File: raw.py

package info (click to toggle)
python-mne 0.19.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 100,440 kB
  • sloc: python: 120,243; pascal: 1,861; makefile: 225; sh: 15
file content (1069 lines) | stat: -rw-r--r-- 46,295 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
"""Functions to plot raw M/EEG data."""

# Authors: Eric Larson <larson.eric.d@gmail.com>
#          Jaakko Leppakangas <jaeilepp@student.jyu.fi>
#          Daniel McCloy <dan.mccloy@gmail.com>
#
# License: Simplified BSD

import copy
from functools import partial

import numpy as np

from ..annotations import _annotations_starts_stops
from ..filter import create_filter, _overlap_add_filter
from ..io.pick import (pick_types, _pick_data_channels, pick_info,
                       _PICK_TYPES_KEYS, pick_channels)
from ..utils import verbose, _ensure_int, _validate_type, _check_option
from ..time_frequency import psd_welch
from ..defaults import _handle_default
from .topo import _plot_topo, _plot_timeseries, _plot_timeseries_unified
from .utils import (_toggle_options, _toggle_proj, _prepare_mne_browse,
                    _plot_raw_onkey, figure_nobar, plt_show,
                    _plot_raw_onscroll, _mouse_click, _find_channel_idx,
                    _select_bads, _get_figsize_from_config,
                    _setup_browser_offsets, _compute_scalings, plot_sensors,
                    _radio_clicked, _set_radio_button, _handle_topomap_bads,
                    _change_channel_group, _plot_annotations, _setup_butterfly,
                    _handle_decim, _setup_plot_projector, _check_cov,
                    _set_ax_label_style, _draw_vert_line, _simplify_float)


def _plot_update_raw_proj(params, bools):
    """Deal with changed proj."""
    if bools is not None:
        inds = np.where(bools)[0]
        params['info']['projs'] = [copy.deepcopy(params['projs'][ii])
                                   for ii in inds]
        params['proj_bools'] = bools
    params['projector'], params['whitened_ch_names'] = _setup_plot_projector(
        params['info'], params['noise_cov'], True, params['use_noise_cov'])
    params['update_fun']()
    params['plot_fun']()


def _update_raw_data(params):
    """Deal with time or proj changed."""
    start = params['t_start']
    start -= params['first_time']
    stop = params['raw'].time_as_index(start + params['duration'])[0]
    start = params['raw'].time_as_index(start)[0]
    data_picks = _pick_data_channels(params['raw'].info)
    data, times = params['raw'][:, start:stop]
    if params['projector'] is not None:
        data = np.dot(params['projector'], data)
    # remove DC
    if params['remove_dc'] is True:
        data -= np.mean(data, axis=1)[:, np.newaxis]
    if params['ba'] is not None:
        # filter with the same defaults as `raw.filter`
        starts, stops = params['filt_bounds']
        mask = (starts < stop) & (stops > start)
        starts = np.maximum(starts[mask], start) - start
        stops = np.minimum(stops[mask], stop) - start
        for start_, stop_ in zip(starts, stops):
            if isinstance(params['ba'], np.ndarray):  # FIR
                data[data_picks, start_:stop_] = _overlap_add_filter(
                    data[data_picks, start_:stop_], params['ba'], copy=False)
            else:  # IIR
                from scipy.signal import sosfiltfilt
                data[data_picks, start_:stop_] = sosfiltfilt(
                    params['ba']['sos'], data[data_picks, start_:stop_],
                    axis=1, padlen=0)
    # scale
    for di in range(data.shape[0]):
        ch_name = params['info']['ch_names'][di]
        # stim channels should be hard limited
        if params['types'][di] == 'stim':
            norm = float(max(data[di]))
        elif ch_name in params['whitened_ch_names'] and \
                ch_name not in params['info']['bads']:
            norm = params['scalings']['whitened']
        else:
            norm = params['scalings'][params['types'][di]]
        data[di] /= norm if norm != 0 else 1.
    params['data'] = data
    params['times'] = times


def _pick_bad_channels(event, params):
    """Select or drop bad channels onpick."""
    # Both bad lists are updated. params['info'] used for colors.
    if params['fig_annotation'] is not None:
        return
    bads = params['raw'].info['bads']
    params['info']['bads'] = _select_bads(event, params, bads)
    _plot_update_raw_proj(params, None)


@verbose
def plot_raw(raw, events=None, duration=10.0, start=0.0, n_channels=20,
             bgcolor='w', color=None, bad_color=(0.8, 0.8, 0.8),
             event_color='cyan', scalings=None, remove_dc=True, order=None,
             show_options=False, title=None, show=True, block=False,
             highpass=None, lowpass=None, filtorder=4, clipping=None,
             show_first_samp=False, proj=True, group_by='type',
             butterfly=False, decim='auto', noise_cov=None, event_id=None,
             show_scrollbars=True, verbose=None):
    """Plot raw data.

