File: test_evoked.py

package info (click to toggle)
python-mne 0.19.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 100,440 kB
  • sloc: python: 120,243; pascal: 1,861; makefile: 225; sh: 15
file content (407 lines) | stat: -rw-r--r-- 17,634 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
# Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr>
#          Denis Engemann <denis.engemann@gmail.com>
#          Martin Luessi <mluessi@nmr.mgh.harvard.edu>
#          Eric Larson <larson.eric.d@gmail.com>
#          Cathy Nangini <cnangini@gmail.com>
#          Mainak Jas <mainak@neuro.hut.fi>
#          Jona Sassenhagen <jona.sassenhagen@gmail.com>
#          Daniel McCloy <dan.mccloy@gmail.com>
#
# License: Simplified BSD

import os.path as op

import numpy as np
import pytest
import matplotlib.pyplot as plt
from matplotlib import gridspec
from matplotlib.cm import get_cmap

import mne
from mne import (read_events, Epochs, read_cov, compute_covariance,
                 make_fixed_length_events)
from mne.io import read_raw_fif
from mne.utils import run_tests_if_main, catch_logging
from mne.viz.evoked import plot_compare_evokeds
from mne.viz.utils import _fake_click
from mne.datasets import testing
from mne.io.constants import FIFF
from mne.stats.parametric import _parametric_ci

base_dir = op.join(op.dirname(__file__), '..', '..', 'io', 'tests', 'data')
evoked_fname = op.join(base_dir, 'test-ave.fif')
raw_fname = op.join(base_dir, 'test_raw.fif')
raw_sss_fname = op.join(base_dir, 'test_chpi_raw_sss.fif')
cov_fname = op.join(base_dir, 'test-cov.fif')
event_name = op.join(base_dir, 'test-eve.fif')
event_id, tmin, tmax = 1, -0.1, 0.1

# Use a subset of channels for plotting speed
# make sure we have a magnetometer and a pair of grad pairs for topomap.
picks = [0, 1, 2, 3, 4, 6, 7, 61, 122, 183, 244, 305]
sel = [0, 7]


def _get_epochs():
    """Get epochs."""
    raw = read_raw_fif(raw_fname)
    raw.add_proj([], remove_existing=True)
    events = read_events(event_name)
    epochs = Epochs(raw, events[:5], event_id, tmin, tmax, picks=picks,
                    decim=10, verbose='error')
    epochs.info['bads'] = [epochs.ch_names[-1]]
    epochs.info.normalize_proj()
    return epochs


def _get_epochs_delayed_ssp():
    """Get epochs with delayed SSP."""
    raw = read_raw_fif(raw_fname)
    events = read_events(event_name)
    reject = dict(mag=4e-12)
    epochs_delayed_ssp = Epochs(raw, events[:10], event_id, tmin, tmax,
                                picks=picks, proj='delayed', reject=reject,
                                verbose='error')
    epochs_delayed_ssp.info.normalize_proj()
    return epochs_delayed_ssp


def test_plot_evoked_cov():
    """Test plot_evoked with noise_cov."""
    evoked = _get_epochs().average()
    cov = read_cov(cov_fname)
    cov['projs'] = []  # avoid warnings
    evoked.plot(noise_cov=cov, time_unit='s')
    with pytest.raises(TypeError, match='Covariance'):
        evoked.plot(noise_cov=1., time_unit='s')
    with pytest.raises(IOError, match='No such file'):
        evoked.plot(noise_cov='nonexistent-cov.fif', time_unit='s')
    raw = read_raw_fif(raw_sss_fname)
    events = make_fixed_length_events(raw)
    epochs = Epochs(raw, events, picks=picks)
    cov = compute_covariance(epochs)
    evoked_sss = epochs.average()
    with pytest.warns(RuntimeWarning, match='relative scaling'):
        evoked_sss.plot(noise_cov=cov, time_unit='s')
    plt.close('all')


