1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
|
# -*- coding: utf-8 -*-
"""The documentation functions."""
# Authors: Eric Larson <larson.eric.d@gmail.com>
#
# License: BSD (3-clause)
import inspect
import os
import os.path as op
import sys
import warnings
import webbrowser
from .config import get_config
from ..externals.doccer import filldoc, unindent_dict
from .check import _check_option
##############################################################################
# Define our standard documentation entries
docdict = dict()
# Verbose
docdict['verbose'] = """
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more)."""
docdict['verbose_meth'] = (docdict['verbose'] + ' Defaults to self.verbose.')
# Preload
docdict['preload'] = """
preload : bool or str (default False)
Preload data into memory for data manipulation and faster indexing.
If True, the data will be preloaded into memory (fast, requires
large amount of memory). If preload is a string, preload is the
file name of a memory-mapped file which is used to store the data
on the hard drive (slower, requires less memory)."""
# Cropping
docdict['include_tmax'] = """
include_tmax : bool
If True (default), include tmax. If False, exclude tmax (similar to how
Python indexing typically works).
.. versionadded:: 0.19
"""
# General plotting
docdict["show"] = """
show : bool
Show figure if True."""
# Picks
docdict['picks_header'] = 'picks : str | list | slice | None'
docdict['picks_base'] = docdict['picks_header'] + """
Channels to include. Slices and lists of integers will be
interpreted as channel indices. In lists, channel *type* strings
(e.g., ``['meg', 'eeg']``) will pick channels of those
types, channel *name* strings (e.g., ``['MEG0111', 'MEG2623']``
will pick the given channels. Can also be the string values
"all" to pick all channels, or "data" to pick data channels.
None (default) will pick """
docdict['picks_all'] = docdict['picks_base'] + 'all channels.\n'
docdict['picks_all_data'] = docdict['picks_base'] + 'all data channels.\n'
docdict['picks_all_data_noref'] = (docdict['picks_all_data'][:-2] +
'(excluding reference MEG channels).\n')
docdict['picks_good_data'] = docdict['picks_base'] + 'good data channels.\n'
docdict['picks_good_data_noref'] = (docdict['picks_good_data'][:-2] +
'(excluding reference MEG channels).\n')
docdict['picks_nostr'] = """
picks : list | slice | None
Channels to include. Slices and lists of integers will be
interpreted as channel indices. None (default) will pick all channels.
"""
# Filtering
docdict['l_freq'] = """
l_freq : float | None
For FIR filters, the lower pass-band edge; for IIR filters, the upper
cutoff frequency. If None the data are only low-passed.
"""
docdict['h_freq'] = """
h_freq : float | None
For FIR filters, the upper pass-band edge; for IIR filters, the upper
cutoff frequency. If None the data are only low-passed.
"""
docdict['filter_length'] = """
filter_length : str | int
Length of the FIR filter to use (if applicable):
* **'auto' (default)**: The filter length is chosen based
on the size of the transition regions (6.6 times the reciprocal
of the shortest transition band for fir_window='hamming'
and fir_design="firwin2", and half that for "firwin").
* **str**: A human-readable time in
units of "s" or "ms" (e.g., "10s" or "5500ms") will be
converted to that number of samples if ``phase="zero"``, or
the shortest power-of-two length at least that duration for
``phase="zero-double"``.
* **int**: Specified length in samples. For fir_design="firwin",
this should not be used.
"""
docdict['l_trans_bandwidth'] = """
l_trans_bandwidth : float | str
Width of the transition band at the low cut-off frequency in Hz
(high pass or cutoff 1 in bandpass). Can be "auto"
(default) to use a multiple of ``l_freq``::
min(max(l_freq * 0.25, 2), l_freq)
Only used for ``method='fir'``.
"""
docdict['h_trans_bandwidth'] = """
h_trans_bandwidth : float | str
Width of the transition band at the high cut-off frequency in Hz
(low pass or cutoff 2 in bandpass). Can be "auto"
(default in 0.14) to use a multiple of ``h_freq``::
min(max(h_freq * 0.25, 2.), info['sfreq'] / 2. - h_freq)
Only used for ``method='fir'``.
"""
docdict['phase'] = """
phase : str
Phase of the filter, only used if ``method='fir'``.
