1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
|
# Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Denis Engemann <denis.engemann@gmail.com>
# Martin Luessi <mluessi@nmr.mgh.harvard.edu>
# Eric Larson <larson.eric.d@gmail.com>
# Cathy Nangini <cnangini@gmail.com>
# Mainak Jas <mainak@neuro.hut.fi>
# Jona Sassenhagen <jona.sassenhagen@gmail.com>
# Daniel McCloy <dan.mccloy@gmail.com>
#
# License: Simplified BSD
import os.path as op
import numpy as np
import pytest
import matplotlib.pyplot as plt
from matplotlib import gridspec
from matplotlib.cm import get_cmap
import mne
from mne import (read_events, Epochs, read_cov, compute_covariance,
make_fixed_length_events)
from mne.io import read_raw_fif
from mne.utils import run_tests_if_main, catch_logging
from mne.viz.evoked import plot_compare_evokeds
from mne.viz.utils import _fake_click
from mne.datasets import testing
from mne.io.constants import FIFF
from mne.stats.parametric import _parametric_ci
base_dir = op.join(op.dirname(__file__), '..', '..', 'io', 'tests', 'data')
evoked_fname = op.join(base_dir, 'test-ave.fif')
raw_fname = op.join(base_dir, 'test_raw.fif')
raw_sss_fname = op.join(base_dir, 'test_chpi_raw_sss.fif')
cov_fname = op.join(base_dir, 'test-cov.fif')
event_name = op.join(base_dir, 'test-eve.fif')
event_id, tmin, tmax = 1, -0.1, 0.1
# Use a subset of channels for plotting speed
# make sure we have a magnetometer and a pair of grad pairs for topomap.
picks = [0, 1, 2, 3, 4, 6, 7, 61, 122, 183, 244, 305]
sel = [0, 7]
def _get_epochs():
"""Get epochs."""
raw = read_raw_fif(raw_fname)
raw.add_proj([], remove_existing=True)
events = read_events(event_name)
epochs = Epochs(raw, events[:5], event_id, tmin, tmax, picks=picks,
decim=10, verbose='error')
epochs.info['bads'] = [epochs.ch_names[-1]]
epochs.info.normalize_proj()
return epochs
def _get_epochs_delayed_ssp():
"""Get epochs with delayed SSP."""
raw = read_raw_fif(raw_fname)
events = read_events(event_name)
reject = dict(mag=4e-12)
epochs_delayed_ssp = Epochs(raw, events[:10], event_id, tmin, tmax,
picks=picks, proj='delayed', reject=reject,
verbose='error')
epochs_delayed_ssp.info.normalize_proj()
return epochs_delayed_ssp
def test_plot_evoked_cov():
"""Test plot_evoked with noise_cov."""
evoked = _get_epochs().average()
cov = read_cov(cov_fname)
cov['projs'] = [] # avoid warnings
evoked.plot(noise_cov=cov, time_unit='s')
with pytest.raises(TypeError, match='Covariance'):
evoked.plot(noise_cov=1., time_unit='s')
with pytest.raises(IOError, match='No such file'):
evoked.plot(noise_cov='nonexistent-cov.fif', time_unit='s')
raw = read_raw_fif(raw_sss_fname)
events = make_fixed_length_events(raw)
epochs = Epochs(raw, events, picks=picks)
cov = compute_covariance(epochs)
evoked_sss = epochs.average()
with pytest.warns(RuntimeWarning, match='relative scaling'):
evoked_sss.plot(noise_cov=cov, time_unit='s')
plt.close('all')
@pytest.mark.slowtest
def test_plot_evoked():
"""Test evoked.plot."""
evoked = _get_epochs().average()
fig = evoked.plot(proj=True, hline=[1], exclude=[], window_title='foo',
time_unit='s')
# Test a click
ax = fig.get_axes()[0]
line = ax.lines[0]
_fake_click(fig, ax,
[line.get_xdata()[0], line.get_ydata()[0]], 'data')
_fake_click(fig, ax,
[ax.get_xlim()[0], ax.get_ylim()[1]], 'data')
# plot with bad channels excluded & spatial_colors & zorder
evoked.plot(exclude='bads', time_unit='s')
