File: docs.py

package info (click to toggle)
python-mne 0.19.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 100,440 kB
  • sloc: python: 120,243; pascal: 1,861; makefile: 225; sh: 15
file content (852 lines) | stat: -rw-r--r-- 29,071 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
# -*- coding: utf-8 -*-
"""The documentation functions."""
# Authors: Eric Larson <larson.eric.d@gmail.com>
#
# License: BSD (3-clause)

import inspect
import os
import os.path as op
import sys
import warnings
import webbrowser

from .config import get_config
from ..externals.doccer import filldoc, unindent_dict
from .check import _check_option


##############################################################################
# Define our standard documentation entries

docdict = dict()

# Verbose
docdict['verbose'] = """
verbose : bool, str, int, or None
    If not None, override default verbose level (see :func:`mne.verbose`
    and :ref:`Logging documentation <tut_logging>` for more)."""
docdict['verbose_meth'] = (docdict['verbose'] + ' Defaults to self.verbose.')

# Preload
docdict['preload'] = """
preload : bool or str (default False)
    Preload data into memory for data manipulation and faster indexing.
    If True, the data will be preloaded into memory (fast, requires
    large amount of memory). If preload is a string, preload is the
    file name of a memory-mapped file which is used to store the data
    on the hard drive (slower, requires less memory)."""

# Cropping
docdict['include_tmax'] = """
include_tmax : bool
    If True (default), include tmax. If False, exclude tmax (similar to how
    Python indexing typically works).

    .. versionadded:: 0.19
"""

# General plotting
docdict["show"] = """
show : bool
    Show figure if True."""

# Picks
docdict['picks_header'] = 'picks : str | list | slice | None'
docdict['picks_base'] = docdict['picks_header'] + """
    Channels to include. Slices and lists of integers will be
    interpreted as channel indices. In lists, channel *type* strings
    (e.g., ``['meg', 'eeg']``) will pick channels of those
    types, channel *name* strings (e.g., ``['MEG0111', 'MEG2623']``
    will pick the given channels. Can also be the string values
    "all" to pick all channels, or "data" to pick data channels.
    None (default) will pick """
docdict['picks_all'] = docdict['picks_base'] + 'all channels.\n'
docdict['picks_all_data'] = docdict['picks_base'] + 'all data channels.\n'
docdict['picks_all_data_noref'] = (docdict['picks_all_data'][:-2] +
                                   '(excluding reference MEG channels).\n')
docdict['picks_good_data'] = docdict['picks_base'] + 'good data channels.\n'
docdict['picks_good_data_noref'] = (docdict['picks_good_data'][:-2] +
                                    '(excluding reference MEG channels).\n')
docdict['picks_nostr'] = """
picks : list | slice | None
    Channels to include. Slices and lists of integers will be
    interpreted as channel indices. None (default) will pick all channels.
"""

# Filtering
docdict['l_freq'] = """
l_freq : float | None
    For FIR filters, the lower pass-band edge; for IIR filters, the upper
    cutoff frequency. If None the data are only low-passed.
"""
docdict['h_freq'] = """
h_freq : float | None
    For FIR filters, the upper pass-band edge; for IIR filters, the upper
    cutoff frequency. If None the data are only low-passed.
"""
docdict['filter_length'] = """
filter_length : str | int
    Length of the FIR filter to use (if applicable):

    * **'auto' (default)**: The filter length is chosen based
      on the size of the transition regions (6.6 times the reciprocal
      of the shortest transition band for fir_window='hamming'
      and fir_design="firwin2", and half that for "firwin").
    * **str**: A human-readable time in
      units of "s" or "ms" (e.g., "10s" or "5500ms") will be
      converted to that number of samples if ``phase="zero"``, or
      the shortest power-of-two length at least that duration for
      ``phase="zero-double"``.
    * **int**: Specified length in samples. For fir_design="firwin",
      this should not be used.