Symmetric linear-phase FIR filters are constructed, and if ``phase='zero'``
(default), the delay of this filter is compensated for, making it
non-causal. If ``phase=='zero-double'``,
then this filter is applied twice, once forward, and once backward
(also making it non-causal). If 'minimum', then a minimum-phase filter will
be constricted and applied, which is causal but has weaker stop-band
suppression.
.. versionadded:: 0.13
"""
docdict['fir_design'] = """
fir_design : str
Can be "firwin" (default) to use :func:`scipy.signal.firwin`,
or "firwin2" to use :func:`scipy.signal.firwin2`. "firwin" uses
a time-domain design technique that generally gives improved
attenuation using fewer samples than "firwin2".
.. versionadded:: 0.15
"""
docdict['fir_window'] = """
fir_window : str
The window to use in FIR design, can be "hamming" (default),
"hann" (default in 0.13), or "blackman".
.. versionadded:: 0.15
"""
docdict['pad-fir'] = """
pad : str
The type of padding to use. Supports all :func:`numpy.pad` ``mode``
options. Can also be "reflect_limited", which pads with a
reflected version of each vector mirrored on the first and last
values of the vector, followed by zeros. Only used for ``method='fir'``.
"""
docdict['method-fir'] = """
method : str
'fir' will use overlap-add FIR filtering, 'iir' will use IIR
forward-backward filtering (via filtfilt).
"""
docdict['n_jobs-fir'] = """
n_jobs : int | str
Number of jobs to run in parallel. Can be 'cuda' if ``cupy``
is installed properly and method='fir'.
"""
docdict['n_jobs-cuda'] = """
n_jobs : int | str
Number of jobs to run in parallel. Can be 'cuda' if ``cupy``
is installed properly.
"""
docdict['iir_params'] = """
iir_params : dict | None
Dictionary of parameters to use for IIR filtering.
If iir_params is None and method="iir", 4th order Butterworth will be used.
For more information, see :func:`mne.filter.construct_iir_filter`.
"""
docdict['npad'] = """
npad : int | str
Amount to pad the start and end of the data.
Can also be "auto" to use a padding that will result in
a power-of-two size (can be much faster).
"""
docdict['window-resample'] = """
window : str | tuple
Frequency-domain window to use in resampling.
See :func:`scipy.signal.resample`.
"""
# Rank
docdict['rank'] = """
rank : None | dict | 'info' | 'full'
This controls the rank computation that can be read from the
measurement info or estimated from the data. See ``Notes``
of :func:`mne.compute_rank` for details."""
docdict['rank_None'] = docdict['rank'] + 'The default is None.'
docdict['rank_info'] = docdict['rank'] + 'The default is "info".'
# Inverses
docdict['depth'] = """
depth : None | float | dict
How to weight (or normalize) the forward using a depth prior.
If float (default 0.8), it acts as the depth weighting exponent (``exp``)
to use, which must be between 0 and 1. None is equivalent to 0, meaning
no depth weighting is performed. It can also be a `dict` containing
keyword arguments to pass to :func:`mne.forward.compute_depth_prior`
(see docstring for details and defaults).
"""
# Forward
docdict['on_missing'] = """
on_missing : str
Behavior when ``stc`` has vertices that are not in ``fwd``.
Can be "ignore", "warn"", or "raise"."""
docdict['dig_kinds'] = """
dig_kinds : list of str | str
Kind of digitization points to use in the fitting. These can be any
combination of ('cardinal', 'hpi', 'eeg', 'extra'). Can also
be 'auto' (default), which will use only the 'extra' points if
enough (more than 10) are available, and if not, uses 'extra' and
'eeg' points.
"""
docdict['exclude_frontal'] = """
exclude_frontal : bool
If True, exclude points that have both negative Z values
(below the nasion) and positivy Y values (in front of the LPA/RPA).
"""
docdict['trans'] = """
trans : str | dict | instance of Transform | None
If str, the path to the head<->MRI transform ``*-trans.fif`` file produced
during coregistration. Can also be ``'fsaverage'`` to use the built-in
fsaverage transformation. If trans is None, an identity matrix is assumed.
.. versionchanged:: 0.19
Support for 'fsaverage' argument.
"""
# Simulation
docdict['interp'] = """
interp : str
Either 'hann', 'cos2' (default), 'linear', or 'zero', the type of
forward-solution interpolation to use between forward solutions
at different head positions.
