

import pytest

from mne import (read_evokeds, read_cov, compute_raw_covariance, pick_types,
                 pick_info)
from mne.cov import prepare_noise_cov
from mne.datasets import testing
from mne.io import read_raw_fif
from mne.io.pick import channel_type, _picks_by_type
from mne.io.proj import _has_eeg_average_ref_proj
from mne.proj import compute_proj_raw
from mne.rank import (estimate_rank, compute_rank, _get_rank_sss,
                      _compute_rank_int, _estimate_rank_raw)


base_dir = op.join(op.dirname(__file__), '..', 'io', 'tests', 'data')
cov_fname = op.join(base_dir, 'test-cov.fif')
raw_fname = op.join(base_dir, 'test_raw.fif')
ave_fname = op.join(base_dir, 'test-ave.fif')
ctf_fname = op.join(base_dir, 'test_ctf_raw.fif')
hp_fif_fname = op.join(base_dir, 'test_chpi_raw_sss.fif')

testing_path = testing.data_path(download=False)
data_dir = op.join(testing_path, 'MEG', 'sample')
mf_fif_fname = op.join(testing_path, 'SSS', 'test_move_anon_raw_sss.fif')


def test_estimate_rank():
    """Test rank estimation."""
    data = np.eye(10)
    assert_array_equal(estimate_rank(data, return_singular=True)[1],
                       np.ones(10))
    data[0, 0] = 0
    assert estimate_rank(data) == 9
    pytest.raises(ValueError, estimate_rank, data, 'foo')


@pytest.mark.slowtest
@pytest.mark.parametrize(
    'fname, ref_meg', ((raw_fname, False),
                       (hp_fif_fname, False),
                       (ctf_fname, False),
                       (ctf_fname, True)))
@pytest.mark.parametrize(
    'scalings', ('norm', dict(mag=1e11, grad=1e9, eeg=1e5)))
def test_raw_rank_estimation(fname, ref_meg, scalings):
    """Test raw rank estimation."""
    if ref_meg and scalings != 'norm':
        # Adjust for CTF data (scale factors are quite different)
        scalings = dict(mag=1e31, grad=1e11)
    raw = read_raw_fif(fname)
    raw.crop(0, min(4., raw.times[-1])).load_data()
    out = _picks_by_type(raw.info, ref_meg=ref_meg, meg_combined=True)
    has_eeg = 'eeg' in raw
    if has_eeg:
        (_, picks_meg), (_, picks_eeg) = out
    else:
        (_, picks_meg), = out
        picks_eeg = []
    n_meg = len(picks_meg)
    n_eeg = len(picks_eeg)

    if len(raw.info['proc_history']) == 0:
        expected_rank = n_meg + n_eeg
    else:
        expected_rank = _get_rank_sss(raw.info) + n_eeg
    got_rank = _estimate_rank_raw(raw, scalings=scalings, with_ref_meg=ref_meg)
    assert got_rank == expected_rank
    if has_eeg:
        with pytest.deprecated_call():
            assert raw.estimate_rank(picks=picks_eeg,
                                     scalings=scalings) == n_eeg
    if 'sss' in fname:
        raw.add_proj(compute_proj_raw(raw))
    raw.apply_proj()
    n_proj = len(raw.info['projs'])
    want_rank = expected_rank - (0 if 'sss' in fname else n_proj)
    got_rank = _estimate_rank_raw(raw, scalings=scalings, with_ref_meg=ref_meg)
    assert got_rank == want_rank


@pytest.mark.slowtest
@pytest.mark.parametrize('meg', ('separate', 'combined'))
@pytest.mark.parametrize('rank_method, proj', [('info', True),
                                               ('info', False),
                                               (None, True),
                                               (None, False)])
def test_cov_rank_estimation(rank_method, proj, meg):
    """Test cov rank estimation."""
    # Test that our rank estimation works properly on a simple case
    evoked = read_evokeds(ave_fname, condition=0, baseline=(None, 0),
                          proj=False)
    cov = read_cov(cov_fname)
    ch_names = [ch for ch in evoked.info['ch_names'] if '053' not in ch and
                ch.startswith('EEG')]
    cov = prepare_noise_cov(cov, evoked.info, ch_names, None)
    assert cov['eig'][0] <= 1e-25  # avg projector should set this to zero
    assert (cov['eig'][1:] > 1e-16).all()  # all else should be > 0

    # Now do some more comprehensive tests
    raw_sample = read_raw_fif(raw_fname)
    assert not _has_eeg_average_ref_proj(raw_sample.info['projs'])

    raw_sss = read_raw_fif(hp_fif_fname)
    assert not _has_eeg_average_ref_proj(raw_sss.info['projs'])
    raw_sss.add_proj(compute_proj_raw(raw_sss, meg=meg))

    cov_sample = compute_raw_covariance(raw_sample)
    cov_sample_proj = compute_raw_covariance(raw_sample.copy().apply_proj())

    cov_sss = compute_raw_covariance(raw_sss)
    cov_sss_proj = compute_raw_covariance(raw_sss.copy().apply_proj())

    picks_all_sample = pick_types(raw_sample.info, meg=True, eeg=True)
    picks_all_sss = pick_types(raw_sss.info, meg=True, eeg=True)