"""
docdict['l_trans_bandwidth'] = """
l_trans_bandwidth : float | str
    Width of the transition band at the low cut-off frequency in Hz
    (high pass or cutoff 1 in bandpass). Can be "auto"
    (default) to use a multiple of ``l_freq``::

        min(max(l_freq * 0.25, 2), l_freq)

    Only used for ``method='fir'``.
"""
docdict['h_trans_bandwidth'] = """
h_trans_bandwidth : float | str
    Width of the transition band at the high cut-off frequency in Hz
    (low pass or cutoff 2 in bandpass). Can be "auto"
    (default in 0.14) to use a multiple of ``h_freq``::

        min(max(h_freq * 0.25, 2.), info['sfreq'] / 2. - h_freq)

    Only used for ``method='fir'``.
"""
docdict['phase'] = """
phase : str
    Phase of the filter, only used if ``method='fir'``.
    Symmetric linear-phase FIR filters are constructed, and if ``phase='zero'``
    (default), the delay of this filter is compensated for, making it
    non-causal. If ``phase=='zero-double'``,
    then this filter is applied twice, once forward, and once backward
    (also making it non-causal). If 'minimum', then a minimum-phase filter will
    be constricted and applied, which is causal but has weaker stop-band
    suppression.

    .. versionadded:: 0.13
"""
docdict['fir_design'] = """
fir_design : str
    Can be "firwin" (default) to use :func:`scipy.signal.firwin`,
    or "firwin2" to use :func:`scipy.signal.firwin2`. "firwin" uses
    a time-domain design technique that generally gives improved
    attenuation using fewer samples than "firwin2".

    .. versionadded:: 0.15
"""
docdict['fir_window'] = """
fir_window : str
    The window to use in FIR design, can be "hamming" (default),
    "hann" (default in 0.13), or "blackman".

    .. versionadded:: 0.15
"""
docdict['pad-fir'] = """
pad : str
    The type of padding to use. Supports all :func:`numpy.pad` ``mode``
    options. Can also be "reflect_limited", which pads with a
    reflected version of each vector mirrored on the first and last
    values of the vector, followed by zeros. Only used for ``method='fir'``.
"""
docdict['method-fir'] = """
method : str
    'fir' will use overlap-add FIR filtering, 'iir' will use IIR
    forward-backward filtering (via filtfilt).
"""
docdict['n_jobs-fir'] = """
n_jobs : int | str
    Number of jobs to run in parallel. Can be 'cuda' if ``cupy``
    is installed properly and method='fir'.
"""
docdict['n_jobs-cuda'] = """
n_jobs : int | str
    Number of jobs to run in parallel. Can be 'cuda' if ``cupy``
    is installed properly.
"""
docdict['iir_params'] = """
iir_params : dict | None
    Dictionary of parameters to use for IIR filtering.
    If iir_params is None and method="iir", 4th order Butterworth will be used.
    For more information, see :func:`mne.filter.construct_iir_filter`.
"""
docdict['npad'] = """
npad : int | str
    Amount to pad the start and end of the data.
    Can also be "auto" to use a padding that will result in
    a power-of-two size (can be much faster).
"""
docdict['window-resample'] = """
window : str | tuple
    Frequency-domain window to use in resampling.
    See :func:`scipy.signal.resample`.
"""

# Rank
docdict['rank'] = """
rank : None | dict | 'info' | 'full'
    This controls the rank computation that can be read from the
    measurement info or estimated from the data. See ``Notes``
    of :func:`mne.compute_rank` for details."""
docdict['rank_None'] = docdict['rank'] + 'The default is None.'
docdict['rank_info'] = docdict['rank'] + 'The default is "info".'