"""
docdict['head_pos'] = """
head_pos : None | str | dict | tuple | array
Name of the position estimates file. Should be in the format of
the files produced by MaxFilter. If dict, keys should
be the time points and entries should be 4x4 ``dev_head_t``
matrices. If None, the original head position (from
``info['dev_head_t']``) will be used. If tuple, should have the
same format as data returned by `head_pos_to_trans_rot_t`.
If array, should be of the form returned by
:func:`mne.chpi.read_head_pos`.
"""
docdict['n_jobs'] = """
n_jobs : int
The number of jobs to run in parallel (default 1).
Requires the joblib package.
"""
# Random state
docdict['random_state'] = """
random_state : None | int | instance of ~numpy.random.RandomState
If ``random_state`` is an :class:`int`, it will be used as a seed for
:class:`~numpy.random.RandomState`. If ``None``, the seed will be
obtained from the operating system (see
:class:`~numpy.random.RandomState` for details). Default is
``None``.
"""
docdict['seed'] = """
seed : None | int | instance of ~numpy.random.RandomState
If ``seed`` is an :class:`int`, it will be used as a seed for
:class:`~numpy.random.RandomState`. If ``None``, the seed will be
obtained from the operating system (see
:class:`~numpy.random.RandomState` for details). Default is
``None``.
"""
# Visualization
docdict['combine'] = """
combine : None | str | callable
How to combine information across channels. If a :class:`str`, must be
one of 'mean', 'median', 'std' (standard deviation) or 'gfp' (global
field power).
"""
docdict['show_scrollbars'] = """
show_scrollbars : bool
Whether to show scrollbars when the plot is initialized. Can be toggled
after initialization by pressing :kbd:`z` ("zen mode") while the plot
window is focused. Default is ``True``.
.. versionadded:: 0.19.0
"""
# PSD plotting
docdict["plot_psd_doc"] = """
Plot the power spectral density across channels.
Different channel types are drawn in sub-plots. When the data have been
processed with a bandpass, lowpass or highpass filter, dashed lines
indicate the boundaries of the filter (--). The line noise frequency is
also indicated with a dashed line (-.)
"""
docdict['plot_psd_picks_good_data'] = docdict['picks_good_data'][:-2] + """
Cannot be None if `ax` is supplied.If both `picks` and `ax` are None
separate subplots will be created for each standard channel type
(`mag`, `grad`, and `eeg`).
"""
docdict["plot_psd_color"] = """
color : str | tuple
A matplotlib-compatible color to use. Has no effect when
spatial_colors=True.
"""
docdict["plot_psd_xscale"] = """
xscale : str
Can be 'linear' (default) or 'log'.
"""
docdict["plot_psd_area_mode"] = """
area_mode : str | None
Mode for plotting area. If 'std', the mean +/- 1 STD (across channels)
will be plotted. If 'range', the min and max (across channels) will be
plotted. Bad channels will be excluded from these calculations.
If None, no area will be plotted. If average=False, no area is plotted.
"""
docdict["plot_psd_area_alpha"] = """
area_alpha : float
Alpha for the area.
"""
docdict["plot_psd_dB"] = """
dB : bool
Plot Power Spectral Density (PSD), in units (amplitude**2/Hz (dB)) if
``dB=True``, and ``estimate='power'`` or ``estimate='auto'``. Plot PSD
in units (amplitude**2/Hz) if ``dB=False`` and,
``estimate='power'``. Plot Amplitude Spectral Density (ASD), in units
(amplitude/sqrt(Hz)), if ``dB=False`` and ``estimate='amplitude'`` or
``estimate='auto'``. Plot ASD, in units (amplitude/sqrt(Hz) (db)), if
``dB=True`` and ``estimate='amplitude'``.
"""
docdict["plot_psd_estimate"] = """
estimate : str, {'auto', 'power', 'amplitude'}
Can be "power" for power spectral density (PSD), "amplitude" for
amplitude spectrum density (ASD), or "auto" (default), which uses
"power" when dB is True and "amplitude" otherwise.
"""
docdict["plot_psd_average"] = """
average : bool
If False, the PSDs of all channels is displayed. No averaging
is done and parameters area_mode and area_alpha are ignored. When
False, it is possible to paint an area (hold left mouse button and
drag) to plot a topomap.