# test selective updating of dict keys is working.
evoked.plot(hline=[1], units=dict(mag='femto foo'), time_unit='s')
evoked_delayed_ssp = _get_epochs_delayed_ssp().average()
evoked_delayed_ssp.plot(proj='interactive', time_unit='s')
evoked_delayed_ssp.apply_proj()
pytest.raises(RuntimeError, evoked_delayed_ssp.plot,
proj='interactive', time_unit='s')
evoked_delayed_ssp.info['projs'] = []
pytest.raises(RuntimeError, evoked_delayed_ssp.plot,
proj='interactive', time_unit='s')
pytest.raises(RuntimeError, evoked_delayed_ssp.plot,
proj='interactive', axes='foo', time_unit='s')
plt.close('all')
# test GFP only
evoked.plot(gfp='only', time_unit='s')
pytest.raises(ValueError, evoked.plot, gfp='foo', time_unit='s')
# plot with bad channels excluded, spatial_colors, zorder & pos. layout
evoked.rename_channels({'MEG 0133': 'MEG 0000'})
evoked.plot(exclude=evoked.info['bads'], spatial_colors=True, gfp=True,
zorder='std', time_unit='s')
evoked.plot(exclude=[], spatial_colors=True, zorder='unsorted',
time_unit='s')
pytest.raises(TypeError, evoked.plot, zorder='asdf', time_unit='s')
plt.close('all')
evoked.plot_sensors() # Test plot_sensors
plt.close('all')
evoked.pick_channels(evoked.ch_names[:4])
with catch_logging() as log_file:
evoked.plot(verbose=True, time_unit='s')
assert 'Need more than one' in log_file.getvalue()
def test_plot_evoked_image():
"""Test plot_evoked_image."""
evoked = _get_epochs().average()
evoked.plot_image(proj=True, time_unit='ms')
# fail nicely on NaN
evoked_nan = evoked.copy()
evoked_nan.data[:, 0] = np.nan
pytest.raises(ValueError, evoked_nan.plot)
with np.errstate(invalid='ignore'):
pytest.raises(ValueError, evoked_nan.plot_image)
pytest.raises(ValueError, evoked_nan.plot_joint)
# test mask
evoked.plot_image(picks=[1, 2], mask=evoked.data > 0, time_unit='s')
evoked.plot_image(picks=[1, 2], mask_cmap=None, colorbar=False,
mask=np.ones(evoked.data.shape).astype(bool),
time_unit='s')
with pytest.warns(RuntimeWarning, match='not adding contour'):
evoked.plot_image(picks=[1, 2], mask=None, mask_style="both",
time_unit='s')
with pytest.raises(ValueError, match='must have the same shape'):
evoked.plot_image(mask=evoked.data[1:, 1:] > 0, time_unit='s')
# plot with bad channels excluded
evoked.plot_image(exclude='bads', cmap='interactive', time_unit='s')
plt.close('all')
with pytest.raises(ValueError, match='not unique'):
evoked.plot_image(picks=[0, 0], time_unit='s') # duplicates
ch_names = evoked.ch_names[3:5]
picks = [evoked.ch_names.index(ch) for ch in ch_names]
evoked.plot_image(show_names="all", time_unit='s', picks=picks)
yticklabels = plt.gca().get_yticklabels()
for tick_target, tick_observed in zip(ch_names, yticklabels):
assert tick_target in str(tick_observed)
evoked.plot_image(show_names=True, time_unit='s')
# test groupby
evoked.plot_image(group_by=dict(sel=sel), axes=dict(sel=plt.axes()))
plt.close('all')
for group_by, axes in (("something", dict()), (dict(), "something")):
pytest.raises(ValueError, evoked.plot_image, group_by=group_by,
axes=axes)
def test_plot_white():
"""Test plot_white."""
cov = read_cov(cov_fname)
cov['method'] = 'empirical'
cov['projs'] = [] # avoid warnings
evoked = _get_epochs().average()
# test rank param.
evoked.plot_white(cov, rank={'mag': 101, 'grad': 201}, time_unit='s')
evoked.plot_white(cov, rank={'mag': 101}, time_unit='s') # test rank param
evoked.plot_white(cov, rank={'grad': 201}, time_unit='s')
pytest.raises(
ValueError, evoked.plot_white, cov,
rank={'mag': 101, 'grad': 201, 'meg': 306}, time_unit='s')
pytest.raises(
ValueError, evoked.plot_white, cov, rank={'meg': 306}, time_unit='s')
evoked.plot_white([cov, cov], time_unit='s')
plt.close('all')
# Hack to test plotting of maxfiltered data
evoked_sss = evoked.copy()
sss = dict(sss_info=dict(in_order=80, components=np.arange(80)))
evoked_sss.info['proc_history'] = [dict(max_info=sss)]
evoked_sss.plot_white(cov, rank={'meg': 64}, time_unit='s')
pytest.raises(
ValueError, evoked_sss.plot_white, cov, rank={'grad': 201},
time_unit='s')
evoked_sss.plot_white(cov, time_unit='s')
plt.close('all')
def test_plot_compare_evokeds():
"""Test plot_compare_evokeds."""