@pytest.mark.slowtest
def test_plot_evoked():
    """Test evoked.plot."""
    evoked = _get_epochs().average()
    fig = evoked.plot(proj=True, hline=[1], exclude=[], window_title='foo',
                      time_unit='s')
    # Test a click
    ax = fig.get_axes()[0]
    line = ax.lines[0]
    _fake_click(fig, ax,
                [line.get_xdata()[0], line.get_ydata()[0]], 'data')
    _fake_click(fig, ax,
                [ax.get_xlim()[0], ax.get_ylim()[1]], 'data')
    # plot with bad channels excluded & spatial_colors & zorder
    evoked.plot(exclude='bads', time_unit='s')

    # test selective updating of dict keys is working.
    evoked.plot(hline=[1], units=dict(mag='femto foo'), time_unit='s')
    evoked_delayed_ssp = _get_epochs_delayed_ssp().average()
    evoked_delayed_ssp.plot(proj='interactive', time_unit='s')
    evoked_delayed_ssp.apply_proj()
    pytest.raises(RuntimeError, evoked_delayed_ssp.plot,
                  proj='interactive', time_unit='s')
    evoked_delayed_ssp.info['projs'] = []
    pytest.raises(RuntimeError, evoked_delayed_ssp.plot,
                  proj='interactive', time_unit='s')
    pytest.raises(RuntimeError, evoked_delayed_ssp.plot,
                  proj='interactive', axes='foo', time_unit='s')
    plt.close('all')

    # test GFP only
    evoked.plot(gfp='only', time_unit='s')
    pytest.raises(ValueError, evoked.plot, gfp='foo', time_unit='s')

    # plot with bad channels excluded, spatial_colors, zorder & pos. layout
    evoked.rename_channels({'MEG 0133': 'MEG 0000'})
    evoked.plot(exclude=evoked.info['bads'], spatial_colors=True, gfp=True,
                zorder='std', time_unit='s')
    evoked.plot(exclude=[], spatial_colors=True, zorder='unsorted',
                time_unit='s')
    pytest.raises(TypeError, evoked.plot, zorder='asdf', time_unit='s')
    plt.close('all')

    evoked.plot_sensors()  # Test plot_sensors
    plt.close('all')

    evoked.pick_channels(evoked.ch_names[:4])
    with catch_logging() as log_file:
        evoked.plot(verbose=True, time_unit='s')
    assert 'Need more than one' in log_file.getvalue()


def test_plot_evoked_image():
    """Test plot_evoked_image."""
    evoked = _get_epochs().average()
    evoked.plot_image(proj=True, time_unit='ms')

    # fail nicely on NaN
    evoked_nan = evoked.copy()
    evoked_nan.data[:, 0] = np.nan
    pytest.raises(ValueError, evoked_nan.plot)
    with np.errstate(invalid='ignore'):
        pytest.raises(ValueError, evoked_nan.plot_image)
        pytest.raises(ValueError, evoked_nan.plot_joint)

    # test mask
    evoked.plot_image(picks=[1, 2], mask=evoked.data > 0, time_unit='s')
    evoked.plot_image(picks=[1, 2], mask_cmap=None, colorbar=False,
                      mask=np.ones(evoked.data.shape).astype(bool),
                      time_unit='s')
    with pytest.warns(RuntimeWarning, match='not adding contour'):
        evoked.plot_image(picks=[1, 2], mask=None, mask_style="both",
                          time_unit='s')
    with pytest.raises(ValueError, match='must have the same shape'):
        evoked.plot_image(mask=evoked.data[1:, 1:] > 0, time_unit='s')

    # plot with bad channels excluded
    evoked.plot_image(exclude='bads', cmap='interactive', time_unit='s')
    plt.close('all')

    with pytest.raises(ValueError, match='not unique'):
        evoked.plot_image(picks=[0, 0], time_unit='s')  # duplicates

    ch_names = evoked.ch_names[3:5]
    picks = [evoked.ch_names.index(ch) for ch in ch_names]
    evoked.plot_image(show_names="all", time_unit='s', picks=picks)
    yticklabels = plt.gca().get_yticklabels()
    for tick_target, tick_observed in zip(ch_names, yticklabels):
        assert tick_target in str(tick_observed)
    evoked.plot_image(show_names=True, time_unit='s')