# Inverses
docdict['depth'] = """
depth : None | float | dict
    How to weight (or normalize) the forward using a depth prior.
    If float (default 0.8), it acts as the depth weighting exponent (``exp``)
    to use, which must be between 0 and 1. None is equivalent to 0, meaning
    no depth weighting is performed. It can also be a `dict` containing
    keyword arguments to pass to :func:`mne.forward.compute_depth_prior`
    (see docstring for details and defaults).
"""

# Forward
docdict['on_missing'] = """
on_missing : str
    Behavior when ``stc`` has vertices that are not in ``fwd``.
    Can be "ignore", "warn"", or "raise"."""
docdict['dig_kinds'] = """
dig_kinds : list of str | str
    Kind of digitization points to use in the fitting. These can be any
    combination of ('cardinal', 'hpi', 'eeg', 'extra'). Can also
    be 'auto' (default), which will use only the 'extra' points if
    enough (more than 10) are available, and if not, uses 'extra' and
    'eeg' points.
"""
docdict['exclude_frontal'] = """
exclude_frontal : bool
    If True, exclude points that have both negative Z values
    (below the nasion) and positivy Y values (in front of the LPA/RPA).
"""
docdict['trans'] = """
trans : str | dict | instance of Transform | None
    If str, the path to the head<->MRI transform ``*-trans.fif`` file produced
    during coregistration. Can also be ``'fsaverage'`` to use the built-in
    fsaverage transformation. If trans is None, an identity matrix is assumed.

    .. versionchanged:: 0.19
       Support for 'fsaverage' argument.
"""


# Simulation
docdict['interp'] = """
interp : str
    Either 'hann', 'cos2' (default), 'linear', or 'zero', the type of
    forward-solution interpolation to use between forward solutions
    at different head positions.
"""
docdict['head_pos'] = """
head_pos : None | str | dict | tuple | array
    Name of the position estimates file. Should be in the format of
    the files produced by MaxFilter. If dict, keys should
    be the time points and entries should be 4x4 ``dev_head_t``
    matrices. If None, the original head position (from
    ``info['dev_head_t']``) will be used. If tuple, should have the
    same format as data returned by `head_pos_to_trans_rot_t`.
    If array, should be of the form returned by
    :func:`mne.chpi.read_head_pos`.
"""
docdict['n_jobs'] = """
n_jobs : int
    The number of jobs to run in parallel (default 1).
    Requires the joblib package.
"""

# Random state
docdict['random_state'] = """
random_state : None | int | instance of ~numpy.random.RandomState
    If ``random_state`` is an :class:`int`, it will be used as a seed for
    :class:`~numpy.random.RandomState`. If ``None``, the seed will be
    obtained from the operating system (see
    :class:`~numpy.random.RandomState` for details). Default is
    ``None``.
"""

docdict['seed'] = """
seed : None | int | instance of ~numpy.random.RandomState
    If ``seed`` is an :class:`int`, it will be used as a seed for
    :class:`~numpy.random.RandomState`. If ``None``, the seed will be
    obtained from the operating system (see
    :class:`~numpy.random.RandomState` for details). Default is
    ``None``.
"""

# Visualization
docdict['combine'] = """
combine : None | str | callable
    How to combine information across channels. If a :class:`str`, must be
    one of 'mean', 'median', 'std' (standard deviation) or 'gfp' (global
    field power).
"""

docdict['show_scrollbars'] = """
show_scrollbars : bool
    Whether to show scrollbars when the plot is initialized. Can be toggled
    after initialization by pressing :kbd:`z` ("zen mode") while the plot
    window is focused. Default is ``True``.

    .. versionadded:: 0.19.0
"""