evoked = _get_epochs().average()
# test defaults
figs = plot_compare_evokeds(evoked)
assert len(figs) == 2
# test picks, combine, and vlines (1-channel pick also shows sensor inset)
picks = ['MEG 0113', 'mag'] + 2 * [['MEG 0113', 'MEG 0112']] + [[0, 1]]
vlines = [[0.1, 0.2], []] + 3 * ['auto']
combine = [None, 'mean', 'std', None, lambda x: np.min(x, axis=1)]
title = ['MEG 0113', '(mean)', '(std. dev.)', '(GFP)', 'MEG 0112']
for _p, _v, _c, _t in zip(picks, vlines, combine, title):
fig = plot_compare_evokeds(evoked, picks=_p, vlines=_v, combine=_c)
assert fig[0].axes[0].get_title().endswith(_t)
# test passing more than one evoked
red, blue = evoked.copy(), evoked.copy()
red.data *= 1.5
blue.data /= 1.5
evoked_dict = {'aud/l': blue, 'aud/r': red, 'vis': evoked}
huge_dict = {'cond{}'.format(i): ev for i, ev in enumerate([evoked] * 11)}
plot_compare_evokeds(evoked_dict) # dict
plot_compare_evokeds([[red, evoked], [blue, evoked]]) # list of lists
figs = plot_compare_evokeds({'cond': [blue, red, evoked]}) # dict of list
# test that confidence bands are plausible
for fig in figs:
extents = fig.axes[0].collections[0].get_paths()[0].get_extents()
xlim, ylim = extents.get_points().T
assert np.allclose(xlim, evoked.times[[0, -1]])
line = fig.axes[0].lines[0]
xvals = line.get_xdata()
assert np.allclose(xvals, evoked.times)
yvals = line.get_ydata()
assert (yvals < ylim[1]).all()
assert (yvals > ylim[0]).all()
plt.close('all')
# test other CI args
for _ci in (None, False, 0.5,
lambda x: np.stack([x.mean(axis=0) + 1, x.mean(axis=0) - 1])):
plot_compare_evokeds({'cond': [blue, red, evoked]}, ci=_ci)
with pytest.raises(TypeError, match='"ci" must be None, bool, float or'):
plot_compare_evokeds(evoked, ci='foo')
# test sensor inset, legend location, and axis inversion & truncation
plot_compare_evokeds(evoked_dict, invert_y=True, legend='upper left',
show_sensors='center', truncate_xaxis=False,
truncate_yaxis=False)
plot_compare_evokeds(evoked, ylim=dict(mag=(-50, 50)), truncate_yaxis=True)
plt.close('all')
# test styles
plot_compare_evokeds(evoked_dict, colors=['b', 'r', 'g'],
linestyles=[':', '-', '--'], split_legend=True)
style_dict = dict(aud=dict(alpha=0.3), vis=dict(linewidth=3, c='k'))
plot_compare_evokeds(evoked_dict, styles=style_dict, colors={'aud/r': 'r'},
linestyles=dict(vis='dotted'), ci=False)
plot_compare_evokeds(evoked_dict, colors=list(range(3)))
plt.close('all')
# test colormap
cmap = get_cmap('viridis')
plot_compare_evokeds(evoked_dict, cmap=cmap, colors=dict(aud=0.4, vis=0.9))
plot_compare_evokeds(evoked_dict, cmap=cmap, colors=dict(aud=1, vis=2))
plot_compare_evokeds(evoked_dict, cmap=('cmap title', 'inferno'),
linestyles=['-', ':', '--'])
plt.close('all')
# test deprecation
with pytest.warns(DeprecationWarning, match='"gfp" is deprecated'):
plot_compare_evokeds(evoked, gfp=True)
with pytest.warns(DeprecationWarning, match='"max_ticks" changed to '):
plot_compare_evokeds(evoked, picks=[0], truncate_yaxis='max_ticks')
# test warnings
with pytest.warns(RuntimeWarning, match='in "picks"; cannot combine'):
plot_compare_evokeds(evoked, picks=[0], combine='median')
plt.close('all')
# test errors
with pytest.raises(TypeError, match='"evokeds" must be a dict, list'):
plot_compare_evokeds('foo')
with pytest.raises(ValueError, match=r'keys in "styles" \(.*\) must '):
plot_compare_evokeds(evoked_dict, styles=dict(foo='foo', bar='bar'))
with pytest.raises(ValueError, match='colors in the default color cycle'):
plot_compare_evokeds(huge_dict, colors=None)
with pytest.raises(TypeError, match='"cmap" is specified, then "colors"'):
plot_compare_evokeds(evoked_dict, cmap='Reds', colors={'aud/l': 'foo',
'aud/r': 'bar',
'vis': 'baz'})
plt.close('all')
for kwargs in [dict(colors=[0, 1]), dict(linestyles=['-', ':'])]:
match = r'but there are only \d* (colors|linestyles). Please specify'
with pytest.raises(ValueError, match=match):
