File: plot_background_ica.py

package info (click to toggle)
python-mne 0.19.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 100,440 kB
  • sloc: python: 120,243; pascal: 1,861; makefile: 225; sh: 15
file content (97 lines) | stat: -rw-r--r-- 3,282 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
"""
.. _ica:

==================================================
Background on Independent Component Analysis (ICA)
==================================================

.. contents:: Contents
   :local:
   :depth: 2

Many M/EEG signals including biological artifacts reflect non-Gaussian
processes. Therefore PCA-based artifact rejection will likely perform worse at
separating the signal from noise sources.
MNE-Python supports identifying artifacts and latent components using temporal ICA.
MNE-Python implements the :class:`mne.preprocessing.ICA` class that facilitates applying ICA
to MEG and EEG data. Here we discuss some
basics of ICA.

Concepts
========

ICA finds directions in the feature space corresponding to projections with high non-Gaussianity.

- not necessarily orthogonal in the original feature space, but orthogonal in the whitened feature space.
- In contrast, PCA finds orthogonal directions in the raw feature
  space that correspond to directions accounting for maximum variance.
- or differently, if data only reflect Gaussian processes ICA and PCA are equivalent.


**Example**: Imagine 3 instruments playing simultaneously and 3 microphones
recording mixed signals. ICA can be used to recover the sources ie. what is played by each instrument.

ICA employs a very simple model: :math:`X = AS` where :math:`X` is our observations, :math:`A` is the mixing matrix and :math:`S` is the vector of independent (latent) sources.

The challenge is to recover :math:`A` and :math:`S` from :math:`X`.


First generate simulated data
-----------------------------
"""  # noqa: E501

import numpy as np
import matplotlib.pyplot as plt
from scipy import signal

from sklearn.decomposition import FastICA, PCA

np.random.seed(0)  # set seed for reproducible results
n_samples = 2000
time = np.linspace(0, 8, n_samples)

s1 = np.sin(2 * time)  # Signal 1 : sinusoidal signal
s2 = np.sign(np.sin(3 * time))  # Signal 2 : square signal
s3 = signal.sawtooth(2 * np.pi * time)  # Signal 3: sawtooth signal

S = np.c_[s1, s2, s3]
S += 0.2 * np.random.normal(size=S.shape)  # Add noise

S /= S.std(axis=0)  # Standardize data
# Mix data
A = np.array([[1, 1, 1], [0.5, 2, 1.0], [1.5, 1.0, 2.0]])  # Mixing matrix
X = np.dot(S, A.T)  # Generate observations

###############################################################################
# Now try to recover the sources
# ------------------------------

# compute ICA
ica = FastICA(n_components=3)
S_ = ica.fit_transform(X)  # Get the estimated sources
A_ = ica.mixing_  # Get estimated mixing matrix

# compute PCA
pca = PCA(n_components=3)
H = pca.fit_transform(X)  # estimate PCA sources

plt.figure(figsize=(9, 6))

models = [X, S, S_, H]
names = ['Observations (mixed signal)',
         'True Sources',
         'ICA estimated sources',
         'PCA estimated sources']
colors = ['red', 'steelblue', 'orange']

for ii, (model, name) in enumerate(zip(models, names), 1):
    plt.subplot(4, 1, ii)
    plt.title(name)
    for sig, color in zip(model.T, colors):
        plt.plot(sig, color=color)

plt.tight_layout()

###############################################################################
# :math:`\rightarrow` PCA fails at recovering our "instruments" since the
# related signals reflect non-Gaussian processes.