    Parameters
    ----------
    raw : instance of Raw
        The raw data to plot.
    events : array | None
        Events to show with vertical bars.
    duration : float
        Time window (s) to plot. The lesser of this value and the duration
        of the raw file will be used.
    start : float
        Initial time to show (can be changed dynamically once plotted). If
        show_first_samp is True, then it is taken relative to
        ``raw.first_samp``.
    n_channels : int
        Number of channels to plot at once. Defaults to 20. The lesser of
        ``n_channels`` and ``len(raw.ch_names)`` will be shown.
        Has no effect if ``order`` is 'position', 'selection' or 'butterfly'.
    bgcolor : color object
        Color of the background.
    color : dict | color object | None
        Color for the data traces. If None, defaults to::

            dict(mag='darkblue', grad='b', eeg='k', eog='k', ecg='m',
                 emg='k', ref_meg='steelblue', misc='k', stim='k',
                 resp='k', chpi='k')

    bad_color : color object
        Color to make bad channels.
    event_color : color object | dict
        Color to use for events. Can also be a dict with
        ``{event_number: color}`` pairings. Use ``event_number==-1`` for
        any event numbers in the events list that are not in the dictionary.
    scalings : dict | None
        Scaling factors for the traces. If any fields in scalings are 'auto',
        the scaling factor is set to match the 99.5th percentile of a subset of
        the corresponding data. If scalings == 'auto', all scalings fields are
        set to 'auto'. If any fields are 'auto' and data is not preloaded, a
        subset of times up to 100mb will be loaded. If None, defaults to::

            dict(mag=1e-12, grad=4e-11, eeg=20e-6, eog=150e-6, ecg=5e-4,
                 emg=1e-3, ref_meg=1e-12, misc=1e-3, stim=1,
                 resp=1, chpi=1e-4, whitened=1e2)

    remove_dc : bool
        If True remove DC component when plotting data.
    order : array of int | None
        Order in which to plot data. If the array is shorter than the number of
        channels, only the given channels are plotted. If None (default), all
        channels are plotted. If ``group_by`` is ``'position'`` or
        ``'selection'``, the ``order`` parameter is used only for selecting the
        channels to be plotted.
    show_options : bool
        If True, a dialog for options related to projection is shown.
    title : str | None
        The title of the window. If None, and either the filename of the
        raw object or '<unknown>' will be displayed as title.
    show : bool
        Show figure if True.
    block : bool
        Whether to halt program execution until the figure is closed.
        Useful for setting bad channels on the fly by clicking on a line.
        May not work on all systems / platforms.
    highpass : float | None
        Highpass to apply when displaying data.
    lowpass : float | None
        Lowpass to apply when displaying data.
        If highpass > lowpass, a bandstop rather than bandpass filter
        will be applied.
    filtorder : int
        Filtering order. 0 will use FIR filtering with MNE defaults.
        Other values will construct an IIR filter of the given order
        and apply it with :func:`~scipy.signal.filtfilt` (making the effective
        order twice ``filtorder``). Filtering may produce some edge artifacts
        (at the left and right edges) of the signals during display.

        .. versionchanged:: 0.18
           Support for ``filtorder=0`` to use FIR filtering.
    clipping : str | None
        If None, channels are allowed to exceed their designated bounds in
        the plot. If "clamp", then values are clamped to the appropriate
        range for display, creating step-like artifacts. If "transparent",
        then excessive values are not shown, creating gaps in the traces.
    show_first_samp : bool
        If True, show time axis relative to the ``raw.first_samp``.
    proj : bool
        Whether to apply projectors prior to plotting (default is ``True``).
        Individual projectors can be enabled/disabled interactively (see
        Notes). This argument only affects the plot; use ``raw.apply_proj()``
        to modify the data stored in the Raw object.
    group_by : str
        How to group channels. ``'type'`` groups by channel type,
        ``'original'`` plots in the order of ch_names, ``'selection'`` uses
        Elekta's channel groupings (only works for Neuromag data),
        ``'position'`` groups the channels by the positions of the sensors.
        ``'selection'`` and ``'position'`` modes allow custom selections by
        using lasso selector on the topomap. Pressing ``ctrl`` key while
        selecting allows appending to the current selection. Channels marked as
        bad appear with red edges on the topomap. ``'type'`` and ``'original'``
        groups the channels by type in butterfly mode whereas ``'selection'``
        and ``'position'`` use regional grouping. ``'type'`` and ``'original'``
        modes are overridden with ``order`` keyword.
    butterfly : bool
        Whether to start in butterfly mode. Defaults to False.
    decim : int | 'auto'
        Amount to decimate the data during display for speed purposes.
        You should only decimate if the data are sufficiently low-passed,
        otherwise aliasing can occur. The 'auto' mode (default) uses
        the decimation that results in a sampling rate least three times
        larger than ``min(info['lowpass'], lowpass)`` (e.g., a 40 Hz lowpass
        will result in at least a 120 Hz displayed sample rate).
    noise_cov : instance of Covariance | str | None
        Noise covariance used to whiten the data while plotting.
        Whitened data channels are scaled by ``scalings['whitened']``,
        and their channel names are shown in italic.
        Can be a string to load a covariance from disk.
        See also :meth:`mne.Evoked.plot_white` for additional inspection
        of noise covariance properties when whitening evoked data.
        For data processed with SSS, the effective dependence between
        magnetometers and gradiometers may introduce differences in scaling,
        consider using :meth:`mne.Evoked.plot_white`.

        .. versionadded:: 0.16.0
    event_id : dict | None
        Event IDs used to show at event markers (default None shows
        theh event numbers).

        .. versionadded:: 0.16.0
    %(show_scrollbars)s
    %(verbose)s

    Returns
    -------
    fig : instance of matplotlib.figure.Figure
        Raw traces.