# PSD plotting
docdict["plot_psd_doc"] = """
Plot the power spectral density across channels.

Different channel types are drawn in sub-plots. When the data have been
processed with a bandpass, lowpass or highpass filter, dashed lines
indicate the boundaries of the filter (--). The line noise frequency is
also indicated with a dashed line (-.)
"""
docdict['plot_psd_picks_good_data'] = docdict['picks_good_data'][:-2] + """
    Cannot be None if `ax` is supplied.If both `picks` and `ax` are None
    separate subplots will be created for each standard channel type
    (`mag`, `grad`, and `eeg`).
"""
docdict["plot_psd_color"] = """
color : str | tuple
    A matplotlib-compatible color to use. Has no effect when
    spatial_colors=True.
"""
docdict["plot_psd_xscale"] = """
xscale : str
    Can be 'linear' (default) or 'log'.
"""
docdict["plot_psd_area_mode"] = """
area_mode : str | None
    Mode for plotting area. If 'std', the mean +/- 1 STD (across channels)
    will be plotted. If 'range', the min and max (across channels) will be
    plotted. Bad channels will be excluded from these calculations.
    If None, no area will be plotted. If average=False, no area is plotted.
"""
docdict["plot_psd_area_alpha"] = """
area_alpha : float
    Alpha for the area.
"""
docdict["plot_psd_dB"] = """
dB : bool
    Plot Power Spectral Density (PSD), in units (amplitude**2/Hz (dB)) if
    ``dB=True``, and ``estimate='power'`` or ``estimate='auto'``. Plot PSD
    in units (amplitude**2/Hz) if ``dB=False`` and,
    ``estimate='power'``. Plot Amplitude Spectral Density (ASD), in units
    (amplitude/sqrt(Hz)), if ``dB=False`` and ``estimate='amplitude'`` or
    ``estimate='auto'``. Plot ASD, in units (amplitude/sqrt(Hz) (db)), if
    ``dB=True`` and ``estimate='amplitude'``.
"""
docdict["plot_psd_estimate"] = """
estimate : str, {'auto', 'power', 'amplitude'}
    Can be "power" for power spectral density (PSD), "amplitude" for
    amplitude spectrum density (ASD), or "auto" (default), which uses
    "power" when dB is True and "amplitude" otherwise.
"""
docdict["plot_psd_average"] = """
average : bool
    If False, the PSDs of all channels is displayed. No averaging
    is done and parameters area_mode and area_alpha are ignored. When
    False, it is possible to paint an area (hold left mouse button and
    drag) to plot a topomap.
"""
docdict["plot_psd_line_alpha"] = """
line_alpha : float | None
    Alpha for the PSD line. Can be None (default) to use 1.0 when
    ``average=True`` and 0.1 when ``average=False``.
"""
docdict["plot_psd_spatial_colors"] = """
spatial_colors : bool
    Whether to use spatial colors. Only used when ``average=False``.
"""

# Montage
docdict["montage_deprecated"] = """
montage : str | None
    Path or instance of montage containing electrode positions.
    If None, sensor locations are (0,0,0).

    DEPRECATED in version 0.19
    Use the `set_montage` method.
"""
docdict["montage"] = """
montage : None | str | DigMontage
    A montage containing channel positions. If str or DigMontage is
    specified, the channel info will be updated with the channel
    positions. Default is None. See also the documentation of
    :class:`mne.channels.DigMontage` for more information.
"""

# Brain plotting
docdict["clim"] = """
clim : str | dict
    Colorbar properties specification. If 'auto', set clim automatically
    based on data percentiles. If dict, should contain:

        ``kind`` : 'value' | 'percent'
            Flag to specify type of limits.
        ``lims`` : list | np.ndarray | tuple of float, 3 elements
            Lower, middle, and upper bounds for colormap.
        ``pos_lims`` : list | np.ndarray | tuple of float, 3 elements
            Lower, middle, and upper bound for colormap. Positive values
            will be mirrored directly across zero during colormap
            construction to obtain negative control points.

    .. note:: Only one of ``lims`` or ``pos_lims`` should be provided.
              Only sequential colormaps should be used with ``lims``, and
              only divergent colormaps should be used with ``pos_lims``.
"""
docdict["clim_onesided"] = """
clim : str | dict
    Colorbar properties specification. If 'auto', set clim automatically
    based on data percentiles. If dict, should contain:

        ``kind`` : 'value' | 'percent'
            Flag to specify type of limits.
        ``lims`` : list | np.ndarray | tuple of float, 3 elements
            Lower, middle, and upper bound for colormap.

