File: plot_lcmv_beamformer_volume.py

package info (click to toggle)
python-mne 0.8.6%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 87,892 kB
  • ctags: 6,639
  • sloc: python: 54,697; makefile: 165; sh: 15
file content (91 lines) | stat: -rw-r--r-- 3,037 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
"""
===================================================================
Compute LCMV inverse solution on evoked data in volume source space
===================================================================

Compute LCMV inverse solution on an auditory evoked dataset in a volume source
space. It stores the solution in a nifti file for visualisation e.g. with
Freeview.

"""

# Author: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
#
# License: BSD (3-clause)

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
import mne
from mne.datasets import sample
from mne.io import Raw
from mne.beamformer import lcmv


data_path = sample.data_path()
raw_fname = data_path + '/MEG/sample/sample_audvis_raw.fif'
event_fname = data_path + '/MEG/sample/sample_audvis_raw-eve.fif'
fname_fwd = data_path + '/MEG/sample/sample_audvis-meg-vol-7-fwd.fif'
fname_cov = data_path + '/MEG/sample/sample_audvis-cov.fif'

###############################################################################
# Get epochs
event_id, tmin, tmax = 1, -0.2, 0.5

# Setup for reading the raw data
raw = Raw(raw_fname)
raw.info['bads'] = ['MEG 2443', 'EEG 053']  # 2 bads channels
events = mne.read_events(event_fname)

# Set up pick list: EEG + MEG - bad channels (modify to your needs)
left_temporal_channels = mne.read_selection('Left-temporal')
picks = mne.pick_types(raw.info, meg=True, eeg=False, stim=True, eog=True,
                       exclude='bads', selection=left_temporal_channels)

# Read epochs
epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=True,
                    picks=picks, baseline=(None, 0), preload=True,
                    reject=dict(grad=4000e-13, mag=4e-12, eog=150e-6))
evoked = epochs.average()

forward = mne.read_forward_solution(fname_fwd)

noise_cov = mne.read_cov(fname_cov)
noise_cov = mne.cov.regularize(noise_cov, evoked.info,
                               mag=0.05, grad=0.05, eeg=0.1, proj=True)

data_cov = mne.compute_covariance(epochs, tmin=0.04, tmax=0.15)

# Run free orientation (vector) beamformer. Source orientation can be
# restricted by setting pick_ori to 'max-power' (or 'normal' but only when
# using a surface-based source space)
stc = lcmv(evoked, forward, noise_cov, data_cov, reg=0.01, pick_ori=None)

# Save result in stc files
stc.save('lcmv-vol')

stc.crop(0.0, 0.2)

# Save result in a 4D nifti file
img = mne.save_stc_as_volume('lcmv_inverse.nii.gz', stc,
        forward['src'], mri_resolution=False)  # True for full MRI resolution

# plot result (one slice)
plt.close('all')
data = img.get_data()
coronal_slice = data[:, 10, :, 60]
plt.figure()
plt.imshow(np.ma.masked_less(coronal_slice, 1), cmap=plt.cm.Reds,
           interpolation='nearest')
plt.colorbar()
plt.contour(coronal_slice != 0, 1, colors=['black'])
plt.xticks([])
plt.yticks([])

# plot source time courses with the maximum peak amplitudes
plt.figure()
plt.plot(stc.times, stc.data[np.argsort(np.max(stc.data, axis=1))[-40:]].T)
plt.xlabel('Time (ms)')
plt.ylabel('LCMV value')
plt.show()