    info_sample = pick_info(raw_sample.info, picks_all_sample)
    picks_stack_sample = [('eeg', pick_types(info_sample, meg=False,
                                             eeg=True))]
    picks_stack_sample += [('meg', pick_types(info_sample, meg=True))]
    picks_stack_sample += [('all',
                            pick_types(info_sample, meg=True, eeg=True))]

    info_sss = pick_info(raw_sss.info, picks_all_sss)
    picks_stack_somato = [('eeg', pick_types(info_sss, meg=False, eeg=True))]
    picks_stack_somato += [('meg', pick_types(info_sss, meg=True))]
    picks_stack_somato += [('all',
                            pick_types(info_sss, meg=True, eeg=True))]

    iter_tests = list(itt.product(
        [(cov_sample, picks_stack_sample, info_sample),
         (cov_sample_proj, picks_stack_sample, info_sample),
         (cov_sss, picks_stack_somato, info_sss),
         (cov_sss_proj, picks_stack_somato, info_sss)],  # sss
        [dict(mag=1e15, grad=1e13, eeg=1e6)],
    ))

    for (cov, picks_list, iter_info), scalings in iter_tests:
        rank = compute_rank(cov, rank_method, scalings, iter_info,
                            proj=proj)
        rank['all'] = sum(rank.values())
        for ch_type, picks in picks_list:

            this_info = pick_info(iter_info, picks)

            # compute subset of projs, active and inactive
            n_projs_applied = sum(proj['active'] and
                                  len(set(proj['data']['col_names']) &
                                      set(this_info['ch_names'])) > 0
                                  for proj in cov['projs'])
            n_projs_info = sum(len(set(proj['data']['col_names']) &
                                   set(this_info['ch_names'])) > 0
                               for proj in this_info['projs'])

            # count channel types
            ch_types = [channel_type(this_info, idx)
                        for idx in range(len(picks))]
            n_eeg, n_mag, n_grad = [ch_types.count(k) for k in
                                    ['eeg', 'mag', 'grad']]
            n_meg = n_mag + n_grad
            has_sss = (n_meg > 0 and len(this_info['proc_history']) > 0)
            if has_sss:
                n_meg = _get_rank_sss(this_info)

            expected_rank = n_meg + n_eeg
            if rank_method is None:
                if meg == 'combined' or not has_sss:
                    if proj:
                        expected_rank -= n_projs_info
                    else:
                        expected_rank -= n_projs_applied
            else:
                # XXX for now it just uses the total count
                assert rank_method == 'info'
                if proj:
                    expected_rank -= n_projs_info

            assert rank[ch_type] == expected_rank


@testing.requires_testing_data
@pytest.mark.parametrize('fname, rank_orig', ((hp_fif_fname, 120),
                                              (mf_fif_fname, 67)))
@pytest.mark.parametrize('n_proj, meg', ((0, 'combined'),
                                         (10, 'combined'),
                                         (10, 'separate')))
def test_maxfilter_get_rank(n_proj, fname, rank_orig, meg):
    """Test maxfilter rank lookup."""
    raw = read_raw_fif(fname).crop(0, 5).load_data().pick_types()
    assert raw.info['projs'] == []
    mf = raw.info['proc_history'][0]['max_info']
    assert mf['sss_info']['nfree'] == rank_orig
    assert _get_rank_sss(raw) == rank_orig
    mult = 1 + (meg == 'separate')
    rank = rank_orig - mult * n_proj
    if n_proj > 0:
        # Let's do some projection
        raw.add_proj(compute_proj_raw(raw, n_mag=n_proj, n_grad=n_proj,
                                      meg=meg, verbose=True))
    raw.apply_proj()
    data_orig = raw[:][0]

    # degenerate cases
    with pytest.raises(ValueError, match='tol must be'):
        _estimate_rank_raw(raw, tol='foo')
    with pytest.raises(TypeError, match='must be a string or a number'):
        _estimate_rank_raw(raw, tol=None)

    allowed_rank = [rank_orig if meg == 'separate' else rank]
    if fname == mf_fif_fname:
        # Here we permit a -1 because for mf_fif_fname we miss by 1, which is
        # probably acceptable. If we use the entire duration instead of 5 sec
        # this problem goes away, but the test is much slower.
        allowed_rank.append(allowed_rank[0] - 1)

    # multiple ways of hopefully getting the same thing
    # default tol=1e-4, scalings='norm'
    rank_new = _estimate_rank_raw(raw)
    assert rank_new in allowed_rank

    tol = 'float32'  # temporary option until we can fix things
    rank_new = _estimate_rank_raw(raw, tol=tol)
    assert rank_new in allowed_rank
    rank_new = _estimate_rank_raw(raw, scalings=dict(), tol=tol)
    assert rank_new in allowed_rank
    scalings = dict(grad=1e13, mag=1e15)
    rank_new = _compute_rank_int(raw, None, scalings=scalings, tol=tol,
                                 verbose='debug')
    assert rank_new in allowed_rank
    # XXX default scalings mis-estimate sometimes :(
    if fname == hp_fif_fname:
        allowed_rank.append(allowed_rank[0] - 2)
    rank_new = _compute_rank_int(raw, None, tol=tol, verbose='debug')
    assert rank_new in allowed_rank
    del allowed_rank

    rank_new = _compute_rank_int(raw, 'info')
    assert rank_new == rank
    assert_array_equal(raw[:][0], data_orig)