    Unlike :meth:`stc.plot <mne.SourceEstimate.plot>`, it cannot use
    ``pos_lims``, as the surface plot must show the magnitude.
"""
docdict["colormap"] = """
colormap : str | np.ndarray of float, shape(n_colors, 3 | 4)
    Name of colormap to use or a custom look up table. If array, must
    be (n x 3) or (n x 4) array for with RGB or RGBA values between
    0 and 255.
"""
docdict["transparent"] = """
transparent : bool | None
    If True, use a linear transparency between fmin and fmid.
    None will choose automatically based on colormap type.
"""

# Finalize
docdict = unindent_dict(docdict)
fill_doc = filldoc(docdict, unindent_params=False)


##############################################################################
# Utilities for docstring manipulation.

def copy_doc(source):
    """Copy the docstring from another function (decorator).

    The docstring of the source function is prepepended to the docstring of the
    function wrapped by this decorator.

    This is useful when inheriting from a class and overloading a method. This
    decorator can be used to copy the docstring of the original method.

    Parameters
    ----------
    source : function
        Function to copy the docstring from

    Returns
    -------
    wrapper : function
        The decorated function

    Examples
    --------
    >>> class A:
    ...     def m1():
    ...         '''Docstring for m1'''
    ...         pass
    >>> class B (A):
    ...     @copy_doc(A.m1)
    ...     def m1():
    ...         ''' this gets appended'''
    ...         pass
    >>> print(B.m1.__doc__)
    Docstring for m1 this gets appended
    """
    def wrapper(func):
        if source.__doc__ is None or len(source.__doc__) == 0:
            raise ValueError('Cannot copy docstring: docstring was empty.')
        doc = source.__doc__
        if func.__doc__ is not None:
            doc += func.__doc__
        func.__doc__ = doc
        return func
    return wrapper


def copy_function_doc_to_method_doc(source):
    """Use the docstring from a function as docstring for a method.

    The docstring of the source function is prepepended to the docstring of the
    function wrapped by this decorator. Additionally, the first parameter
    specified in the docstring of the source function is removed in the new
    docstring.

    This decorator is useful when implementing a method that just calls a
    function.  This pattern is prevalent in for example the plotting functions
    of MNE.

    Parameters
    ----------
    source : function
        Function to copy the docstring from

    Returns
    -------
    wrapper : function
        The decorated method

    Examples
    --------
    >>> def plot_function(object, a, b):
    ...     '''Docstring for plotting function.
    ...
    ...     Parameters
    ...     ----------
    ...     object : instance of object
    ...         The object to plot
    ...     a : int
    ...         Some parameter
    ...     b : int
    ...         Some parameter
    ...     '''
    ...     pass
    ...
    >>> class A:
    ...     @copy_function_doc_to_method_doc(plot_function)
    ...     def plot(self, a, b):
    ...         '''
    ...         Notes
    ...         -----
    ...         .. versionadded:: 0.13.0
    ...         '''
    ...         plot_function(self, a, b)
    >>> print(A.plot.__doc__)
    Docstring for plotting function.
    <BLANKLINE>
        Parameters
        ----------
        a : int
            Some parameter
        b : int
            Some parameter
    <BLANKLINE>
            Notes
            -----
            .. versionadded:: 0.13.0
    <BLANKLINE>

    Notes
    -----
    The parsing performed is very basic and will break easily on docstrings
    that are not formatted exactly according to the ``numpydoc`` standard.
    Always inspect the resulting docstring when using this decorator.
    """
    def wrapper(func):
        doc = source.__doc__.split('\n')
        if len(doc) == 1:
            doc = doc[0]
            if func.__doc__ is not None:
                doc += func.__doc__
            func.__doc__ = doc
            return func

        # Find parameter block
        for line, text in enumerate(doc[:-2]):
            if (text.strip() == 'Parameters' and
                    doc[line + 1].strip() == '----------'):
                parameter_block = line
                break
        else:
            # No parameter block found
            raise ValueError('Cannot copy function docstring: no parameter '
                             'block found. To simply copy the docstring, use '
                             'the @copy_doc decorator instead.')

