File: python_tutorial.rst

package info (click to toggle)
python-mne 0.8.6%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 87,892 kB
  • ctags: 6,639
  • sloc: python: 54,697; makefile: 165; sh: 15
file content (396 lines) | stat: -rw-r--r-- 14,056 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
.. _mne_python_tutorial:

=========================================================
Tutorial: MEG and EEG data processing with MNE and Python
=========================================================

Python offers transparent scripting on top of MNE.
It was designed to be an alternative to the MNE matlab toolbox
but now it can do much more (customize events, compute
contrasts, statistics, time-frequency analysis etc.)
It uses the same files as standard MNE unix commands:
no need to convert your files to a new system or database.

What you can do with MNE Python
-------------------------------

    - **Raw data visualization** to visualize recordings, can also use *mne_browse_raw* for extended functionality (see :ref:`ch_browse`)
    - **Epoching**: Define epochs, baseline correction, handle conditions etc.
    - **Averaging** to get Evoked data
    - **Compute SSP pojectors** to remove ECG and EOG artifacts
    - **Compute ICA** to remove artifacts or select latent sources.
    - **Forward modeling**: BEM computation and mesh creation (see :ref:`ch_forward`)
    - **Linear inverse solvers** (dSPM, sLORETA, MNE, LCMV, DICS)
    - **Sparse inverse solvers** (L1/L2 mixed norm MxNE, Gamma Map, Time-Frequency MxNE)
    - **Connectivity estimation** in sensor and source space
    - **Visualization of sensor and source space data**
    - **Time-frequency** analysis with Morlet wavelets (induced power, phase lock value) also in the source space
    - **Spectrum estimation** using multi-taper method
    - **Compute contrasts** between conditions, between sensors, across subjects etc.
    - **Non-parametric statistics** in time, space and frequency (including cluster-level)
    - **Scripting** (batch and parallel computing)

What you're not supposed to do with MNE Python
----------------------------------------------

	- **Dipole fitting** use MNE or other designated software instead.
	- **Boundary Element Modeling** use MNE and Freesurfer.


.. note:: Package based on the FIF file format from Neuromag but can work with CTF and 4D after conversion to FIF.


Installation of the required materials
---------------------------------------

See :ref:`getting_started` with Python.


.. note:: The expected location for the MNE-sample data is my-path-to/mne-python/examples.
    If you downloaded data and an example asks you whether to download it again, make sure
    the data reside in the examples directory and you run the script from its current directory.

    From IPython e.g. say::

    cd examples/preprocessing


    %run plot_find_ecg_artifacts.py


From raw data to evoked data
----------------------------

.. _ipython: http://ipython.scipy.org/

Now, launch `ipython`_ (Advanced Python shell) using the QT backend which best supported across systems::

  $ ipython -pylab -qt

First, load the mne package:

    >>> import mne

If you'd like to turn information status messages off:

    >>> mne.set_log_level('WARNING')

But it's generally a good idea to leave them on:

    >>> mne.set_log_level('INFO')

You can set the default level by setting the environment variable
"MNE_LOGGING_LEVEL", or by having mne-python write preferences to a file:

    >>> mne.set_config('MNE_LOGGING_LEVEL','WARNING') # doctest: +SKIP

Note that the location of the mne-python preferences file (for easier manual
editing) can be found using:

    >>> mne.get_config_path() # doctest: +SKIP

By default logging messages print to the console, but look at
mne.set_log_file() to save output to a file.

Access raw data
^^^^^^^^^^^^^^^

    >>> from mne.datasets import sample
    >>> data_path = sample.data_path()
    >>> raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif'
    >>> print(raw_fname) # doctest: +SKIP
    ./MNE-sample-data/MEG/sample/sample_audvis_filt-0-40_raw.fif

.. note:: The MNE sample dataset should be downloaded automatically but be patient (approx. 2GB)

Read data from file:

    >>> raw = mne.io.Raw(raw_fname) # doctest:+ELLIPSIS
    Opening raw data ...
    Ready.
    >>> print(raw)
    <Raw  |  n_channels x n_times : 376 x 41700>
    >>> print(raw.info) # doctest:+ELLIPSIS
    <Info | 17 non-empty ...

Look at the channels in raw:

    >>> print(raw.ch_names) # doctest:+ELLIPSIS
    ['MEG 0113', 'MEG 0112', ...]

Read and plot a segment of raw data

    >>> start, stop = raw.time_as_index([100, 115])  # 100 s to 115 s data segment
    >>> data, times = raw[:, start:stop]
    Reading 15015 ... 17266  =     99.998 ...   114.989 secs...
    [done]
    >>> print(data.shape)
    (376, 2252)
    >>> print(times.shape)
    (2252,)
    >>> data, times = raw[2:20:3, start:stop]  # access underlying data
    Reading 15015 ... 17266  =     99.998 ...   114.989 secs...
    [done]
    >>> raw.plot() # doctest: +SKIP

.. figure:: _images/plot_read_and_write_raw_data.png
    :alt: Raw data

Save a segment of 150s of raw data (MEG only):

    >>> picks = mne.pick_types(raw.info, meg=True, eeg=False, stim=True, exclude='bads')
    >>> raw.save('sample_audvis_meg_raw.fif', tmin=0, tmax=150, picks=picks, overwrite=True) # doctest: +ELLIPSIS
    Reading ...