    Notes
    -----
    The arrow keys (up/down/left/right) can typically be used to navigate
    between channels and time ranges, but this depends on the backend
    matplotlib is configured to use (e.g., mpl.use('TkAgg') should work). The
    left/right arrows will scroll by 25%% of ``duration``, whereas
    shift+left/shift+right will scroll by 100%% of ``duration``. The scaling
    can be adjusted with - and + (or =) keys. The viewport dimensions can be
    adjusted with page up/page down and home/end keys. Full screen mode can be
    toggled with the F11 key. To mark or un-mark a channel as bad, click on a
    channel label or a channel trace. The changes will be reflected immediately
    in the raw object's ``raw.info['bads']`` entry.

    If projectors are present, a button labelled "Proj" in the lower right
    corner of the plot window opens a secondary control window, which allows
    enabling/disabling specific projectors individually. This provides a means
    of interactively observing how each projector would affect the raw data if
    it were applied.

    Annotation mode is toggled by pressing 'a', butterfly mode by pressing
    'b', and whitening mode (when ``noise_cov is not None``) by pressing 'w'.
    By default, the channel means are removed when ``remove_dc`` is set to
    ``True``. This flag can be toggled by pressing 'd'.
    """
    import matplotlib as mpl
    from ..io.base import BaseRaw
    color = _handle_default('color', color)
    scalings = _compute_scalings(scalings, raw, remove_dc=remove_dc,
                                 duration=duration)
    _validate_type(raw, BaseRaw, 'raw', 'Raw')
    n_channels = min(len(raw.info['chs']), n_channels)
    _check_option('clipping', clipping, [None, 'clamp', 'transparent'])
    duration = min(raw.times[-1], float(duration))

    # figure out the IIR filtering parameters
    sfreq = raw.info['sfreq']
    if highpass is not None and highpass <= 0:
        raise ValueError('highpass must be > 0, got %s' % (highpass,))
    if highpass is None and lowpass is None:
        ba = filt_bounds = None
    else:

        filtorder = int(filtorder)
        if filtorder == 0:
            method = 'fir'
            iir_params = None
        else:
            method = 'iir'
            iir_params = dict(order=filtorder, output='sos', ftype='butter')
        ba = create_filter(np.zeros((1, int(round(duration * sfreq)))),
                           sfreq, highpass, lowpass, method=method,
                           iir_params=iir_params)
        filt_bounds = _annotations_starts_stops(
            raw, ('edge', 'bad_acq_skip'), invert=True)

    # make a copy of info, remove projection (for now)
    info = raw.info.copy()
    projs = info['projs']
    info['projs'] = []
    n_times = raw.n_times

    # allow for raw objects without filename, e.g., ICA
    if title is None:
        title = raw._filenames
        if len(title) == 0:  # empty list or absent key
            title = '<unknown>'
        elif len(title) == 1:
            title = title[0]
        else:  # if len(title) > 1:
            title = '%s ... (+ %d more) ' % (title[0], len(title) - 1)
            if len(title) > 60:
                title = '...' + title[-60:]
    elif not isinstance(title, str):
        raise TypeError('title must be None or a string')
    if events is not None:
        event_times = events[:, 0].astype(float) - raw.first_samp
        event_times /= info['sfreq']
        event_nums = events[:, 2]
    else:
        event_times = event_nums = None

    # reorganize the data in plotting order
    # TODO Refactor this according to epochs.py
    inds = list()
    types = list()
    for t in ['grad', 'mag']:
        inds += [pick_types(info, meg=t, ref_meg=False, exclude=[])]
        types += [t] * len(inds[-1])
    for t in ['hbo', 'hbr']:
        inds += [pick_types(info, meg=False, ref_meg=False, fnirs=t,
                            exclude=[])]
        types += [t] * len(inds[-1])
    pick_kwargs = dict(meg=False, ref_meg=False, exclude=[])
    for key in _PICK_TYPES_KEYS:
        if key not in ['meg', 'fnirs']:
            pick_kwargs[key] = True
            inds += [pick_types(raw.info, **pick_kwargs)]
            types += [key] * len(inds[-1])
            pick_kwargs[key] = False
    inds = np.concatenate(inds).astype(int)
    if not len(inds) == len(info['ch_names']):
        raise RuntimeError('Some channels not classified, please report '
                           'this problem')

    # put them back to original or modified order for natural plotting
    reord = np.argsort(inds)
    types = [types[ri] for ri in reord]
    if isinstance(order, (np.ndarray, list, tuple)):
        # put back to original order first, then use new order
        inds = inds[reord][order]
    elif order is not None:
        raise ValueError('Unkown order, should be array-like. '
                         'Got "%s" (%s).' % (order, type(order)))

    if group_by in ['selection', 'position']:
        selections, fig_selection = _setup_browser_selection(raw, group_by)
        selections = {k: np.intersect1d(v, inds) for k, v in
                      selections.items()}
    elif group_by == 'original':
        if order is None:
            order = np.arange(len(inds))
            inds = inds[reord[:len(order)]]
    elif group_by != 'type':
        raise ValueError('Unknown group_by type %s' % group_by)

    if not isinstance(event_color, dict):
        event_color = {-1: event_color}
    event_color = {_ensure_int(key, 'event_color key'): event_color[key]
                   for key in event_color}
    for key in event_color:
        if key <= 0 and key != -1:
            raise KeyError('only key <= 0 allowed is -1 (cannot use %s)'
                           % key)
    decim, data_picks = _handle_decim(info, decim, lowpass)
    noise_cov = _check_cov(noise_cov, info)

