File: command_line_tutorial.rst

package info (click to toggle)
python-mne 0.8.6%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 87,892 kB
  • ctags: 6,639
  • sloc: python: 54,697; makefile: 165; sh: 15
file content (100 lines) | stat: -rw-r--r-- 3,109 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
.. _command_line_tutorial:

=====================================
Getting started with MNE command line
=====================================

The quick start guide shows how to run a standard processing of the
sample data set provided with MNE. XXX add link to data set download

First define your subject::

    export SUBJECT=sample

Build your source space::

    # MRI (this is not really needed for anything)
    mne_setup_mri --overwrite

    # Source space
    mne_setup_source_space --ico -6 --overwrite

Prepare for forward computation::

    # For homogeneous volume conductor
    mne_setup_forward_model --homog --surf --ico 4

    # or for XXX
    mne_setup_forward_model --surf --ico 4

List your bad channels in a file. Example sample_bads.bad contains::

    MEG 2443
    EEG 053

Mark bad channels::

    mne_mark_bad_channels --bad sample_bads.bad sample_audvis_raw.fif

Compute averaging::

    mne_process_raw --raw sample_audvis_raw.fif --lowpass 40 --projoff \
            --saveavetag -ave --ave audvis.ave

Compute the noise covariance matrix::

    mne_process_raw --raw sample_audvis_raw.fif --lowpass 40 --projoff \
            --savecovtag -cov --cov audvis.cov

Compute forward solution a.k.a. lead field::

    # for MEG only
    mne_do_forward_solution --mindist 5 --spacing oct-6 \
        --meas sample_audvis_raw.fif --bem sample-5120 --megonly --overwrite \
        --fwd sample_audvis-meg-oct-6-fwd.fif

    # for EEG only
    mne_do_forward_solution --mindist 5 --spacing oct-6 \
        --meas sample_audvis_raw.fif --bem sample-5120-5120-5120 --eegonly \
        --fwd sample_audvis-eeg-oct-6-fwd.fif

    # for both EEG and MEG
    mne_do_forward_solution --mindist 5 --spacing oct-6 \
        --meas sample_audvis_raw.fif --bem sample-5120-5120-5120 \
        --fwd sample_audvis-meg-eeg-oct-6-fwd.fif

Compute MNE inverse operators::

    # Note: The MEG/EEG forward solution could be used for all
    mne_do_inverse_operator --fwd sample_audvis-meg-oct-6-fwd.fif \
            --depth --loose 0.2 --meg

    mne_do_inverse_operator --fwd sample_audvis-eeg-oct-6-fwd.fif \
            --depth --loose 0.2 --eeg

    mne_do_inverse_operator --fwd sample_audvis-meg-eeg-oct-6-fwd.fif \
            --depth --loose 0.2 --eeg --meg

Produce stc files (activation files)::

    # for MEG
    mne_make_movie --inv sample_audvis-meg-oct-6-${mod}-inv.fif \
        --meas sample_audvis-ave.fif \
        --tmin 0 --tmax 250 --tstep 10 --spm \
        --smooth 5 --bmin -100 --bmax 0 --stc sample_audvis-meg

    # for EEG
    mne_make_movie --inv sample_audvis-eeg-oct-6-${mod}-inv.fif \
        --meas sample_audvis-ave.fif \
        --tmin 0 --tmax 250 --tstep 10 --spm \
        --smooth 5 --bmin -100 --bmax 0 --stc sample_audvis-eeg

    # for MEG and EEG combined
    mne_make_movie --inv sample_audvis-meg-eeg-oct-6-${mod}-inv.fif \
        --meas sample_audvis-ave.fif \
        --tmin 0 --tmax 250 --tstep 10 --spm \
        --smooth 5 --bmin -100 --bmax 0 --stc sample_audvis-meg-eeg

And, we're done!

You can now get started with the Python :ref:`examples-index`