1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
|
"""
====================================================
Read a forward operator and display sensitivity maps
====================================================
"""
# Author: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
#
# License: BSD (3-clause)
print(__doc__)
import mne
from mne.datasets import sample
data_path = sample.data_path()
fname = data_path + '/MEG/sample/sample_audvis-meg-eeg-oct-6-fwd.fif'
subjects_dir = data_path + '/subjects'
fwd = mne.read_forward_solution(fname, surf_ori=True)
leadfield = fwd['sol']['data']
print("Leadfield size : %d x %d" % leadfield.shape)
grad_map = mne.sensitivity_map(fwd, ch_type='grad', mode='fixed')
mag_map = mne.sensitivity_map(fwd, ch_type='mag', mode='fixed')
eeg_map = mne.sensitivity_map(fwd, ch_type='eeg', mode='fixed')
###############################################################################
# Show gain matrix a.k.a. leadfield matrix with sensitivity map
import matplotlib.pyplot as plt
plt.matshow(leadfield[:, :500])
plt.xlabel('sources')
plt.ylabel('sensors')
plt.title('Lead field matrix (500 dipoles only)')
plt.figure()
plt.hist([grad_map.data.ravel(), mag_map.data.ravel(), eeg_map.data.ravel()],
bins=20, label=['Gradiometers', 'Magnetometers', 'EEG'])
plt.legend()
plt.title('Normal orientation sensitivity')
plt.show()
args = dict(fmin=0.1, fmid=0.5, fmax=0.9, smoothing_steps=7)
grad_map.plot(subject='sample', time_label='Gradiometer sensitivity',
subjects_dir=subjects_dir, **args)
|