        # Find first parameter
        for line, text in enumerate(doc[parameter_block:], parameter_block):
            if ':' in text:
                first_parameter = line
                parameter_indentation = len(text) - len(text.lstrip(' '))
                break
        else:
            raise ValueError('Cannot copy function docstring: no parameters '
                             'found. To simply copy the docstring, use the '
                             '@copy_doc decorator instead.')

        # Find end of first parameter
        for line, text in enumerate(doc[first_parameter + 1:],
                                    first_parameter + 1):
            # Ignore empty lines
            if len(text.strip()) == 0:
                continue

            line_indentation = len(text) - len(text.lstrip(' '))
            if line_indentation <= parameter_indentation:
                # Reach end of first parameter
                first_parameter_end = line

                # Of only one parameter is defined, remove the Parameters
                # heading as well
                if ':' not in text:
                    first_parameter = parameter_block

                break
        else:
            # End of docstring reached
            first_parameter_end = line
            first_parameter = parameter_block

        # Copy the docstring, but remove the first parameter
        doc = ('\n'.join(doc[:first_parameter]) + '\n' +
               '\n'.join(doc[first_parameter_end:]))
        if func.__doc__ is not None:
            doc += func.__doc__
        func.__doc__ = doc
        return func
    return wrapper


def copy_base_doc_to_subclass_doc(subclass):
    """Use the docstring from a parent class methods in derived class.

    The docstring of a parent class method is prepended to the
    docstring of the method of the class wrapped by this decorator.

    Parameters
    ----------
    subclass : wrapped class
        Class to copy the docstring to.

    Returns
    -------
    subclass : Derived class
        The decorated class with copied docstrings.
    """
    ancestors = subclass.mro()[1:-1]

    for source in ancestors:
        methodList = [method for method in dir(source)
                      if callable(getattr(source, method))]
        for method_name in methodList:
            # discard private methods
            if method_name[0] == '_':
                continue
            base_method = getattr(source, method_name)
            sub_method = getattr(subclass, method_name)
            if base_method is not None and sub_method is not None:
                doc = base_method.__doc__
                if sub_method.__doc__ is not None:
                    doc += '\n' + sub_method.__doc__
                sub_method.__doc__ = doc

    return subclass


def linkcode_resolve(domain, info):
    """Determine the URL corresponding to a Python object.

    Parameters
    ----------
    domain : str
        Only useful when 'py'.
    info : dict
        With keys "module" and "fullname".

    Returns
    -------
    url : str
        The code URL.

    Notes
    -----
    This has been adapted to deal with our "verbose" decorator.

    Adapted from SciPy (doc/source/conf.py).
    """
    import mne
    if domain != 'py':
        return None

    modname = info['module']
    fullname = info['fullname']

    submod = sys.modules.get(modname)
    if submod is None:
        return None

    obj = submod
    for part in fullname.split('.'):
        try:
            obj = getattr(obj, part)
        except Exception:
            return None
    # deal with our decorators properly
    while hasattr(obj, '__wrapped__'):
        obj = obj.__wrapped__

    try:
        fn = inspect.getsourcefile(obj)
    except Exception:
        fn = None
    if not fn:
        try:
            fn = inspect.getsourcefile(sys.modules[obj.__module__])
        except Exception:
            fn = None
    if not fn:
        return None
    fn = op.relpath(fn, start=op.dirname(mne.__file__))
    fn = '/'.join(op.normpath(fn).split(os.sep))  # in case on Windows

    try:
        source, lineno = inspect.getsourcelines(obj)
    except Exception:
        lineno = None

    if lineno:
        linespec = "#L%d-L%d" % (lineno, lineno + len(source) - 1)
    else:
        linespec = ""

    if 'dev' in mne.__version__:
        kind = 'master'
    else:
        kind = 'maint/%s' % ('.'.join(mne.__version__.split('.')[:2]))
    return "http://github.com/mne-tools/mne-python/blob/%s/mne/%s%s" % (  # noqa
       kind, fn, linespec)


def open_docs(kind=None, version=None):
    """Launch a new web browser tab with the MNE documentation.