"""
docdict["plot_psd_line_alpha"] = """
line_alpha : float | None
Alpha for the PSD line. Can be None (default) to use 1.0 when
``average=True`` and 0.1 when ``average=False``.
"""
docdict["plot_psd_spatial_colors"] = """
spatial_colors : bool
Whether to use spatial colors. Only used when ``average=False``.
"""
# Montage
docdict["montage_deprecated"] = """
montage : str | None
Path or instance of montage containing electrode positions.
If None, sensor locations are (0,0,0).
DEPRECATED in version 0.19
Use the `set_montage` method.
"""
docdict["montage"] = """
montage : None | str | DigMontage
A montage containing channel positions. If str or DigMontage is
specified, the channel info will be updated with the channel
positions. Default is None. See also the documentation of
:class:`mne.channels.DigMontage` for more information.
"""
# Brain plotting
docdict["clim"] = """
clim : str | dict
Colorbar properties specification. If 'auto', set clim automatically
based on data percentiles. If dict, should contain:
``kind`` : 'value' | 'percent'
Flag to specify type of limits.
``lims`` : list | np.ndarray | tuple of float, 3 elements
Lower, middle, and upper bounds for colormap.
``pos_lims`` : list | np.ndarray | tuple of float, 3 elements
Lower, middle, and upper bound for colormap. Positive values
will be mirrored directly across zero during colormap
construction to obtain negative control points.
.. note:: Only one of ``lims`` or ``pos_lims`` should be provided.
Only sequential colormaps should be used with ``lims``, and
only divergent colormaps should be used with ``pos_lims``.
"""
docdict["clim_onesided"] = """
clim : str | dict
Colorbar properties specification. If 'auto', set clim automatically
based on data percentiles. If dict, should contain:
``kind`` : 'value' | 'percent'
Flag to specify type of limits.
``lims`` : list | np.ndarray | tuple of float, 3 elements
Lower, middle, and upper bound for colormap.
Unlike :meth:`stc.plot <mne.SourceEstimate.plot>`, it cannot use
``pos_lims``, as the surface plot must show the magnitude.
"""
docdict["colormap"] = """
colormap : str | np.ndarray of float, shape(n_colors, 3 | 4)
Name of colormap to use or a custom look up table. If array, must
be (n x 3) or (n x 4) array for with RGB or RGBA values between
0 and 255.
"""
docdict["transparent"] = """
transparent : bool | None
If True, use a linear transparency between fmin and fmid.
None will choose automatically based on colormap type.
"""
# Finalize
docdict = unindent_dict(docdict)
fill_doc = filldoc(docdict, unindent_params=False)
##############################################################################
# Utilities for docstring manipulation.
def copy_doc(source):
"""Copy the docstring from another function (decorator).
The docstring of the source function is prepepended to the docstring of the
function wrapped by this decorator.
This is useful when inheriting from a class and overloading a method. This
decorator can be used to copy the docstring of the original method.
Parameters
----------
source : function
Function to copy the docstring from
Returns
-------
wrapper : function
The decorated function
Examples
--------
>>> class A:
... def m1():
... '''Docstring for m1'''
... pass
>>> class B (A):
... @copy_doc(A.m1)
... def m1():
... ''' this gets appended'''
... pass
>>> print(B.m1.__doc__)
Docstring for m1 this gets appended
"""
def wrapper(func):
if source.__doc__ is None or len(source.__doc__) == 0:
raise ValueError('Cannot copy docstring: docstring was empty.')
doc = source.__doc__
if func.__doc__ is not None:
doc += func.__doc__
func.__doc__ = doc
return func
return wrapper
def copy_function_doc_to_method_doc(source):
"""Use the docstring from a function as docstring for a method.
The docstring of the source function is prepepended to the docstring of the
function wrapped by this decorator. Additionally, the first parameter
specified in the docstring of the source function is removed in the new
docstring.
This decorator is useful when implementing a method that just calls a
function. This pattern is prevalent in for example the plotting functions
of MNE.
Parameters
----------
source : function
Function to copy the docstring from
Returns
-------
wrapper : function
The decorated method
Examples
--------
>>> def plot_function(object, a, b):
... '''Docstring for plotting function.
...
... Parameters
... ----------
... object : instance of object
... The object to plot
... a : int
... Some parameter
... b : int
... Some parameter
... '''
... pass
...