    # set up projection and data parameters
    first_time = raw._first_time if show_first_samp else 0
    start += first_time
    event_id_rev = {val: key for key, val in (event_id or {}).items()}
    units = _handle_default('units', None)
    unit_scalings = _handle_default('scalings', None)

    params = dict(raw=raw, ch_start=0, t_start=start, duration=duration,
                  info=info, projs=projs, remove_dc=remove_dc, ba=ba,
                  n_channels=n_channels, scalings=scalings, types=types,
                  n_times=n_times, event_times=event_times, inds=inds,
                  event_nums=event_nums, clipping=clipping, fig_proj=None,
                  first_time=first_time, added_label=list(), butterfly=False,
                  group_by=group_by, orig_inds=inds.copy(), decim=decim,
                  data_picks=data_picks, event_id_rev=event_id_rev,
                  noise_cov=noise_cov, use_noise_cov=noise_cov is not None,
                  filt_bounds=filt_bounds, units=units, snap_annotations=False,
                  unit_scalings=unit_scalings, use_scalebars=True,
                  show_scrollbars=show_scrollbars)

    if group_by in ['selection', 'position']:
        params['fig_selection'] = fig_selection
        params['selections'] = selections
        params['radio_clicked'] = partial(_radio_clicked, params=params)
        fig_selection.radio.on_clicked(params['radio_clicked'])
        lasso_callback = partial(_set_custom_selection, params=params)
        fig_selection.canvas.mpl_connect('lasso_event', lasso_callback)

    _prepare_mne_browse_raw(params, title, bgcolor, color, bad_color, inds,
                            n_channels)

    # plot event_line first so it's in the back
    event_lines = [params['ax'].plot([np.nan], color=event_color[ev_num])[0]
                   for ev_num in sorted(event_color.keys())]

    params['plot_fun'] = partial(_plot_raw_traces, params=params, color=color,
                                 bad_color=bad_color, event_lines=event_lines,
                                 event_color=event_color)

    _plot_annotations(raw, params)

    params['update_fun'] = partial(_update_raw_data, params=params)
    params['pick_bads_fun'] = partial(_pick_bad_channels, params=params)
    params['label_click_fun'] = partial(_label_clicked, params=params)
    params['scale_factor'] = 1.0
    # set up proj button
    opt_button = None
    if len(raw.info['projs']) > 0 and not raw.proj:
        ax_button = params['fig'].add_axes(params['proj_button_pos'])
        ax_button.set_axes_locator(params['proj_button_locator'])
        params['ax_button'] = ax_button
        params['apply_proj'] = proj
        opt_button = mpl.widgets.Button(ax_button, 'Proj')
        callback_option = partial(_toggle_options, params=params)
        opt_button.on_clicked(callback_option)
    # set up callbacks
    callback_key = partial(_plot_raw_onkey, params=params)
    params['fig'].canvas.mpl_connect('key_press_event', callback_key)
    callback_scroll = partial(_plot_raw_onscroll, params=params)
    params['fig'].canvas.mpl_connect('scroll_event', callback_scroll)
    callback_pick = partial(_mouse_click, params=params)
    params['fig'].canvas.mpl_connect('button_press_event', callback_pick)

    # As here code is shared with plot_evoked, some extra steps:
    # first the actual plot update function
    params['plot_update_proj_callback'] = _plot_update_raw_proj
    # then the toggle handler
    callback_proj = partial(_toggle_proj, params=params)
    # store these for use by callbacks in the options figure
    params['callback_proj'] = callback_proj
    params['callback_key'] = callback_key
    # have to store this, or it could get garbage-collected
    params['opt_button'] = opt_button
    params['update_vertline'] = partial(_draw_vert_line, params=params)

    # do initial plots
    callback_proj('none')

    # deal with projectors
    if show_options:
        _toggle_options(None, params)

    callback_close = partial(_close_event, params=params)
    params['fig'].canvas.mpl_connect('close_event', callback_close)
    # initialize the first selection set
    if group_by in ['selection', 'position']:
        _radio_clicked(fig_selection.radio.labels[0]._text, params)
        callback_selection_key = partial(_selection_key_press, params=params)
        callback_selection_scroll = partial(_selection_scroll, params=params)
        params['fig_selection'].canvas.mpl_connect('close_event',
                                                   callback_close)
        params['fig_selection'].canvas.mpl_connect('key_press_event',
                                                   callback_selection_key)
        params['fig_selection'].canvas.mpl_connect('scroll_event',
                                                   callback_selection_scroll)
    if butterfly:
        _setup_butterfly(params)

    try:
        plt_show(show, block=block)
    except TypeError:  # not all versions have this
        plt_show(show)

