1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
|
import numpy as np
import os.path as op
from numpy.testing import assert_array_almost_equal, assert_allclose
from scipy.signal import welch
import pytest
from mne import pick_types, Epochs, read_events
from mne.io import RawArray, read_raw_fif
from mne.utils import run_tests_if_main, requires_version
from mne.time_frequency import psd_welch, psd_multitaper, psd_array_welch
base_dir = op.join(op.dirname(__file__), '..', '..', 'io', 'tests', 'data')
raw_fname = op.join(base_dir, 'test_raw.fif')
event_fname = op.join(base_dir, 'test-eve.fif')
def test_psd_nan():
"""Test handling of NaN in psd_array_welch."""
n_samples, n_fft, n_overlap = 2048, 1024, 512
x = np.random.RandomState(0).randn(1, n_samples)
psds, freqs = psd_array_welch(
x[:n_fft + n_overlap], float(n_fft), n_fft=n_fft, n_overlap=n_overlap)
x[n_fft + n_overlap:] = np.nan # what Raw.get_data() will give us
psds_2, freqs_2 = psd_array_welch(
x, float(n_fft), n_fft=n_fft, n_overlap=n_overlap)
assert_allclose(freqs, freqs_2)
assert_allclose(psds, psds_2)
# 1-d
psds_2, freqs_2 = psd_array_welch(
x[0], float(n_fft), n_fft=n_fft, n_overlap=n_overlap)
assert_allclose(freqs, freqs_2)
assert_allclose(psds[0], psds_2)
def test_psd():
"""Tests the welch and multitaper PSD."""
raw = read_raw_fif(raw_fname)
picks_psd = [0, 1]
# Populate raw with sinusoids
rng = np.random.RandomState(40)
data = 0.1 * rng.randn(len(raw.ch_names), raw.n_times)
freqs_sig = [8., 50.]
for ix, freq in zip(picks_psd, freqs_sig):
data[ix, :] += 2 * np.sin(np.pi * 2. * freq * raw.times)
first_samp = raw._first_samps[0]
raw = RawArray(data, raw.info)
tmin, tmax = 0, 20 # use a few seconds of data
fmin, fmax = 2, 70 # look at frequencies between 2 and 70Hz
n_fft = 128
# -- Raw --
kws_psd = dict(tmin=tmin, tmax=tmax, fmin=fmin, fmax=fmax,
picks=picks_psd) # Common to all
kws_welch = dict(n_fft=n_fft)
kws_mt = dict(low_bias=True)
funcs = [(psd_welch, kws_welch),
(psd_multitaper, kws_mt)]
for func, kws in funcs:
kws = kws.copy()
kws.update(kws_psd)
psds, freqs = func(raw, proj=False, **kws)
psds_proj, freqs_proj = func(raw, proj=True, **kws)
assert psds.shape == (len(kws['picks']), len(freqs))
assert np.sum(freqs < 0) == 0
assert np.sum(psds < 0) == 0
# Is power found where it should be
ixs_max = np.argmax(psds, axis=1)
for ixmax, ifreq in zip(ixs_max, freqs_sig):
# Find nearest frequency to the "true" freq
ixtrue = np.argmin(np.abs(ifreq - freqs))
assert (np.abs(ixmax - ixtrue) < 2)
# Make sure the projection doesn't change channels it shouldn't
assert_array_almost_equal(psds, psds_proj)
# Array input shouldn't work
pytest.raises(ValueError, func, raw[:3, :20][0])
# test n_per_seg in psd_welch (and padding)
psds1, freqs1 = psd_welch(raw, proj=False, n_fft=128, n_per_seg=128,
**kws_psd)
psds2, freqs2 = psd_welch(raw, proj=False, n_fft=256, n_per_seg=128,
**kws_psd)
assert (len(freqs1) == np.floor(len(freqs2) / 2.))
assert (psds1.shape[-1] == np.floor(psds2.shape[-1] / 2.))
