1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
|
.. _mne_python_tutorial:
=========================================================
Tutorial: MEG and EEG data processing with MNE and Python
=========================================================
Python offers transparent scripting on top of MNE.
It was designed to be an alternative to the MNE matlab toolbox
but now it can do much more (customize events, compute
contrasts, statistics, time-frequency analysis etc.)
It uses the same files as standard MNE unix commands:
no need to convert your files to a new system or database.
What you can do with MNE Python
-------------------------------
- **Raw data visualization** to visualize recordings, can also use *mne_browse_raw* for extended functionality (see :ref:`ch_browse`)
- **Epoching**: Define epochs, baseline correction, handle conditions etc.
- **Averaging** to get Evoked data
- **Compute SSP pojectors** to remove ECG and EOG artifacts
- **Compute ICA** to remove artifacts or select latent sources.
- **Forward modeling**: BEM computation and mesh creation (see :ref:`ch_forward`)
- **Linear inverse solvers** (dSPM, sLORETA, MNE, LCMV, DICS)
- **Sparse inverse solvers** (L1/L2 mixed norm MxNE, Gamma Map, Time-Frequency MxNE)
- **Connectivity estimation** in sensor and source space
- **Visualization of sensor and source space data**
- **Time-frequency** analysis with Morlet wavelets (induced power, phase lock value) also in the source space
- **Spectrum estimation** using multi-taper method
- **Compute contrasts** between conditions, between sensors, across subjects etc.
- **Non-parametric statistics** in time, space and frequency (including cluster-level)
- **Scripting** (batch and parallel computing)
What you're not supposed to do with MNE Python
----------------------------------------------
- **Dipole fitting** use MNE or other designated software instead.
- **Boundary Element Modeling** use MNE and Freesurfer.
.. note:: Package based on the FIF file format from Neuromag but can work with CTF and 4D after conversion to FIF.
Installation of the required materials
---------------------------------------
See :ref:`getting_started` with Python.
.. note:: The expected location for the MNE-sample data is my-path-to/mne-python/examples.
If you downloaded data and an example asks you whether to download it again, make sure
the data reside in the examples directory and you run the script from its current directory.
From IPython e.g. say::
cd examples/preprocessing
%run plot_find_ecg_artifacts.py
From raw data to evoked data
----------------------------
.. _ipython: http://ipython.scipy.org/
Now, launch `ipython`_ (Advanced Python shell) using the QT backend which best supported across systems::
$ ipython -pylab -qt
First, load the mne package:
>>> import mne
If you'd like to turn information status messages off:
>>> mne.set_log_level('WARNING')
But it's generally a good idea to leave them on:
>>> mne.set_log_level('INFO')
You can set the default level by setting the environment variable
"MNE_LOGGING_LEVEL", or by having mne-python write preferences to a file:
>>> mne.set_config('MNE_LOGGING_LEVEL','WARNING') # doctest: +SKIP
Note that the location of the mne-python preferences file (for easier manual
editing) can be found using:
>>> mne.get_config_path() # doctest: +SKIP
By default logging messages print to the console, but look at
mne.set_log_file() to save output to a file.
Access raw data
^^^^^^^^^^^^^^^
>>> from mne.datasets import sample
>>> data_path = sample.data_path()
>>> raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif'
>>> print(raw_fname) # doctest: +SKIP
./MNE-sample-data/MEG/sample/sample_audvis_filt-0-40_raw.fif
.. note:: The MNE sample dataset should be downloaded automatically but be patient (approx. 2GB)
Read data from file:
>>> raw = mne.io.Raw(raw_fname) # doctest:+ELLIPSIS
Opening raw data ...
Ready.
>>> print(raw)
<Raw | n_channels x n_times : 376 x 41700>
>>> print(raw.info) # doctest:+ELLIPSIS
<Info | 17 non-empty ...
Look at the channels in raw:
>>> print(raw.ch_names) # doctest:+ELLIPSIS
['MEG 0113', 'MEG 0112', ...]
Read and plot a segment of raw data
>>> start, stop = raw.time_as_index([100, 115]) # 100 s to 115 s data segment
>>> data, times = raw[:, start:stop]
Reading 15015 ... 17266 = 99.998 ... 114.989 secs...
[done]
>>> print(data.shape)
(376, 2252)
>>> print(times.shape)
(2252,)
>>> data, times = raw[2:20:3, start:stop] # access underlying data
Reading 15015 ... 17266 = 99.998 ... 114.989 secs...