    # add MNE params dict to the resulting figure object so that parameters can
    # be modified after the figure has been created; this is useful e.g. to
    # remove the keyboard shortcut to close the figure with the 'Esc' key,
    # which can be done with
    #
    # fig._mne_params['close_key'] = None
    #
    # (assuming that the figure object is fig)
    params['fig']._mne_params = params

    return params['fig']


def _selection_scroll(event, params):
    """Handle scroll in selection dialog."""
    if event.step < 0:
        _change_channel_group(-1, params)
    elif event.step > 0:
        _change_channel_group(1, params)


def _selection_key_press(event, params):
    """Handle keys in selection dialog."""
    if event.key == 'down':
        _change_channel_group(-1, params)
    elif event.key == 'up':
        _change_channel_group(1, params)
    elif event.key == 'escape':
        _close_event(event, params)


def _close_event(event, params):
    """Handle closing of raw browser with selections."""
    import matplotlib.pyplot as plt
    if 'fig_selection' in params:
        plt.close(params['fig_selection'])
    for fig in ['fig_annotation', 'fig_help', 'fig_proj']:
        if params[fig] is not None:
            plt.close(params[fig])
    plt.close(params['fig'])


def _label_clicked(pos, params):
    """Select bad channels."""
    if params['butterfly']:
        return
    labels = params['ax'].yaxis.get_ticklabels()
    offsets = np.array(params['offsets']) + params['offsets'][0]
    line_idx = np.searchsorted(offsets, pos[1])
    text = labels[line_idx].get_text()
    if len(text) == 0:
        return
    if 'fig_selection' in params:
        ch_idx = _find_channel_idx(text, params)
        _handle_topomap_bads(text, params)
    else:
        ch_idx = [params['ch_start'] + line_idx]
    bads = params['info']['bads']
    if text in bads:
        while text in bads:  # to make sure duplicates are removed
            bads.remove(text)
        color = vars(params['lines'][line_idx])['def_color']
        for idx in ch_idx:
            params['ax_vscroll'].patches[idx].set_color(color)
    else:
        bads.append(text)
        color = params['bad_color']
        for idx in ch_idx:
            params['ax_vscroll'].patches[idx].set_color(color)
    params['raw'].info['bads'] = bads
    _plot_update_raw_proj(params, None)


_data_types = ('mag', 'grad', 'eeg', 'seeg', 'ecog')


@verbose
def plot_raw_psd(raw, fmin=0, fmax=np.inf, tmin=None, tmax=None, proj=False,
                 n_fft=None, n_overlap=0, reject_by_annotation=True,
                 picks=None, ax=None, color='black', xscale='linear',
                 area_mode='std', area_alpha=0.33, dB=True, estimate='auto',
                 show=True, n_jobs=1, average=False, line_alpha=None,
                 spatial_colors=True, verbose=None):
    """%(plot_psd_doc)s.

    Parameters
    ----------
    raw : instance of Raw
        The raw object.
    fmin : float
        Start frequency to consider.
    fmax : float
        End frequency to consider.
    tmin : float | None
        Start time to consider.
    tmax : float | None
        End time to consider.
    proj : bool
        Apply projection.
    n_fft : int | None
        Number of points to use in Welch FFT calculations.
        Default is None, which uses the minimum of 2048 and the
        number of time points.
    n_overlap : int
        The number of points of overlap between blocks. The default value
        is 0 (no overlap).
    reject_by_annotation : bool
        Whether to omit bad segments from the data while computing the
        PSD. If True, annotated segments with a description that starts
        with 'bad' are omitted. Has no effect if ``inst`` is an Epochs or
        Evoked object. Defaults to True.
    %(plot_psd_picks_good_data)s
    ax : instance of Axes | None
        Axes to plot into. If None, axes will be created.
    %(plot_psd_color)s
    %(plot_psd_xscale)s
    %(plot_psd_area_mode)s
    %(plot_psd_area_alpha)s
    %(plot_psd_dB)s
    %(plot_psd_estimate)s
    %(show)s
    %(n_jobs)s
    %(plot_psd_average)s
    %(plot_psd_line_alpha)sxscale=xscale,
    %(plot_psd_spatial_colors)s
    %(verbose)s

    Returns
    -------
    fig : instance of Figure
        Figure with frequency spectra of the data channels.
    """
    from .utils import _set_psd_plot_params, _plot_psd
    fig, picks_list, titles_list, units_list, scalings_list, ax_list, \
        make_label = _set_psd_plot_params(
            raw.info, proj, picks, ax, area_mode)
    del ax
    psd_list = list()
    if n_fft is None:
        if tmax is None or not np.isfinite(tmax):
            tmax = raw.times[-1]
        tmin = 0. if tmin is None else tmin
        n_fft = min(np.diff(raw.time_as_index([tmin, tmax]))[0] + 1, 2048)
    for picks in picks_list:
        psd, freqs = psd_welch(raw, tmin=tmin, tmax=tmax, picks=picks,
                               fmin=fmin, fmax=fmax, proj=proj, n_fft=n_fft,
                               n_overlap=n_overlap, n_jobs=n_jobs,
                               reject_by_annotation=reject_by_annotation)
        psd_list.append(psd)
    fig = _plot_psd(raw, fig, freqs, psd_list, picks_list, titles_list,
                    units_list, scalings_list, ax_list, make_label, color,
                    area_mode, area_alpha, dB, estimate, average,
                    spatial_colors, xscale, line_alpha)
    plt_show(show)
    return fig


def _prepare_mne_browse_raw(params, title, bgcolor, color, bad_color, inds,
                            n_channels):
    """Set up the mne_browse_raw window."""
    import matplotlib as mpl

    figsize = _get_figsize_from_config()
    params['fig'] = figure_nobar(facecolor=bgcolor, figsize=figsize)
    params['fig'].canvas.set_window_title(title or "Raw")
    # most of the axes setup is done in _prepare_mne_browse
    _prepare_mne_browse(params, xlabel='Time (s)')
    ax = params['ax']
    ax_hscroll = params['ax_hscroll']
    ax_vscroll = params['ax_vscroll']