# tests ValueError when n_per_seg=None and n_fft > signal length
kws_psd.update(dict(n_fft=tmax * 1.1 * raw.info['sfreq']))
pytest.raises(ValueError, psd_welch, raw, proj=False, n_per_seg=None,
**kws_psd)
# ValueError when n_overlap > n_per_seg
kws_psd.update(dict(n_fft=128, n_per_seg=64, n_overlap=90))
pytest.raises(ValueError, psd_welch, raw, proj=False, **kws_psd)
# -- Epochs/Evoked --
events = read_events(event_fname)
events[:, 0] -= first_samp
tmin, tmax, event_id = -0.5, 0.5, 1
epochs = Epochs(raw, events[:10], event_id, tmin, tmax, picks=picks_psd,
proj=False, preload=True, baseline=None)
evoked = epochs.average()
tmin_full, tmax_full = -1, 1
epochs_full = Epochs(raw, events[:10], event_id, tmin_full, tmax_full,
picks=picks_psd, proj=False, preload=True,
baseline=None)
kws_psd = dict(tmin=tmin, tmax=tmax, fmin=fmin, fmax=fmax,
picks=picks_psd) # Common to all
funcs = [(psd_welch, kws_welch),
(psd_multitaper, kws_mt)]
for func, kws in funcs:
kws = kws.copy()
kws.update(kws_psd)
psds, freqs = func(
epochs[:1], proj=False, **kws)
psds_proj, freqs_proj = func(
epochs[:1], proj=True, **kws)
psds_f, freqs_f = func(
epochs_full[:1], proj=False, **kws)
# this one will fail if you add for example 0.1 to tmin
assert_array_almost_equal(psds, psds_f, 27)
# Make sure the projection doesn't change channels it shouldn't
assert_array_almost_equal(psds, psds_proj, 27)
# Is power found where it should be
ixs_max = np.argmax(psds.mean(0), axis=1)
for ixmax, ifreq in zip(ixs_max, freqs_sig):
# Find nearest frequency to the "true" freq
ixtrue = np.argmin(np.abs(ifreq - freqs))
assert (np.abs(ixmax - ixtrue) < 2)
assert (psds.shape == (1, len(kws['picks']), len(freqs)))
assert (np.sum(freqs < 0) == 0)
assert (np.sum(psds < 0) == 0)
# Array input shouldn't work
pytest.raises(ValueError, func, epochs.get_data())
# Testing evoked (doesn't work w/ compute_epochs_psd)
psds_ev, freqs_ev = func(
evoked, proj=False, **kws)
psds_ev_proj, freqs_ev_proj = func(
evoked, proj=True, **kws)
# Is power found where it should be
ixs_max = np.argmax(psds_ev, axis=1)
for ixmax, ifreq in zip(ixs_max, freqs_sig):
# Find nearest frequency to the "true" freq
ixtrue = np.argmin(np.abs(ifreq - freqs_ev))
assert (np.abs(ixmax - ixtrue) < 2)
# Make sure the projection doesn't change channels it shouldn't
assert_array_almost_equal(psds_ev, psds_ev_proj, 27)
assert (psds_ev.shape == (len(kws['picks']), len(freqs)))
@requires_version('scipy', '1.2.0')
@pytest.mark.parametrize('kind', ('raw', 'epochs', 'evoked'))
def test_psd_welch_average_kwarg(kind):
"""Test `average` kwarg of psd_welch()."""
raw = read_raw_fif(raw_fname)
picks_psd = [0, 1]
# Populate raw with sinusoids
rng = np.random.RandomState(40)
data = 0.1 * rng.randn(len(raw.ch_names), raw.n_times)
freqs_sig = [8., 50.]
