File: plot_compute_mne_inverse_epochs_in_label.py

package info (click to toggle)
python-mne 0.8.6%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 87,892 kB
  • ctags: 6,639
  • sloc: python: 54,697; makefile: 165; sh: 15
file content (130 lines) | stat: -rw-r--r-- 4,535 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
"""
==================================================
Compute MNE-dSPM inverse solution on single epochs
==================================================

Compute dSPM inverse solution on single trial epochs restricted
to a brain label.

"""

# Author: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
#
# License: BSD (3-clause)

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
import mne
from mne.datasets import sample
from mne.io import Raw
from mne.minimum_norm import apply_inverse_epochs, read_inverse_operator
from mne.minimum_norm import apply_inverse

data_path = sample.data_path()
fname_inv = data_path + '/MEG/sample/sample_audvis-meg-oct-6-meg-inv.fif'
fname_raw = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif'
fname_event = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw-eve.fif'
label_name = 'Aud-lh'
fname_label = data_path + '/MEG/sample/labels/%s.label' % label_name

event_id, tmin, tmax = 1, -0.2, 0.5

# Using the same inverse operator when inspecting single trials Vs. evoked
snr = 3.0  # Standard assumption for average data but using it for single trial
lambda2 = 1.0 / snr ** 2

method = "dSPM"  # use dSPM method (could also be MNE or sLORETA)

# Load data
inverse_operator = read_inverse_operator(fname_inv)
label = mne.read_label(fname_label)
raw = Raw(fname_raw)
events = mne.read_events(fname_event)

# Set up pick list
include = []

# Add a bad channel
raw.info['bads'] += ['EEG 053']  # bads + 1 more

# pick MEG channels
picks = mne.pick_types(raw.info, meg=True, eeg=False, stim=False, eog=True,
                   include=include, exclude='bads')
# Read epochs
epochs = mne.Epochs(raw, events, event_id, tmin, tmax, picks=picks,
                    baseline=(None, 0), reject=dict(mag=4e-12, grad=4000e-13,
                                                    eog=150e-6))

# Get evoked data (averaging across trials in sensor space)
evoked = epochs.average()

# Compute inverse solution and stcs for each epoch
# Use the same inverse operator as with evoked data (i.e., set nave)
# If you use a different nave, dSPM just scales by a factor sqrt(nave)
stcs = apply_inverse_epochs(epochs, inverse_operator, lambda2, method, label,
                            pick_ori="normal", nave=evoked.nave)

stc_evoked = apply_inverse(evoked, inverse_operator, lambda2, method,
                           pick_ori="normal")

stc_evoked_label = stc_evoked.in_label(label)

# Mean across trials but not across vertices in label
mean_stc = sum(stcs) / len(stcs)

# compute sign flip to avoid signal cancelation when averaging signed values
flip = mne.label_sign_flip(label, inverse_operator['src'])

label_mean = np.mean(mean_stc.data, axis=0)
label_mean_flip = np.mean(flip[:, np.newaxis] * mean_stc.data, axis=0)

# Get inverse solution by inverting evoked data
stc_evoked = apply_inverse(evoked, inverse_operator, lambda2, method,
                           pick_ori="normal")

# apply_inverse() does whole brain, so sub-select label of interest
stc_evoked_label = stc_evoked.in_label(label)

# Average over label (not caring to align polarities here)
label_mean_evoked = np.mean(stc_evoked_label.data, axis=0)

###############################################################################
# View activation time-series to illustrate the benefit of aligning/flipping

times = 1e3 * stcs[0].times  # times in ms

plt.figure()
h0 = plt.plot(times, mean_stc.data.T, 'k')
h1, = plt.plot(times, label_mean, 'r', linewidth=3)
h2, = plt.plot(times, label_mean_flip, 'g', linewidth=3)
plt.legend((h0[0], h1, h2), ('all dipoles in label', 'mean',
                             'mean with sign flip'))
plt.xlabel('time (ms)')
plt.ylabel('dSPM value')
plt.show()

###############################################################################
# Viewing single trial dSPM and average dSPM for unflipped pooling over label
# Compare to (1) Inverse (dSPM) then average, (2) Evoked then dSPM

# Single trial
plt.figure()
for k, stc_trial in enumerate(stcs):
    plt.plot(times, np.mean(stc_trial.data, axis=0).T, 'k--',
             label='Single Trials' if k == 0 else '_nolegend_',
             alpha=0.5)

# Single trial inverse then average.. making linewidth large to not be masked
plt.plot(times, label_mean, 'b', linewidth=6,
         label='dSPM first, then average')

# Evoked and then inverse
plt.plot(times, label_mean_evoked, 'r', linewidth=2,
         label='Average first, then dSPM')

plt.xlabel('time (ms)')
plt.ylabel('dSPM value')
plt.legend()
plt.show()