>>> class A:
... @copy_function_doc_to_method_doc(plot_function)
... def plot(self, a, b):
... '''
... Notes
... -----
... .. versionadded:: 0.13.0
... '''
... plot_function(self, a, b)
>>> print(A.plot.__doc__)
Docstring for plotting function.
<BLANKLINE>
Parameters
----------
a : int
Some parameter
b : int
Some parameter
<BLANKLINE>
Notes
-----
.. versionadded:: 0.13.0
<BLANKLINE>
Notes
-----
The parsing performed is very basic and will break easily on docstrings
that are not formatted exactly according to the ``numpydoc`` standard.
Always inspect the resulting docstring when using this decorator.
"""
def wrapper(func):
doc = source.__doc__.split('\n')
if len(doc) == 1:
doc = doc[0]
if func.__doc__ is not None:
doc += func.__doc__
func.__doc__ = doc
return func
# Find parameter block
for line, text in enumerate(doc[:-2]):
if (text.strip() == 'Parameters' and
doc[line + 1].strip() == '----------'):
parameter_block = line
break
else:
# No parameter block found
raise ValueError('Cannot copy function docstring: no parameter '
'block found. To simply copy the docstring, use '
'the @copy_doc decorator instead.')
# Find first parameter
for line, text in enumerate(doc[parameter_block:], parameter_block):
if ':' in text:
first_parameter = line
parameter_indentation = len(text) - len(text.lstrip(' '))
break
else:
raise ValueError('Cannot copy function docstring: no parameters '
'found. To simply copy the docstring, use the '
'@copy_doc decorator instead.')
# Find end of first parameter
for line, text in enumerate(doc[first_parameter + 1:],
first_parameter + 1):
# Ignore empty lines
if len(text.strip()) == 0:
continue
line_indentation = len(text) - len(text.lstrip(' '))
if line_indentation <= parameter_indentation:
# Reach end of first parameter
first_parameter_end = line
# Of only one parameter is defined, remove the Parameters
# heading as well
if ':' not in text:
first_parameter = parameter_block
break
else:
# End of docstring reached
first_parameter_end = line
first_parameter = parameter_block
# Copy the docstring, but remove the first parameter
doc = ('\n'.join(doc[:first_parameter]) + '\n' +
'\n'.join(doc[first_parameter_end:]))
if func.__doc__ is not None:
doc += func.__doc__
func.__doc__ = doc
return func
return wrapper
def copy_base_doc_to_subclass_doc(subclass):
"""Use the docstring from a parent class methods in derived class.
The docstring of a parent class method is prepended to the
docstring of the method of the class wrapped by this decorator.
Parameters
----------
subclass : wrapped class
Class to copy the docstring to.
Returns
-------
subclass : Derived class
The decorated class with copied docstrings.
"""
ancestors = subclass.mro()[1:-1]
for source in ancestors:
methodList = [method for method in dir(source)
if callable(getattr(source, method))]
for method_name in methodList:
# discard private methods
if method_name[0] == '_':
continue
base_method = getattr(source, method_name)
sub_method = getattr(subclass, method_name)
if base_method is not None and sub_method is not None:
doc = base_method.__doc__
if sub_method.__doc__ is not None:
doc += '\n' + sub_method.__doc__
sub_method.__doc__ = doc
return subclass
def linkcode_resolve(domain, info):
"""Determine the URL corresponding to a Python object.
Parameters
----------
domain : str
Only useful when 'py'.
info : dict
With keys "module" and "fullname".
Returns
-------
url : str
The code URL.
Notes
-----
This has been adapted to deal with our "verbose" decorator.
Adapted from SciPy (doc/source/conf.py).
"""
import mne
if domain != 'py':
return None
modname = info['module']
fullname = info['fullname']
submod = sys.modules.get(modname)
if submod is None:
return None
obj = submod
for part in fullname.split('.'):
try:
obj = getattr(obj, part)
except Exception:
return None
# deal with our decorators properly
while hasattr(obj, '__wrapped__'):
obj = obj.__wrapped__
try:
fn = inspect.getsourcefile(obj)
except Exception:
fn = None
if not fn:
try:
fn = inspect.getsourcefile(sys.modules[obj.__module__])
except Exception:
fn = None
if not fn:
return None
fn = op.relpath(fn, start=op.dirname(mne.__file__))
fn = '/'.join(op.normpath(fn).split(os.sep)) # in case on Windows
try:
source, lineno = inspect.getsourcelines(obj)
except Exception:
lineno = None
if lineno:
linespec = "#L%d-L%d" % (lineno, lineno + len(source) - 1)
else:
linespec = ""
if 'dev' in mne.__version__:
kind = 'master'
else:
kind = 'maint/%s' % ('.'.join(mne.__version__.split('.')[:2]))
return "http://github.com/mne-tools/mne-python/blob/%s/mne/%s%s" % ( # noqa
kind, fn, linespec)
def open_docs(kind=None, version=None):
"""Launch a new web browser tab with the MNE documentation.