    # populate vertical and horizontal scrollbars
    info = params['info']
    n_ch = len(inds)

    if 'fig_selection' in params:
        selections = params['selections']
        labels = [l._text for l in params['fig_selection'].radio.labels]
        # Flatten the selections dict to a list.
        cis = [item for sublist in [selections[l] for l in labels] for item
               in sublist]

        for idx, ci in enumerate(cis):
            this_color = (bad_color if info['ch_names'][ci] in
                          info['bads'] else color)
            if isinstance(this_color, dict):
                this_color = this_color[params['types'][ci]]
            ax_vscroll.add_patch(mpl.patches.Rectangle((0, idx), 1, 1,
                                                       facecolor=this_color,
                                                       edgecolor=this_color))
        ax_vscroll.set_ylim(len(cis), 0)
        n_channels = max([len(selections[labels[0]]), n_channels])
    else:
        for ci in range(len(inds)):
            this_color = (bad_color if info['ch_names'][inds[ci]] in
                          info['bads'] else color)
            if isinstance(this_color, dict):
                this_color = this_color[params['types'][inds[ci]]]
            ax_vscroll.add_patch(mpl.patches.Rectangle((0, ci), 1, 1,
                                                       facecolor=this_color,
                                                       edgecolor=this_color))
        ax_vscroll.set_ylim(n_ch, 0)
    vsel_patch = mpl.patches.Rectangle((0, 0), 1, n_channels, alpha=0.5,
                                       facecolor='w', edgecolor='w')
    ax_vscroll.add_patch(vsel_patch)
    params['vsel_patch'] = vsel_patch

    hsel_patch = mpl.patches.Rectangle((params['t_start'], 0),
                                       params['duration'], 1, edgecolor='k',
                                       facecolor=(0.75, 0.75, 0.75),
                                       alpha=0.25, linewidth=1, clip_on=False)
    ax_hscroll.add_patch(hsel_patch)
    params['hsel_patch'] = hsel_patch
    ax_hscroll.set_xlim(params['first_time'], params['first_time'] +
                        params['n_times'] / float(info['sfreq']))

    ax_vscroll.set_title('Ch.')

    vertline_color = (0., 0.75, 0.)
    params['ax_vertline'] = ax.axvline(0, color=vertline_color, zorder=4)
    params['ax_vertline'].ch_name = ''
    params['vertline_t'] = ax_hscroll.text(params['first_time'], 1.2, '',
                                           color=vertline_color, fontsize=10,
                                           va='bottom', ha='right')
    params['ax_hscroll_vertline'] = ax_hscroll.axvline(0,
                                                       color=vertline_color,
                                                       zorder=2)
    # make shells for plotting traces
    _setup_browser_offsets(params, n_channels)
    ax.set_xlim(params['t_start'], params['t_start'] + params['duration'],
                False)

    params['lines'] = [ax.plot([np.nan], antialiased=True, linewidth=0.5)[0]
                       for _ in range(n_ch)]
    ax.set_yticklabels(['X' * max([len(ch) for ch in info['ch_names']])])
    params['fig_annotation'] = None
    params['fig_help'] = None
    params['segment_line'] = None


def _plot_raw_traces(params, color, bad_color, event_lines=None,
                     event_color=None):
    """Plot raw traces."""
    lines = params['lines']
    info = params['info']
    inds = params['inds']
    butterfly = params['butterfly']
    if butterfly:
        n_channels = len(params['offsets'])
        ch_start = 0
        offsets = params['offsets'][inds]
    else:
        n_channels = params['n_channels']
        ch_start = params['ch_start']
        offsets = params['offsets']
    params['bad_color'] = bad_color
    ax = params['ax']
    labels = ax.yaxis.get_ticklabels()
    # Scalebars
    for bar in params.get('scalebars', {}).values():
        ax.lines.remove(bar)
    params['scalebars'] = dict()
    # delete event and annotation texts as well as scale bar texts
    params['ax'].texts = []
    # do the plotting
    tick_list = list()
    for ii in range(n_channels):
        ch_ind = ii + ch_start
        # let's be generous here and allow users to pass
        # n_channels per view >= the number of traces available
        if ii >= len(lines):
            break
        elif ch_ind < len(inds):
            # scale to fit
            ch_name = info['ch_names'][inds[ch_ind]]
            tick_list += [ch_name]
            offset = offsets[ii]
            this_type = params['types'][inds[ch_ind]]
            # do NOT operate in-place lest this get screwed up

            # apply user-supplied scale factor
            this_data = params['data'][inds[ch_ind]] * params['scale_factor']

            # clip to range (if relevant)
            if params['clipping'] == 'transparent':
                this_data[np.abs(this_data) > 1] = np.nan
            elif params['clipping'] == 'clamp':
                np.clip(this_data, -1, 1, out=this_data)

            # set color
            this_color = bad_color if ch_name in info['bads'] else color
            if isinstance(this_color, dict):
                this_color = this_color[this_type]

            if inds[ch_ind] in params['data_picks']:
                this_decim = params['decim']
            else:
                this_decim = 1
            this_t = params['times'][::this_decim] + params['first_time']

