1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
|
# -*- coding: utf-8 -*-
"""Utility functions to speed up linear algebraic operations.
In general, things like np.dot and linalg.svd should be used directly
because they are smart about checking for bad values. However, in cases where
things are done repeatedly (e.g., thousands of times on tiny matrices), the
overhead can become problematic from a performance standpoint. Examples:
- Optimization routines:
- Dipole fitting
- Sparse solving
- cHPI fitting
- Inverse computation
- Beamformers (LCMV/DICS)
- eLORETA minimum norm
Significant performance gains can be achieved by ensuring that inputs
are Fortran contiguous because that's what LAPACK requires. Without this,
inputs will be memcopied.
"""
# Authors: Eric Larson <larson.eric.d@gmail.com>
#
# License: BSD (3-clause)
import numpy as np
from scipy import linalg
from scipy.linalg import LinAlgError
from scipy._lib._util import _asarray_validated
from ..fixes import _check_info
_d = np.empty(0, np.float64)
_z = np.empty(0, np.complex128)
dgemm = linalg.get_blas_funcs('gemm', (_d,))
zgemm = linalg.get_blas_funcs('gemm', (_z,))
dgemv = linalg.get_blas_funcs('gemv', (_d,))
ddot = linalg.get_blas_funcs('dot', (_d,))
_I = np.cast['F'](1j)
###############################################################################
# linalg.svd and linalg.pinv2
dgesdd, dgesdd_lwork = linalg.get_lapack_funcs(('gesdd', 'gesdd_lwork'), (_d,))
zgesdd, zgesdd_lwork = linalg.get_lapack_funcs(('gesdd', 'gesdd_lwork'), (_z,))
dgesvd, dgesvd_lwork = linalg.get_lapack_funcs(('gesvd', 'gesvd_lwork'), (_d,))
zgesvd, zgesvd_lwork = linalg.get_lapack_funcs(('gesvd', 'gesvd_lwork'), (_z,))
def _svd_lwork(shape, dtype=np.float64):
"""Set up SVD calculations on identical-shape float64/complex128 arrays."""
if dtype == np.float64:
gesdd_lwork, gesvd_lwork = dgesdd_lwork, dgesvd_lwork
else:
assert dtype == np.complex128
gesdd_lwork, gesvd_lwork = zgesdd_lwork, zgesvd_lwork
sdd_lwork = linalg.decomp_svd._compute_lwork(
gesdd_lwork, *shape, compute_uv=True, full_matrices=False)
svd_lwork = linalg.decomp_svd._compute_lwork(
gesvd_lwork, *shape, compute_uv=True, full_matrices=False)
return (sdd_lwork, svd_lwork)
def _repeated_svd(x, lwork, overwrite_a=False):
"""Mimic scipy.linalg.svd, avoid lwork and get_lapack_funcs overhead."""
if x.dtype == np.float64:
gesdd, gesvd = dgesdd, zgesdd
else:
assert x.dtype == np.complex128
gesdd, gesvd = zgesdd, zgesvd
# this has to use overwrite_a=False in case we need to fall back to gesvd
u, s, v, info = gesdd(x, compute_uv=True, lwork=lwork[0],
full_matrices=False, overwrite_a=False)
if info > 0:
# Fall back to slower gesvd, sometimes gesdd fails
u, s, v, info = gesvd(x, compute_uv=True, lwork=lwork[1],
full_matrices=False, overwrite_a=overwrite_a)
if info > 0:
raise LinAlgError("SVD did not converge")
if info < 0:
raise ValueError('illegal value in %d-th argument of internal gesdd'
% -info)
return u, s, v
def _repeated_pinv2(x, lwork, rcond=None):
"""Mimic scipy.linalg.pinv2, avoid lwork and get_lapack_funcs overhead."""
# Adapted from SciPy
u, s, vh = _repeated_svd(x, lwork)
if rcond in [None, -1]:
t = u.dtype.char.lower()
factor = {'f': 1E3, 'd': 1E6}
rcond = factor[t] * np.finfo(t).eps
rank = np.sum(s > rcond * s[0])
psigma_diag = 1.0 / s[:rank]
u[:, :rank] *= psigma_diag
B = np.transpose(np.conjugate(np.dot(u[:, :rank], vh[:rank])))
return B
###############################################################################
# linalg.eig
dgeev, dgeev_lwork = linalg.get_lapack_funcs(('geev', 'geev_lwork'), (_d,))
zgeev, zgeev_lwork = linalg.get_lapack_funcs(('geev', 'geev_lwork'), (_z,))
def _eig_lwork(shape, dtype=np.float64):
"""Set up SVD calculations on identical-shape float64/complex128 arrays."""