    # test groupby
    evoked.plot_image(group_by=dict(sel=sel), axes=dict(sel=plt.axes()))
    plt.close('all')
    for group_by, axes in (("something", dict()), (dict(), "something")):
        pytest.raises(ValueError, evoked.plot_image, group_by=group_by,
                      axes=axes)


def test_plot_white():
    """Test plot_white."""
    cov = read_cov(cov_fname)
    cov['method'] = 'empirical'
    cov['projs'] = []  # avoid warnings
    evoked = _get_epochs().average()
    # test rank param.
    evoked.plot_white(cov, rank={'mag': 101, 'grad': 201}, time_unit='s')
    evoked.plot_white(cov, rank={'mag': 101}, time_unit='s')  # test rank param
    evoked.plot_white(cov, rank={'grad': 201}, time_unit='s')
    pytest.raises(
        ValueError, evoked.plot_white, cov,
        rank={'mag': 101, 'grad': 201, 'meg': 306}, time_unit='s')
    pytest.raises(
        ValueError, evoked.plot_white, cov, rank={'meg': 306}, time_unit='s')
    evoked.plot_white([cov, cov], time_unit='s')
    plt.close('all')

    # Hack to test plotting of maxfiltered data
    evoked_sss = evoked.copy()
    sss = dict(sss_info=dict(in_order=80, components=np.arange(80)))
    evoked_sss.info['proc_history'] = [dict(max_info=sss)]
    evoked_sss.plot_white(cov, rank={'meg': 64}, time_unit='s')
    pytest.raises(
        ValueError, evoked_sss.plot_white, cov, rank={'grad': 201},
        time_unit='s')
    evoked_sss.plot_white(cov, time_unit='s')
    plt.close('all')