[done]
>>> raw.plot() # doctest: +SKIP
.. figure:: _images/plot_read_and_write_raw_data.png
:alt: Raw data
Save a segment of 150s of raw data (MEG only):
>>> picks = mne.pick_types(raw.info, meg=True, eeg=False, stim=True, exclude='bads')
>>> raw.save('sample_audvis_meg_raw.fif', tmin=0, tmax=150, picks=picks, overwrite=True) # doctest: +ELLIPSIS
Reading ...
Define and read epochs
^^^^^^^^^^^^^^^^^^^^^^
First extract events:
>>> events = mne.find_events(raw, stim_channel='STI 014')
Reading 0 ... 41699 = 0.000 ... 277.709 secs...
[done]
319 events found
Events id: [ 1 2 3 4 5 32]
>>> print(events[:5])
[[6994 0 2]
[7086 0 3]
[7192 0 1]
[7304 0 4]
[7413 0 2]]
Note that, by default, we use stim_channel='STI 014'. If you have a different
system (e.g., a newer system that uses channel 'STI101' by default), you can
use the following to set the default stim channel to use for finding events:
>>> mne.set_config('MNE_STIM_CHANNEL', 'STI101') # doctest: +SKIP
Events are stored as 2D numpy array where the first column is the time instant
and the last one is the event number. It is therefore easy to manipulate.
Define epochs parameters:
>>> event_id = dict(aud_l=1, aud_r=2) # event trigger and conditions
>>> tmin = -0.2 # start of each epoch (200ms before the trigger)
>>> tmax = 0.5 # end of each epoch (500ms after the trigger)
Exclude some channels (original bads + 2 more):
>>> raw.info['bads'] += ['MEG 2443', 'EEG 053']
The variable raw.info['bads'] is just a python list.
Pick the good channels, excluding raw.info['bads']:
>>> picks = mne.pick_types(raw.info, meg=True, eeg=True, eog=True, stim=False, exclude='bads')
Alternatively one can restrict to magnetometers or gradiometers with:
>>> mag_picks = mne.pick_types(raw.info, meg='mag', eog=True, exclude='bads')
>>> grad_picks = mne.pick_types(raw.info, meg='grad', eog=True, exclude='bads')
Define the baseline period:
>>> baseline = (None, 0) # means from the first instant to t = 0
Define peak-to-peak rejection parameters for gradiometers, magnetometers and EOG:
>>> reject = dict(grad=4000e-13, mag=4e-12, eog=150e-6)
Read epochs:
>>> epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=True, picks=picks, baseline=baseline, preload=False, reject=reject)
Created an SSP operator (subspace dimension = 4)
4 projection items activated
145 matching events found
>>> print(epochs)
<Epochs | n_events : 145 (good & bad), tmin : -0.2 (s), tmax : 0.5 (s), baseline : (None, 0),
'aud_l': 72, 'aud_r': 73>
Get single epochs for one condition:
>>> epochs_data = epochs['aud_l'].get_data() # doctest: +ELLIPSIS
Reading ...
>>> print(epochs_data.shape)
(55, 365, 106)
epochs_data is a 3D array of dimension (55 epochs, 365 channels, 106 time instants).
Scipy supports read and write of matlab files. You can save your single trials with:
>>> from scipy import io
>>> io.savemat('epochs_data.mat', dict(epochs_data=epochs_data), oned_as='row')
or if you want to keep all the information about the data you can save your epochs
in a fif file:
>>> epochs.save('sample-epo.fif') # doctest: +ELLIPSIS
Reading ...
and read them later with:
>>> saved_epochs = mne.read_epochs('sample-epo.fif') # doctest: +ELLIPSIS
Reading ...
Compute evoked responses for auditory responses by averaging and plot it:
>>> evoked = epochs['aud_l'].average() # doctest: +ELLIPSIS
Reading ...
>>> print(evoked)
<Evoked | comment : 'aud_l', time : [-0.199795, 0.499488], n_epochs : 55, n_channels x n_times : 364 x 106>
>>> evoked.plot() # doctest:+SKIP
.. figure:: _images/plot_read_epochs.png
:alt: Evoked data
.. topic:: Exercise
1. Extract the max value of each epoch
>>> max_in_each_epoch = [e.max() for e in epochs['aud_l']] # doctest:+ELLIPSIS
Reading ...
>>> print(max_in_each_epoch[:4]) # doctest:+ELLIPSIS
[1.93751...e-05, 1.64055...e-05, 1.85453...e-05, 2.04128...e-05]
It is also possible to read evoked data stored in a fif file:
>>> evoked_fname = data_path + '/MEG/sample/sample_audvis-ave.fif'
>>> evoked1 = mne.read_evokeds(evoked_fname, condition='Left Auditory', baseline=(None, 0), proj=True) # doctest: +ELLIPSIS
Reading .../MNE-sample-data/MEG/sample/sample_audvis-ave.fif ...