Parameters
----------
kind : str | None
Can be "api" (default), "tutorials", or "examples".
The default can be changed by setting the configuration value
MNE_DOCS_KIND.
version : str | None
Can be "stable" (default) or "dev".
The default can be changed by setting the configuration value
MNE_DOCS_VERSION.
"""
if kind is None:
kind = get_config('MNE_DOCS_KIND', 'api')
help_dict = dict(api='python_reference.html', tutorials='tutorials.html',
examples='auto_examples/index.html')
_check_option('kind', kind, sorted(help_dict.keys()))
kind = help_dict[kind]
if version is None:
version = get_config('MNE_DOCS_VERSION', 'stable')
_check_option('version', version, ['stable', 'dev'])
webbrowser.open_new_tab('https://mne.tools/%s/%s' % (version, kind))
# Following deprecated class copied from scikit-learn
# force show of DeprecationWarning even on python 2.7
warnings.filterwarnings('always', category=DeprecationWarning, module='mne')
class deprecated(object):
"""Mark a function or class as deprecated (decorator).
Issue a warning when the function is called/the class is instantiated and
adds a warning to the docstring.
The optional extra argument will be appended to the deprecation message
and the docstring. Note: to use this with the default value for extra, put
in an empty of parentheses::
>>> from mne.utils import deprecated
>>> deprecated() # doctest: +ELLIPSIS
<mne.utils.docs.deprecated object at ...>
>>> @deprecated()
... def some_function(): pass
Parameters
----------
extra: string
To be added to the deprecation messages.
"""
# Adapted from http://wiki.python.org/moin/PythonDecoratorLibrary,
# but with many changes.
# scikit-learn will not import on all platforms b/c it can be
# sklearn or scikits.learn, so a self-contained example is used above
def __init__(self, extra=''): # noqa: D102
self.extra = extra
def __call__(self, obj): # noqa: D105
"""Call.
Parameters
----------
obj : object
Object to call.
"""
if isinstance(obj, type):
return self._decorate_class(obj)
else:
return self._decorate_fun(obj)
def _decorate_class(self, cls):
msg = "Class %s is deprecated" % cls.__name__
if self.extra:
msg += "; %s" % self.extra
# FIXME: we should probably reset __new__ for full generality
init = cls.__init__
def deprecation_wrapped(*args, **kwargs):
warnings.warn(msg, category=DeprecationWarning)
return init(*args, **kwargs)
cls.__init__ = deprecation_wrapped
deprecation_wrapped.__name__ = '__init__'
deprecation_wrapped.__doc__ = self._update_doc(init.__doc__)
deprecation_wrapped.deprecated_original = init
return cls
def _decorate_fun(self, fun):
"""Decorate function fun."""
msg = "Function %s is deprecated" % fun.__name__
if self.extra:
msg += "; %s" % self.extra
def deprecation_wrapped(*args, **kwargs):
warnings.warn(msg, category=DeprecationWarning)
return fun(*args, **kwargs)
deprecation_wrapped.__name__ = fun.__name__
deprecation_wrapped.__dict__ = fun.__dict__
deprecation_wrapped.__doc__ = self._update_doc(fun.__doc__)
return deprecation_wrapped
def _update_doc(self, olddoc):
newdoc = ".. warning:: DEPRECATED"
if self.extra:
newdoc = "%s: %s" % (newdoc, self.extra)
if olddoc:
# Get the spacing right to avoid sphinx warnings
n_space = 4
for li, line in enumerate(olddoc.split('\n')):
if li > 0 and len(line.strip()):
n_space = len(line) - len(line.lstrip())
break
newdoc = "%s\n\n%s%s" % (newdoc, ' ' * n_space, olddoc)
return newdoc
|