def test_plot_compare_evokeds():
    """Test plot_compare_evokeds."""
    evoked = _get_epochs().average()
    # test defaults
    figs = plot_compare_evokeds(evoked)
    assert len(figs) == 2
    # test picks, combine, and vlines (1-channel pick also shows sensor inset)
    picks = ['MEG 0113', 'mag'] + 2 * [['MEG 0113', 'MEG 0112']] + [[0, 1]]
    vlines = [[0.1, 0.2], []] + 3 * ['auto']
    combine = [None, 'mean', 'std', None, lambda x: np.min(x, axis=1)]
    title = ['MEG 0113', '(mean)', '(std. dev.)', '(GFP)', 'MEG 0112']
    for _p, _v, _c, _t in zip(picks, vlines, combine, title):
        fig = plot_compare_evokeds(evoked, picks=_p, vlines=_v, combine=_c)
        assert fig[0].axes[0].get_title().endswith(_t)
    # test passing more than one evoked
    red, blue = evoked.copy(), evoked.copy()
    red.data *= 1.5
    blue.data /= 1.5
    evoked_dict = {'aud/l': blue, 'aud/r': red, 'vis': evoked}
    huge_dict = {'cond{}'.format(i): ev for i, ev in enumerate([evoked] * 11)}
    plot_compare_evokeds(evoked_dict)                           # dict
    plot_compare_evokeds([[red, evoked], [blue, evoked]])       # list of lists
    figs = plot_compare_evokeds({'cond': [blue, red, evoked]})  # dict of list
    # test that confidence bands are plausible
    for fig in figs:
        extents = fig.axes[0].collections[0].get_paths()[0].get_extents()
        xlim, ylim = extents.get_points().T
        assert np.allclose(xlim, evoked.times[[0, -1]])
        line = fig.axes[0].lines[0]
        xvals = line.get_xdata()
        assert np.allclose(xvals, evoked.times)
        yvals = line.get_ydata()
        assert (yvals < ylim[1]).all()
        assert (yvals > ylim[0]).all()
    plt.close('all')
    # test other CI args
    for _ci in (None, False, 0.5,
                lambda x: np.stack([x.mean(axis=0) + 1, x.mean(axis=0) - 1])):
        plot_compare_evokeds({'cond': [blue, red, evoked]}, ci=_ci)
    with pytest.raises(TypeError, match='"ci" must be None, bool, float or'):
        plot_compare_evokeds(evoked, ci='foo')
    # test sensor inset, legend location, and axis inversion & truncation
    plot_compare_evokeds(evoked_dict, invert_y=True, legend='upper left',
                         show_sensors='center', truncate_xaxis=False,
                         truncate_yaxis=False)
    plot_compare_evokeds(evoked, ylim=dict(mag=(-50, 50)), truncate_yaxis=True)
    plt.close('all')
    # test styles
    plot_compare_evokeds(evoked_dict, colors=['b', 'r', 'g'],
                         linestyles=[':', '-', '--'], split_legend=True)
    style_dict = dict(aud=dict(alpha=0.3), vis=dict(linewidth=3, c='k'))
    plot_compare_evokeds(evoked_dict, styles=style_dict, colors={'aud/r': 'r'},
                         linestyles=dict(vis='dotted'), ci=False)
    plot_compare_evokeds(evoked_dict, colors=list(range(3)))
    plt.close('all')
    # test colormap
    cmap = get_cmap('viridis')
    plot_compare_evokeds(evoked_dict, cmap=cmap, colors=dict(aud=0.4, vis=0.9))
    plot_compare_evokeds(evoked_dict, cmap=cmap, colors=dict(aud=1, vis=2))
    plot_compare_evokeds(evoked_dict, cmap=('cmap title', 'inferno'),
                         linestyles=['-', ':', '--'])
    plt.close('all')
    # test deprecation
    with pytest.warns(DeprecationWarning, match='"gfp" is deprecated'):
        plot_compare_evokeds(evoked, gfp=True)
    with pytest.warns(DeprecationWarning, match='"max_ticks" changed to '):
        plot_compare_evokeds(evoked, picks=[0], truncate_yaxis='max_ticks')
    # test warnings
    with pytest.warns(RuntimeWarning, match='in "picks"; cannot combine'):
        plot_compare_evokeds(evoked, picks=[0], combine='median')
    plt.close('all')
    # test errors
    with pytest.raises(TypeError, match='"evokeds" must be a dict, list'):
        plot_compare_evokeds('foo')
    with pytest.raises(ValueError, match=r'keys in "styles" \(.*\) must '):
        plot_compare_evokeds(evoked_dict, styles=dict(foo='foo', bar='bar'))
    with pytest.raises(ValueError, match='colors in the default color cycle'):
        plot_compare_evokeds(huge_dict, colors=None)
    with pytest.raises(TypeError, match='"cmap" is specified, then "colors"'):
        plot_compare_evokeds(evoked_dict, cmap='Reds', colors={'aud/l': 'foo',
                                                               'aud/r': 'bar',
                                                               'vis': 'baz'})
    plt.close('all')
    for kwargs in [dict(colors=[0, 1]), dict(linestyles=['-', ':'])]:
        match = r'but there are only \d* (colors|linestyles). Please specify'
        with pytest.raises(ValueError, match=match):
            plot_compare_evokeds(evoked_dict, **kwargs)
    for kwargs in [dict(colors='foo'), dict(linestyles='foo')]:
        match = r'"(colors|linestyles)" must be a dict, list, or None; got '
        with pytest.raises(TypeError, match=match):
            plot_compare_evokeds(evoked_dict, **kwargs)
    for kwargs in [dict(colors=dict(foo='f')), dict(linestyles=dict(foo='f'))]:
        match = r'If "(colors|linestyles)" is a dict its keys \(.*\) must '
        with pytest.raises(ValueError, match=match):
            plot_compare_evokeds(evoked_dict, **kwargs)
    for kwargs in [dict(legend='foo'), dict(show_sensors='foo')]:
        with pytest.raises(ValueError, match='not a legal MPL loc, please'):
            plot_compare_evokeds(evoked_dict, **kwargs)
    with pytest.raises(TypeError, match='an instance of list or tuple'):
        plot_compare_evokeds(evoked_dict, vlines='foo')
    with pytest.raises(ValueError, match='"truncate_yaxis" must be bool or '):
        plot_compare_evokeds(evoked_dict, truncate_yaxis='foo')
    plt.close('all')
    # test axes='topo'
    figs = plot_compare_evokeds(evoked_dict, axes='topo', legend=True)
    for fig in figs:
        assert len(fig.axes[0].lines) == len(evoked_dict)
    # old tests
    red.info['chs'][0]['loc'][:2] = 0  # test plotting channel at zero
    plot_compare_evokeds([red, blue], picks=[0],
                         ci=lambda x: [x.std(axis=0), -x.std(axis=0)])
    plot_compare_evokeds([list(evoked_dict.values())], picks=[0],
                         ci=_parametric_ci)
    # smoke test for tmin >= 0 (from mailing list)
    red.crop(0.01, None)
    assert len(red.times) > 2
    plot_compare_evokeds(red)
    # plot a flat channel
    red.data = np.zeros_like(red.data)
    plot_compare_evokeds(red)
    # smoke test for one time point (not useful but should not fail)
    red.crop(0.02, 0.02)
    assert len(red.times) == 1
    plot_compare_evokeds(red)
    # now that we've cropped `red`:
    with pytest.raises(ValueError, match='not contain the same time instants'):
        plot_compare_evokeds(evoked_dict)
    plt.close('all')