plot_compare_evokeds(evoked_dict, **kwargs)
for kwargs in [dict(colors='foo'), dict(linestyles='foo')]:
match = r'"(colors|linestyles)" must be a dict, list, or None; got '
with pytest.raises(TypeError, match=match):
plot_compare_evokeds(evoked_dict, **kwargs)
for kwargs in [dict(colors=dict(foo='f')), dict(linestyles=dict(foo='f'))]:
match = r'If "(colors|linestyles)" is a dict its keys \(.*\) must '
with pytest.raises(ValueError, match=match):
plot_compare_evokeds(evoked_dict, **kwargs)
for kwargs in [dict(legend='foo'), dict(show_sensors='foo')]:
with pytest.raises(ValueError, match='not a legal MPL loc, please'):
plot_compare_evokeds(evoked_dict, **kwargs)
with pytest.raises(TypeError, match='an instance of list or tuple'):
plot_compare_evokeds(evoked_dict, vlines='foo')
with pytest.raises(ValueError, match='"truncate_yaxis" must be bool or '):
plot_compare_evokeds(evoked_dict, truncate_yaxis='foo')
plt.close('all')
# test axes='topo'
figs = plot_compare_evokeds(evoked_dict, axes='topo', legend=True)
for fig in figs:
assert len(fig.axes[0].lines) == len(evoked_dict)
# old tests
red.info['chs'][0]['loc'][:2] = 0 # test plotting channel at zero
plot_compare_evokeds([red, blue], picks=[0],
ci=lambda x: [x.std(axis=0), -x.std(axis=0)])
plot_compare_evokeds([list(evoked_dict.values())], picks=[0],
ci=_parametric_ci)
# smoke test for tmin >= 0 (from mailing list)
red.crop(0.01, None)
assert len(red.times) > 2
plot_compare_evokeds(red)
# plot a flat channel
red.data = np.zeros_like(red.data)
plot_compare_evokeds(red)
# smoke test for one time point (not useful but should not fail)
red.crop(0.02, 0.02)
assert len(red.times) == 1
plot_compare_evokeds(red)
# now that we've cropped `red`:
with pytest.raises(ValueError, match='not contain the same time instants'):
plot_compare_evokeds(evoked_dict)
plt.close('all')
def test_plot_compare_evokeds_neuromag122():
"""Test topomap plotting."""
evoked = mne.read_evokeds(evoked_fname, 'Left Auditory',
baseline=(None, 0))
evoked.pick_types(meg='grad')
evoked.pick_channels(evoked.ch_names[:122])
ch_names = ['MEG %03d' % k for k in range(1, 123)]
for c in evoked.info['chs']:
c['coil_type'] = FIFF.FIFFV_COIL_NM_122
evoked.rename_channels({c_old: c_new for (c_old, c_new) in
zip(evoked.ch_names, ch_names)})
mne.viz.plot_compare_evokeds([evoked, evoked])
@testing.requires_testing_data
def test_plot_ctf():
"""Test plotting of CTF evoked."""
ctf_dir = op.join(testing.data_path(download=False), 'CTF')
raw_fname = op.join(ctf_dir, 'testdata_ctf.ds')
raw = mne.io.read_raw_ctf(raw_fname, preload=True)
events = np.array([[200, 0, 1]])
event_id = 1
tmin, tmax = -0.1, 0.5 # start and end of an epoch in sec.
picks = mne.pick_types(raw.info, meg=True, stim=True, eog=True,
ref_meg=True, exclude='bads')[::20]
epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=True,
picks=picks, preload=True, decim=10, verbose='error')
evoked = epochs.average()
evoked.plot_joint(times=[0.1])
mne.viz.plot_compare_evokeds([evoked, evoked])
# make sure axes position is "almost" unchanged
# when axes were passed to plot_joint by the user
times = [0.1, 0.2, 0.3]
fig = plt.figure()
# create custom axes for topomaps, colorbar and the timeseries
gs = gridspec.GridSpec(3, 7, hspace=0.5, top=0.8)
topo_axes = [fig.add_subplot(gs[0, idx * 2:(idx + 1) * 2])
for idx in range(len(times))]
topo_axes.append(fig.add_subplot(gs[0, -1]))
ts_axis = fig.add_subplot(gs[1:, 1:-1])
def get_axes_midpoints(axes):
midpoints = list()
for ax in axes[:-1]:
pos = ax.get_position()
midpoints.append([pos.x0 + (pos.width * 0.5),
pos.y0 + (pos.height * 0.5)])
return np.array(midpoints)
midpoints_before = get_axes_midpoints(topo_axes)
evoked.plot_joint(times=times, ts_args={'axes': ts_axis},
topomap_args={'axes': topo_axes}, title=None)
midpoints_after = get_axes_midpoints(topo_axes)
assert (np.linalg.norm(midpoints_before - midpoints_after) < 0.1).all()
run_tests_if_main()
|