Define and read epochs
^^^^^^^^^^^^^^^^^^^^^^

First extract events:

    >>> events = mne.find_events(raw, stim_channel='STI 014')
    Reading 0 ... 41699  =      0.000 ...   277.709 secs...
    [done]
    319 events found
    Events id: [ 1  2  3  4  5 32]
    >>> print(events[:5])
    [[6994    0    2]
     [7086    0    3]
     [7192    0    1]
     [7304    0    4]
     [7413    0    2]]

Note that, by default, we use stim_channel='STI 014'. If you have a different
system (e.g., a newer system that uses channel 'STI101' by default), you can
use the following to set the default stim channel to use for finding events:

    >>> mne.set_config('MNE_STIM_CHANNEL', 'STI101') # doctest: +SKIP

Events are stored as 2D numpy array where the first column is the time instant
and the last one is the event number. It is therefore easy to manipulate.

Define epochs parameters:

    >>> event_id = dict(aud_l=1, aud_r=2)  # event trigger and conditions
    >>> tmin = -0.2  # start of each epoch (200ms before the trigger)
    >>> tmax = 0.5  # end of each epoch (500ms after the trigger)

Exclude some channels (original bads + 2 more):

    >>> raw.info['bads'] += ['MEG 2443', 'EEG 053']

The variable raw.info['bads'] is just a python list.

Pick the good channels, excluding raw.info['bads']:

    >>> picks = mne.pick_types(raw.info, meg=True, eeg=True, eog=True, stim=False, exclude='bads')

Alternatively one can restrict to magnetometers or gradiometers with:

    >>> mag_picks = mne.pick_types(raw.info, meg='mag', eog=True, exclude='bads')
    >>> grad_picks = mne.pick_types(raw.info, meg='grad', eog=True, exclude='bads')

Define the baseline period:

    >>> baseline = (None, 0)  # means from the first instant to t = 0

Define peak-to-peak rejection parameters for gradiometers, magnetometers and EOG:

    >>> reject = dict(grad=4000e-13, mag=4e-12, eog=150e-6)

Read epochs:

    >>> epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=True, picks=picks, baseline=baseline, preload=False, reject=reject)
    Created an SSP operator (subspace dimension = 4)
    4 projection items activated
    145 matching events found
    >>> print(epochs)
    <Epochs  |  n_events : 145 (good & bad), tmin : -0.2 (s), tmax : 0.5 (s), baseline : (None, 0),
     'aud_l': 72, 'aud_r': 73>

Get single epochs for one condition:

    >>> epochs_data = epochs['aud_l'].get_data() # doctest: +ELLIPSIS
    Reading ...
    >>> print(epochs_data.shape)
    (55, 365, 106)

epochs_data is a 3D array of dimension (55 epochs, 365 channels, 106 time instants).

Scipy supports read and write of matlab files. You can save your single trials with:

    >>> from scipy import io
    >>> io.savemat('epochs_data.mat', dict(epochs_data=epochs_data), oned_as='row')

or if you want to keep all the information about the data you can save your epochs
in a fif file:

    >>> epochs.save('sample-epo.fif') # doctest: +ELLIPSIS
    Reading ...

and read them later with:

    >>> saved_epochs = mne.read_epochs('sample-epo.fif') # doctest: +ELLIPSIS
    Reading ...

Compute evoked responses for auditory responses by averaging and plot it:

    >>> evoked = epochs['aud_l'].average() # doctest: +ELLIPSIS
    Reading ...
    >>> print(evoked)
    <Evoked  |  comment : 'aud_l', time : [-0.199795, 0.499488], n_epochs : 55, n_channels x n_times : 364 x 106>
    >>> evoked.plot() # doctest:+SKIP

.. figure:: _images/plot_read_epochs.png
    :alt: Evoked data

.. topic:: Exercise

  1. Extract the max value of each epoch

  >>> max_in_each_epoch = [e.max() for e in epochs['aud_l']] # doctest:+ELLIPSIS
  Reading ...
  >>> print(max_in_each_epoch[:4]) # doctest:+ELLIPSIS
  [1.93751...e-05, 1.64055...e-05, 1.85453...e-05, 2.04128...e-05]

It is also possible to read evoked data stored in a fif file:

