File: plot_raw_to_nitime.py

package info (click to toggle)
python-mne 0.8.6%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 87,892 kB
  • ctags: 6,639
  • sloc: python: 54,697; makefile: 165; sh: 15
file content (83 lines) | stat: -rw-r--r-- 2,088 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
"""
============================
Export Raw Objects to NiTime
============================

This script shows how to export raw files to the NiTime library
for further signal processing and data analysis.

"""

# Author: Denis Engemann <denis.engemann@gmail.com>
#
# License: BSD (3-clause)

print(__doc__)

import numpy as np
import mne

from mne.io import Raw
from mne.datasets import sample

data_path = sample.data_path()
raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif'

###############################################################################
# get raw data
raw = Raw(raw_fname)

# set picks
picks = mne.pick_types(raw.info, meg=True, eeg=False, eog=False,
                       stim=False, exclude='bads')

# pick times relative to the onset of the MEG measurement.
start, stop = raw.time_as_index([100, 115], use_first_samp=False)

# export to nitime using a copy of the data
raw_ts = raw.to_nitime(start=start, stop=stop, picks=picks, copy=True)

###############################################################################
# explore some nitime timeseries features

# get start
print(raw_ts.t0)

# get duration
print(raw_ts.duration)

# get sample duration (sampling interval)
print(raw_ts.sampling_interval)

# get exported raw infor
print(list(raw_ts.metadata.keys()))

# index at certain time
print(raw_ts.at(110.5))

# get channel names (attribute added during export)
print(raw_ts.ch_names[:3])

###############################################################################
# investigate spectral density

import matplotlib.pyplot as plt

import nitime.algorithms as tsa

ch_sel = raw_ts.ch_names.index('MEG 0122')

data_ch = raw_ts.data[ch_sel]

f, psd_mt, nu = tsa.multi_taper_psd(data_ch, Fs=raw_ts.sampling_rate,
                                    BW=1, adaptive=False, jackknife=False)

# Convert PSD to dB
psd_mt = 10 * np.log10(psd_mt)

plt.close('all')
plt.plot(f, psd_mt)
plt.xlabel('Frequency (Hz)')
plt.ylabel('Power Spectrald Density (db/Hz)')
plt.title('Multitaper Power Spectrum \n %s' % raw_ts.ch_names[ch_sel])
plt.show()