if dtype == np.float64:
geev_lwork = dgeev_lwork
else:
assert dtype == np.complex128
geev_lwork = zgeev_lwork
lwork = linalg.decomp._compute_lwork(
geev_lwork, shape[0], compute_vl=False, compute_vr=True)
return lwork
def _repeated_eig(a, lwork, overwrite_a=False):
"""Mimic scipy.linalg.eig, avoid lwork and get_lapack_funcs overhead."""
if a.dtype == np.float64:
wr, wi, vl, vr, info = dgeev(
a, lwork=lwork, compute_vl=False, compute_vr=True,
overwrite_a=overwrite_a)
w = wr + _I * wi
need_complex = np.any(wi)
else:
assert a.dtype == np.complex128
w, vl, vr, info = zgeev(
a, lwork=lwork, compute_vl=False, compute_vr=True,
overwrite_a=overwrite_a)
need_complex = False
_check_info(
info, 'eig algorithm (geev)',
positive='did not converge (only eigenvalues '
'with order >= %d have converged)')
if need_complex:
t = w.dtype.char
vr = linalg.decomp._make_complex_eigvecs(w, vr, t)
return w, vr
###############################################################################
# linalg.inv
dgetrf, dgetri, dgetri_lwork = linalg.get_lapack_funcs(
('getrf', 'getri', 'getri_lwork'), (_d,))
zgetrf, zgetri, zgetri_lwork = linalg.get_lapack_funcs(
('getrf', 'getri', 'getri_lwork'), (_z,))
def _inv_lwork(shape, dtype=np.float64):
if dtype == np.float64:
getri_lwork = dgetri_lwork
else:
assert dtype == np.complex128
getri_lwork = zgetri_lwork
return linalg.lapack._compute_lwork(getri_lwork, shape[0])
def _repeated_inv(a, lwork, overwrite_a=False):
if a.dtype == np.float64:
getrf, getri = dgetrf, dgetri
else:
assert a.dtype == np.complex128
getrf, getri = zgetrf, zgetri
lu, piv, info = getrf(a, overwrite_a=overwrite_a)
if info == 0:
# XXX: the following line fixes curious SEGFAULT when
# benchmarking 500x500 matrix inverse. This seems to
# be a bug in LAPACK ?getri routine because if lwork is
# minimal (when using lwork[0] instead of lwork[1]) then
# all tests pass. Further investigation is required if
# more such SEGFAULTs occur.
lwork = int(1.01 * lwork)
inv_a, info = getri(lu, piv, lwork=lwork, overwrite_lu=1)
if info > 0:
raise LinAlgError("singular matrix")
if info < 0:
raise ValueError('illegal value in %d-th argument of internal '
'getrf|getri' % -info)
return inv_a
###############################################################################
# linalg.eigh
dsyevd, = linalg.get_lapack_funcs(('syevd',), (_d,))
zheevd, = linalg.get_lapack_funcs(('heevd',), (_z,))
def eigh(a, overwrite_a=False, check_finite=True):
"""Efficient wrapper for eigh.
Parameters
----------
a : ndarray, shape (n_components, n_components)
The symmetric array operate on.
overwrite_a : bool
If True, the contents of a can be overwritten for efficiency.
check_finite : bool
If True, check that all elements are finite.
Returns
-------
w : ndarray, shape (n_components,)
The N eigenvalues, in ascending order, each repeated according to
its multiplicity.
v : ndarray, shape (n_components, n_components)
The normalized eigenvector corresponding to the eigenvalue ``w[i]``
is the column ``v[:, i]``.
"""
# We use SYEVD, see https://github.com/scipy/scipy/issues/9212
if check_finite:
a = _asarray_validated(a, check_finite=check_finite)
if a.dtype == np.float64:
evr, driver = dsyevd, 'syevd'
else:
assert a.dtype == np.complex128
evr, driver = zheevd, 'heevd'
w, v, info = evr(a, lower=1, overwrite_a=overwrite_a)
if info == 0:
return w, v
if info < 0:
raise ValueError('illegal value in argument %d of internal %s'
% (-info, driver))
else:
raise LinAlgError("internal fortran routine failed to converge: "
"%i off-diagonal elements of an "
"intermediate tridiagonal form did not converge"
" to zero." % info)
|