def test_plot_compare_evokeds_neuromag122():
    """Test topomap plotting."""
    evoked = mne.read_evokeds(evoked_fname, 'Left Auditory',
                              baseline=(None, 0))
    evoked.pick_types(meg='grad')
    evoked.pick_channels(evoked.ch_names[:122])
    ch_names = ['MEG %03d' % k for k in range(1, 123)]
    for c in evoked.info['chs']:
        c['coil_type'] = FIFF.FIFFV_COIL_NM_122
    evoked.rename_channels({c_old: c_new for (c_old, c_new) in
                            zip(evoked.ch_names, ch_names)})
    mne.viz.plot_compare_evokeds([evoked, evoked])


@testing.requires_testing_data
def test_plot_ctf():
    """Test plotting of CTF evoked."""
    ctf_dir = op.join(testing.data_path(download=False), 'CTF')
    raw_fname = op.join(ctf_dir, 'testdata_ctf.ds')

    raw = mne.io.read_raw_ctf(raw_fname, preload=True)
    events = np.array([[200, 0, 1]])
    event_id = 1
    tmin, tmax = -0.1, 0.5  # start and end of an epoch in sec.
    picks = mne.pick_types(raw.info, meg=True, stim=True, eog=True,
                           ref_meg=True, exclude='bads')[::20]
    epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=True,
                        picks=picks, preload=True, decim=10, verbose='error')
    evoked = epochs.average()
    evoked.plot_joint(times=[0.1])
    mne.viz.plot_compare_evokeds([evoked, evoked])

    # make sure axes position is "almost" unchanged
    # when axes were passed to plot_joint by the user
    times = [0.1, 0.2, 0.3]
    fig = plt.figure()

    # create custom axes for topomaps, colorbar and the timeseries
    gs = gridspec.GridSpec(3, 7, hspace=0.5, top=0.8)
    topo_axes = [fig.add_subplot(gs[0, idx * 2:(idx + 1) * 2])
                 for idx in range(len(times))]
    topo_axes.append(fig.add_subplot(gs[0, -1]))
    ts_axis = fig.add_subplot(gs[1:, 1:-1])

    def get_axes_midpoints(axes):
        midpoints = list()
        for ax in axes[:-1]:
            pos = ax.get_position()
            midpoints.append([pos.x0 + (pos.width * 0.5),
                              pos.y0 + (pos.height * 0.5)])
        return np.array(midpoints)

    midpoints_before = get_axes_midpoints(topo_axes)
    evoked.plot_joint(times=times, ts_args={'axes': ts_axis},
                      topomap_args={'axes': topo_axes}, title=None)
    midpoints_after = get_axes_midpoints(topo_axes)
    assert (np.linalg.norm(midpoints_before - midpoints_after) < 0.1).all()


run_tests_if_main()