    >>> evoked_fname = data_path + '/MEG/sample/sample_audvis-ave.fif'
    >>> evoked1 = mne.read_evokeds(evoked_fname, condition='Left Auditory', baseline=(None, 0), proj=True) # doctest: +ELLIPSIS
    Reading .../MNE-sample-data/MEG/sample/sample_audvis-ave.fif ...
        Read a total of 4 projection items:
            PCA-v1 (1 x 102) active
            PCA-v2 (1 x 102) active
            PCA-v3 (1 x 102) active
            Average EEG reference (1 x 60) active
        Found the data of interest:
            t =    -199.80 ...     499.49 ms (Left Auditory)
            0 CTF compensation matrices available
            nave = 55 - aspect type = 100
    Projections have already been applied. Doing nothing.
    Applying baseline correction ... (mode: mean)

Or another one stored in the same file:

    >>> evoked2 = mne.read_evokeds(evoked_fname, condition='Right Auditory', baseline=(None, 0), proj=True) # doctest: +ELLIPSIS
    Reading ...

Compute a contrast:

    >>> contrast = evoked1 - evoked2

    >>> print(contrast)
    <Evoked  |  comment : 'Left Auditory - Right Auditory', time : [-0.199795, 0.499488], n_epochs : 116, n_channels x n_times : 376 x 421>

Time-Frequency: Induced power and phase-locking values
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Define parameters:

    >>> import numpy as np
    >>> n_cycles = 2  # number of cycles in Morlet wavelet
    >>> frequencies = np.arange(7, 30, 3)  # frequencies of interest
    >>> Fs = raw.info['sfreq']  # sampling in Hz

Compute induced power and phase-locking values:

    >>> from mne.time_frequency import induced_power
    >>> power, phase_lock = induced_power(epochs_data, Fs=Fs, frequencies=frequencies, n_cycles=2, n_jobs=1)

.. figure:: _images/plot_time_frequency.png
    :alt: Time-Frequency

Inverse modeling: MNE and dSPM on evoked and raw data
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Import the required functions:

    >>> from mne.minimum_norm import apply_inverse, read_inverse_operator

Read the inverse operator:

    >>> fname_inv = data_path + '/MEG/sample/sample_audvis-meg-oct-6-meg-inv.fif'
    >>> inverse_operator = read_inverse_operator(fname_inv) # doctest: +ELLIPSIS
    Reading ...

Define the inverse parameters:

    >>> snr = 3.0
    >>> lambda2 = 1.0 / snr ** 2
    >>> method = "dSPM"

Compute the inverse solution:

    >>> stc = apply_inverse(evoked, inverse_operator, lambda2, method)
    Preparing the inverse operator for use...
        Scaled noise and source covariance from nave = 1 to nave = 55
        Created the regularized inverter
        Created an SSP operator (subspace dimension = 3)
        Created the whitener using a full noise covariance matrix (3 small eigenvalues omitted)
        Computing noise-normalization factors (dSPM)...
    [done]
    Picked 305 channels from the data
    Computing inverse...
    (eigenleads need to be weighted)...
    combining the current components...
    (dSPM)...
    [done]

Save the source time courses to disk:

    >>> stc.save('mne_dSPM_inverse')
    Writing STC to disk...
    [done]

Now, let's compute dSPM on a raw file within a label:

    >>> fname_label = data_path + '/MEG/sample/labels/Aud-lh.label'
    >>> label = mne.read_label(fname_label)

Compute inverse solution during the first 15s:

    >>> from mne.minimum_norm import apply_inverse_raw
    >>> start, stop = raw.time_as_index([0, 15])  # read the first 15s of data
    >>> stc = apply_inverse_raw(raw, inverse_operator, lambda2, method, label, start, stop)
    Preparing the inverse operator for use...
        Scaled noise and source covariance from nave = 1 to nave = 1
        Created the regularized inverter
        Created an SSP operator (subspace dimension = 3)
        Created the whitener using a full noise covariance matrix (3 small eigenvalues omitted)
        Computing noise-normalization factors (dSPM)...
    [done]
    Picked 305 channels from the data
    Computing inverse...
    Reading 0 ... 2251  =      0.000 ...    14.991 secs...
    [done]
    (eigenleads need to be weighted)...
    combining the current components...
    [done]

Save result in stc files:

    >>> stc.save('mne_dSPM_raw_inverse_Aud')
    Writing STC to disk...
    [done]

What else can you do?
^^^^^^^^^^^^^^^^^^^^^

    - detect heart beat QRS component
    - detect eye blinks and EOG artifacts
    - compute SSP projections to remove ECG or EOG artifacts
    - compute Independent Component Analysis (ICA) to remove artifacts or select latent sources
    - estimate noise covariance matrix from Raw and Epochs
    - visualize cross-trial response dynamics using epochs images
    - compute forward solutions
    - estimate power in the source space
    - estimate connectivity in sensor and source space
    - morph stc from one brain to another for group studies
    - compute mass univariate statistics base on custom contrasts
    - visualize source estimates
    - export raw, epochs, and evoked data to other python data analysis libraries i.e. pandas and nitime


Want to know more ?
^^^^^^^^^^^^^^^^^^^

Browse :ref:`examples-index` gallery.