            # subtraction here gets correct orientation for flipped ylim
            lines[ii].set_ydata(offset - this_data[..., ::this_decim])
            lines[ii].set_xdata(this_t)
            lines[ii].set_color(this_color)
            vars(lines[ii])['ch_name'] = ch_name
            vars(lines[ii])['def_color'] = color[this_type]
            this_z = 0 if ch_name in info['bads'] else 1
            if butterfly:
                if ch_name not in info['bads']:
                    if params['types'][ii] == 'mag':
                        this_z = 2
                    elif params['types'][ii] == 'grad':
                        this_z = 3
                for label in labels:
                    label.set_color('black')
            else:
                # set label color
                this_color = (bad_color if ch_name in info['bads'] else
                              this_color)
                labels[ii].set_color(this_color)
            lines[ii].set_zorder(this_z)
            # add a scale bar
            if (params['use_scalebars'] and
                    this_type != 'stim' and
                    ch_name not in params['whitened_ch_names'] and
                    ch_name not in params['info']['bads'] and
                    this_type not in params['scalebars'] and
                    this_type in params['scalings'] and
                    this_type in params.get('unit_scalings', {}) and
                    this_type in params.get('units', {})):
                scale_color = '#AA3377'  # purple
                x = this_t[0]
                # This is what our data get multiplied by
                inv_norm = (
                    params['scalings'][this_type] *
                    params['unit_scalings'][this_type] *
                    2. /
                    params['scale_factor'])
                units = params['units'][this_type]
                bar = ax.plot([x, x], [offset - 1., offset + 1.],
                              color=scale_color, zorder=5, lw=4)[0]
                text = ax.text(x, offset + 1.,
                               '%s %s ' % (_simplify_float(inv_norm), units),
                               va='baseline', ha='right',
                               color=scale_color, zorder=5, size='xx-small')
                params['scalebars'][this_type] = bar

        else:
            # "remove" lines
            lines[ii].set_xdata([])
            lines[ii].set_ydata([])

    # deal with event lines
    if params['event_times'] is not None:
        # find events in the time window
        event_times = params['event_times']
        mask = np.logical_and(event_times >= params['times'][0],
                              event_times <= params['times'][-1])
        event_times = event_times[mask]
        event_nums = params['event_nums'][mask]
        # plot them with appropriate colors
        # go through the list backward so we end with -1, the catchall
        used = np.zeros(len(event_times), bool)
        ylim = params['ax'].get_ylim()
        for ev_num, line in zip(sorted(event_color.keys())[::-1],
                                event_lines[::-1]):
            mask = (event_nums == ev_num) if ev_num >= 0 else ~used
            assert not np.any(used[mask])
            used[mask] = True
            t = event_times[mask] + params['first_time']
            if len(t) > 0:
                xs = list()
                ys = list()
                for tt in t:
                    xs += [tt, tt, np.nan]
                    ys += [0, ylim[0], np.nan]
                line.set_xdata(xs)
                line.set_ydata(ys)
                line.set_zorder(0)
            else:
                line.set_xdata([])
                line.set_ydata([])

        # don't add event numbers for more than 50 visible events
        if len(event_times) <= 50:
            for ev_time, ev_num in zip(event_times, event_nums):
                if -1 in event_color or ev_num in event_color:
                    text = params['event_id_rev'].get(ev_num, ev_num)
                    params['ax'].text(ev_time, -0.1, text, fontsize=8,
                                      ha='center')

    if 'segments' in params:
        while len(params['ax'].collections) > 0:  # delete previous annotations
            params['ax'].collections.pop(-1)
        segments = params['segments']
        times = params['times']
        ylim = params['ax'].get_ylim()
        for idx, segment in enumerate(segments):
            if segment[0] > times[-1] + params['first_time']:
                break  # Since the segments are sorted by t_start
            if segment[1] < times[0] + params['first_time']:
                continue
            start = max(segment[0], times[0] + params['first_time'])
            end = min(times[-1] + params['first_time'], segment[1])
            dscr = params['raw'].annotations.description[idx]
            segment_color = params['segment_colors'][dscr]
            params['ax'].fill_betweenx(ylim, start, end, color=segment_color,
                                       alpha=0.3)
            params['ax'].text((start + end) / 2., ylim[1] - 0.1, dscr,
                              ha='center', color=segment_color)

    # finalize plot
    params['ax'].set_xlim(params['times'][0] + params['first_time'],
                          params['times'][0] + params['first_time'] +
                          params['duration'], False)
    if not butterfly:
        params['ax'].set_yticklabels(tick_list, rotation=0)
        _set_ax_label_style(params['ax'], params)
    if 'fig_selection' not in params:
        params['vsel_patch'].set_y(params['ch_start'])
    params['fig'].canvas.draw()
    # XXX This is a hack to make sure this figure gets drawn last
    # so that when matplotlib goes to calculate bounds we don't get a
    # CGContextRef error on the MacOSX backend :(
    if params['fig_proj'] is not None:
        params['fig_proj'].canvas.draw()


@verbose
def plot_raw_psd_topo(raw, tmin=0., tmax=None, fmin=0., fmax=100., proj=False,
                      n_fft=2048, n_overlap=0, layout=None, color='w',
                      fig_facecolor='k', axis_facecolor='k', dB=True,
                      show=True, block=False, n_jobs=1, axes=None,
                      verbose=None):
    """Plot channel-wise frequency spectra as topography.