for ix, freq in zip(picks_psd, freqs_sig):
data[ix, :] += 2 * np.sin(np.pi * 2. * freq * raw.times)
first_samp = raw._first_samps[0]
raw = RawArray(data, raw.info)
tmin, tmax = -0.5, 0.5
fmin, fmax = 0, np.inf
n_fft = 256
n_per_seg = 128
n_overlap = 0
event_id = 2
events = read_events(event_fname)
events[:, 0] -= first_samp
kws = dict(fmin=fmin, fmax=fmax, tmin=tmin, tmax=tmax, n_fft=n_fft,
n_per_seg=n_per_seg, n_overlap=n_overlap, picks=picks_psd)
if kind == 'raw':
inst = raw
elif kind == 'epochs':
inst = Epochs(raw, events[:10], event_id, tmin, tmax, picks=picks_psd,
proj=False, preload=True, baseline=None)
elif kind == 'evoked':
inst = Epochs(raw, events[:10], event_id, tmin, tmax, picks=picks_psd,
proj=False, preload=True, baseline=None).average()
else:
raise ValueError('Unknown parametrization passed to test, check test '
'for typos.')
psds_mean, freqs_mean = psd_welch(inst=inst, average='mean', **kws)
psds_median, freqs_median = psd_welch(inst=inst, average='median', **kws)
psds_unagg, freqs_unagg = psd_welch(inst=inst, average=None, **kws)
# Frequencies should be equal across all "average" types, as we feed in
# the exact same data.
assert_allclose(freqs_mean, freqs_median)
assert_allclose(freqs_mean, freqs_unagg)
# For `average=None`, the last dimension contains the un-aggregated
# segments.
assert psds_mean.shape == psds_median.shape
assert psds_mean.shape == psds_unagg.shape[:-1]
assert_allclose(psds_mean, psds_unagg.mean(axis=-1))
# SciPy's welch() function corrects the median PSD for its bias relative to
# the mean.
from scipy.signal.spectral import _median_bias
median_bias = _median_bias(psds_unagg.shape[-1])
assert_allclose(psds_median, np.median(psds_unagg, axis=-1) / median_bias)
@pytest.mark.slowtest
def test_compares_psd():
"""Test PSD estimation on raw for plt.psd and scipy.signal.welch."""
raw = read_raw_fif(raw_fname)
exclude = raw.info['bads'] + ['MEG 2443', 'EEG 053'] # bads + 2 more
# picks MEG gradiometers
picks = pick_types(raw.info, meg='grad', eeg=False, stim=False,
exclude=exclude)[:2]
tmin, tmax = 0, 10 # use the first 60s of data
fmin, fmax = 2, 70 # look at frequencies between 5 and 70Hz
n_fft = 2048
# Compute psds with the new implementation using Welch
psds_welch, freqs_welch = psd_welch(raw, tmin=tmin, tmax=tmax, fmin=fmin,
fmax=fmax, proj=False, picks=picks,
n_fft=n_fft, n_jobs=1)
# Compute psds with plt.psd
start, stop = raw.time_as_index([tmin, tmax])
data, times = raw[picks, start:(stop + 1)]
out = [welch(d, fs=raw.info['sfreq'], nperseg=n_fft, noverlap=0)
for d in data]
freqs_mpl = out[0][0]
psds_mpl = np.array([o[1] for o in out])
mask = (freqs_mpl >= fmin) & (freqs_mpl <= fmax)
freqs_mpl = freqs_mpl[mask]
psds_mpl = psds_mpl[:, mask]
assert_array_almost_equal(psds_welch, psds_mpl)
assert_array_almost_equal(freqs_welch, freqs_mpl)
assert (psds_welch.shape == (len(picks), len(freqs_welch)))
assert (psds_mpl.shape == (len(picks), len(freqs_mpl)))
assert (np.sum(freqs_welch < 0) == 0)
assert (np.sum(freqs_mpl < 0) == 0)
assert (np.sum(psds_welch < 0) == 0)
assert (np.sum(psds_mpl < 0) == 0)
run_tests_if_main()
|