Read a total of 4 projection items:
PCA-v1 (1 x 102) active
PCA-v2 (1 x 102) active
PCA-v3 (1 x 102) active
Average EEG reference (1 x 60) active
Found the data of interest:
t = -199.80 ... 499.49 ms (Left Auditory)
0 CTF compensation matrices available
nave = 55 - aspect type = 100
Projections have already been applied. Doing nothing.
Applying baseline correction ... (mode: mean)
Or another one stored in the same file:
>>> evoked2 = mne.read_evokeds(evoked_fname, condition='Right Auditory', baseline=(None, 0), proj=True) # doctest: +ELLIPSIS
Reading ...
Compute a contrast:
>>> contrast = evoked1 - evoked2
>>> print(contrast)
<Evoked | comment : 'Left Auditory - Right Auditory', time : [-0.199795, 0.499488], n_epochs : 116, n_channels x n_times : 376 x 421>
Time-Frequency: Induced power and phase-locking values
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Define parameters:
>>> import numpy as np
>>> n_cycles = 2 # number of cycles in Morlet wavelet
>>> frequencies = np.arange(7, 30, 3) # frequencies of interest
>>> Fs = raw.info['sfreq'] # sampling in Hz
Compute induced power and phase-locking values:
>>> from mne.time_frequency import induced_power
>>> power, phase_lock = induced_power(epochs_data, Fs=Fs, frequencies=frequencies, n_cycles=2, n_jobs=1)
.. figure:: _images/plot_time_frequency.png
:alt: Time-Frequency
Inverse modeling: MNE and dSPM on evoked and raw data
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Import the required functions:
>>> from mne.minimum_norm import apply_inverse, read_inverse_operator
Read the inverse operator:
>>> fname_inv = data_path + '/MEG/sample/sample_audvis-meg-oct-6-meg-inv.fif'
>>> inverse_operator = read_inverse_operator(fname_inv) # doctest: +ELLIPSIS
Reading ...
Define the inverse parameters:
>>> snr = 3.0
>>> lambda2 = 1.0 / snr ** 2
>>> method = "dSPM"
Compute the inverse solution:
>>> stc = apply_inverse(evoked, inverse_operator, lambda2, method)
Preparing the inverse operator for use...
Scaled noise and source covariance from nave = 1 to nave = 55
Created the regularized inverter
Created an SSP operator (subspace dimension = 3)
Created the whitener using a full noise covariance matrix (3 small eigenvalues omitted)
Computing noise-normalization factors (dSPM)...
[done]
Picked 305 channels from the data
Computing inverse...
(eigenleads need to be weighted)...
combining the current components...
(dSPM)...
[done]
Save the source time courses to disk:
>>> stc.save('mne_dSPM_inverse')
Writing STC to disk...
[done]
Now, let's compute dSPM on a raw file within a label:
>>> fname_label = data_path + '/MEG/sample/labels/Aud-lh.label'
>>> label = mne.read_label(fname_label)
Compute inverse solution during the first 15s:
>>> from mne.minimum_norm import apply_inverse_raw
>>> start, stop = raw.time_as_index([0, 15]) # read the first 15s of data
>>> stc = apply_inverse_raw(raw, inverse_operator, lambda2, method, label, start, stop)
Preparing the inverse operator for use...
Scaled noise and source covariance from nave = 1 to nave = 1
Created the regularized inverter
Created an SSP operator (subspace dimension = 3)
Created the whitener using a full noise covariance matrix (3 small eigenvalues omitted)
Computing noise-normalization factors (dSPM)...
[done]
Picked 305 channels from the data
Computing inverse...
Reading 0 ... 2251 = 0.000 ... 14.991 secs...
[done]
(eigenleads need to be weighted)...
combining the current components...
[done]
Save result in stc files:
>>> stc.save('mne_dSPM_raw_inverse_Aud')
Writing STC to disk...
[done]
What else can you do?
^^^^^^^^^^^^^^^^^^^^^
- detect heart beat QRS component
- detect eye blinks and EOG artifacts
- compute SSP projections to remove ECG or EOG artifacts
- compute Independent Component Analysis (ICA) to remove artifacts or select latent sources
- estimate noise covariance matrix from Raw and Epochs
- visualize cross-trial response dynamics using epochs images
- compute forward solutions
- estimate power in the source space
- estimate connectivity in sensor and source space
- morph stc from one brain to another for group studies
- compute mass univariate statistics base on custom contrasts
- visualize source estimates
- export raw, epochs, and evoked data to other python data analysis libraries i.e. pandas and nitime
Want to know more ?
^^^^^^^^^^^^^^^^^^^
Browse :ref:`examples-index` gallery.
|