    Parameters
    ----------
    raw : instance of io.Raw
        The raw instance to use.
    tmin : float
        Start time for calculations. Defaults to zero.
    tmax : float | None
        End time for calculations. If None (default), the end of data is used.
    fmin : float
        Start frequency to consider. Defaults to zero.
    fmax : float
        End frequency to consider. Defaults to 100.
    proj : bool
        Apply projection. Defaults to False.
    n_fft : int
        Number of points to use in Welch FFT calculations. Defaults to 2048.
    n_overlap : int
        The number of points of overlap between blocks. Defaults to 0
        (no overlap).
    layout : instance of Layout | None
        Layout instance specifying sensor positions (does not need to be
        specified for Neuromag data). If None (default), the correct layout is
        inferred from the data.
    color : str | tuple
        A matplotlib-compatible color to use for the curves. Defaults to white.
    fig_facecolor : str | tuple
        A matplotlib-compatible color to use for the figure background.
        Defaults to black.
    axis_facecolor : str | tuple
        A matplotlib-compatible color to use for the axis background.
        Defaults to black.
    dB : bool
        If True, transform data to decibels. Defaults to True.
    show : bool
        Show figure if True. Defaults to True.
    block : bool
        Whether to halt program execution until the figure is closed.
        May not work on all systems / platforms. Defaults to False.
    %(n_jobs)s
    axes : instance of matplotlib Axes | None
        Axes to plot into. If None, axes will be created.
    %(verbose)s

    Returns
    -------
    fig : instance of matplotlib.figure.Figure
        Figure distributing one image per channel across sensor topography.
    """
    if layout is None:
        from ..channels.layout import find_layout
        layout = find_layout(raw.info)

    psds, freqs = psd_welch(raw, tmin=tmin, tmax=tmax, fmin=fmin,
                            fmax=fmax, proj=proj, n_fft=n_fft,
                            n_overlap=n_overlap, n_jobs=n_jobs)
    if dB:
        psds = 10 * np.log10(psds)
        y_label = 'dB'
    else:
        y_label = 'Power'
    show_func = partial(_plot_timeseries_unified, data=[psds], color=color,
                        times=[freqs])
    click_func = partial(_plot_timeseries, data=[psds], color=color,
                         times=[freqs])
    picks = _pick_data_channels(raw.info)
    info = pick_info(raw.info, picks)

    fig = _plot_topo(info, times=freqs, show_func=show_func,
                     click_func=click_func, layout=layout,
                     axis_facecolor=axis_facecolor,
                     fig_facecolor=fig_facecolor, x_label='Frequency (Hz)',
                     unified=True, y_label=y_label, axes=axes)

    try:
        plt_show(show, block=block)
    except TypeError:  # not all versions have this
        plt_show(show)
    return fig


def _set_custom_selection(params):
    """Set custom selection by lasso selector."""
    chs = params['fig_selection'].lasso.selection
    if len(chs) == 0:
        return
    labels = [l._text for l in params['fig_selection'].radio.labels]
    inds = np.in1d(params['raw'].ch_names, chs)
    params['selections']['Custom'] = np.where(inds)[0]

    _set_radio_button(labels.index('Custom'), params=params)


def _setup_browser_selection(raw, kind, selector=True):
    """Organize browser selections."""
    import matplotlib.pyplot as plt
    from matplotlib.widgets import RadioButtons
    from ..selection import (read_selection, _SELECTIONS, _EEG_SELECTIONS,
                             _divide_to_regions)
    from ..utils import _get_stim_channel
    _check_option('group_by', kind, ('position, selection'))
    if kind == 'position':
        order = _divide_to_regions(raw.info)
        keys = _SELECTIONS[1:]  # no 'Vertex'
        kind = 'position'
    else:  # kind == 'selection'
        from ..io import RawFIF, RawArray
        if not isinstance(raw, (RawFIF, RawArray)):
            raise ValueError("order='selection' only works for Neuromag data. "
                             "Use order='position' instead.")
        order = dict()
        try:
            stim_ch = _get_stim_channel(None, raw.info)
        except ValueError:
            stim_ch = ['']
        keys = np.concatenate([_SELECTIONS, _EEG_SELECTIONS])
        stim_ch = pick_channels(raw.ch_names, stim_ch)
        for key in keys:
            channels = read_selection(key, info=raw.info)
            picks = pick_channels(raw.ch_names, channels)
            if len(picks) == 0:
                continue  # omit empty selections
            order[key] = np.concatenate([picks, stim_ch])

    misc = pick_types(raw.info, meg=False, eeg=False, stim=True, eog=True,
                      ecg=True, emg=True, ref_meg=False, misc=True, resp=True,
                      chpi=True, exci=True, ias=True, syst=True, seeg=False,
                      bio=True, ecog=False, fnirs=False, exclude=())
    if len(misc) > 0:
        order['Misc'] = misc
    keys = np.concatenate([keys, ['Misc']])
    if not selector:
        return order
    fig_selection = figure_nobar(figsize=(2, 6), dpi=80)
    fig_selection.canvas.set_window_title('Selection')
    rax = plt.subplot2grid((6, 1), (2, 0), rowspan=4, colspan=1)
    topo_ax = plt.subplot2grid((6, 1), (0, 0), rowspan=2, colspan=1)
    keys = np.concatenate([keys, ['Custom']])
    order.update({'Custom': list()})  # custom selection with lasso

    plot_sensors(raw.info, kind='select', ch_type='all', axes=topo_ax,
                 ch_groups=kind, title='', show=False)
    fig_selection.radio = RadioButtons(rax, [key for key in keys
                                             if key in order.keys()])

    for circle in fig_selection.radio.circles:
        circle.set_radius(0.02)  # make them smaller to prevent overlap
        circle.set_edgecolor('gray')  # make sure the buttons are visible

    return order, fig_selection