    Parameters
    ----------
    kind : str | None
        Can be "api" (default), "tutorials", or "examples".
        The default can be changed by setting the configuration value
        MNE_DOCS_KIND.
    version : str | None
        Can be "stable" (default) or "dev".
        The default can be changed by setting the configuration value
        MNE_DOCS_VERSION.
    """
    if kind is None:
        kind = get_config('MNE_DOCS_KIND', 'api')
    help_dict = dict(api='python_reference.html', tutorials='tutorials.html',
                     examples='auto_examples/index.html')
    _check_option('kind', kind, sorted(help_dict.keys()))
    kind = help_dict[kind]
    if version is None:
        version = get_config('MNE_DOCS_VERSION', 'stable')
    _check_option('version', version, ['stable', 'dev'])
    webbrowser.open_new_tab('https://mne.tools/%s/%s' % (version, kind))


# Following deprecated class copied from scikit-learn

# force show of DeprecationWarning even on python 2.7
warnings.filterwarnings('always', category=DeprecationWarning, module='mne')


class deprecated(object):
    """Mark a function or class as deprecated (decorator).

    Issue a warning when the function is called/the class is instantiated and
    adds a warning to the docstring.

    The optional extra argument will be appended to the deprecation message
    and the docstring. Note: to use this with the default value for extra, put
    in an empty of parentheses::

        >>> from mne.utils import deprecated
        >>> deprecated() # doctest: +ELLIPSIS
        <mne.utils.docs.deprecated object at ...>

        >>> @deprecated()
        ... def some_function(): pass


    Parameters
    ----------
    extra: string
        To be added to the deprecation messages.
    """

    # Adapted from http://wiki.python.org/moin/PythonDecoratorLibrary,
    # but with many changes.

    # scikit-learn will not import on all platforms b/c it can be
    # sklearn or scikits.learn, so a self-contained example is used above

    def __init__(self, extra=''):  # noqa: D102
        self.extra = extra

    def __call__(self, obj):  # noqa: D105
        """Call.

        Parameters
        ----------
        obj : object
            Object to call.
        """
        if isinstance(obj, type):
            return self._decorate_class(obj)
        else:
            return self._decorate_fun(obj)

    def _decorate_class(self, cls):
        msg = "Class %s is deprecated" % cls.__name__
        if self.extra:
            msg += "; %s" % self.extra

        # FIXME: we should probably reset __new__ for full generality
        init = cls.__init__

        def deprecation_wrapped(*args, **kwargs):
            warnings.warn(msg, category=DeprecationWarning)
            return init(*args, **kwargs)
        cls.__init__ = deprecation_wrapped

        deprecation_wrapped.__name__ = '__init__'
        deprecation_wrapped.__doc__ = self._update_doc(init.__doc__)
        deprecation_wrapped.deprecated_original = init

        return cls

    def _decorate_fun(self, fun):
        """Decorate function fun."""
        msg = "Function %s is deprecated" % fun.__name__
        if self.extra:
            msg += "; %s" % self.extra

        def deprecation_wrapped(*args, **kwargs):
            warnings.warn(msg, category=DeprecationWarning)
            return fun(*args, **kwargs)

        deprecation_wrapped.__name__ = fun.__name__
        deprecation_wrapped.__dict__ = fun.__dict__
        deprecation_wrapped.__doc__ = self._update_doc(fun.__doc__)

        return deprecation_wrapped

    def _update_doc(self, olddoc):
        newdoc = ".. warning:: DEPRECATED"
        if self.extra:
            newdoc = "%s: %s" % (newdoc, self.extra)
        if olddoc:
            # Get the spacing right to avoid sphinx warnings
            n_space = 4
            for li, line in enumerate(olddoc.split('\n')):
                if li > 0 and len(line.strip()):
                    n_space = len(line) - len(line.lstrip())
                    break
            newdoc = "%s\n\n%s%s" % (newdoc, ' ' * n_space, olddoc)

        return newdoc