File: plot_cluster_stats_spatio_temporal_repeated_measures_anova.py

package info (click to toggle)
python-mne 0.8.6%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 87,892 kB
  • ctags: 6,639
  • sloc: python: 54,697; makefile: 165; sh: 15
file content (274 lines) | stat: -rw-r--r-- 11,909 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
"""
======================================================================
Repeated measures ANOVA on source data with spatio-temporal clustering
======================================================================

This example illustrates how to make use of the clustering functions
for arbitrary, self-defined contrasts beyond standard t-tests. In this
case we will tests if the differences in evoked responses between
stimulation modality (visual VS auditory) depend on the stimulus
location (left vs right) for a group of subjects (simulated here
using one subject's data). For this purpose we will compute an
interaction effect using a repeated measures ANOVA. The multiple
comparisons problem is addressed with a cluster-level permutation test
across space and time.
"""

# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
#          Eric Larson <larson.eric.d@gmail.com>
#          Denis Engemannn <denis.engemann@gmail.com>
#
# License: BSD (3-clause)

print(__doc__)

import os.path as op
import numpy as np
from numpy.random import randn

import mne
from mne import (io, spatial_tris_connectivity, compute_morph_matrix,
                 grade_to_tris)
from mne.stats import (spatio_temporal_cluster_test, f_threshold_twoway_rm,
                       f_twoway_rm, summarize_clusters_stc)

from mne.minimum_norm import apply_inverse, read_inverse_operator
from mne.datasets import sample

###############################################################################
# Set parameters
data_path = sample.data_path()
raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif'
event_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw-eve.fif'
subjects_dir = data_path + '/subjects'

tmin = -0.2
tmax = 0.3  # Use a lower tmax to reduce multiple comparisons

#   Setup for reading the raw data
raw = io.Raw(raw_fname)
events = mne.read_events(event_fname)

###############################################################################
# Read epochs for all channels, removing a bad one
raw.info['bads'] += ['MEG 2443']
picks = mne.pick_types(raw.info, meg=True, eog=True, exclude='bads')
# we'll load all four conditions that make up the 'two ways' of our ANOVA

event_id = dict(l_aud=1, r_aud=2, l_vis=3, r_vis=4)
reject = dict(grad=1000e-13, mag=4000e-15, eog=150e-6)
epochs = mne.Epochs(raw, events, event_id, tmin, tmax, picks=picks,
                    baseline=(None, 0), reject=reject, preload=True)

#    Equalize trial counts to eliminate bias (which would otherwise be
#    introduced by the abs() performed below)
epochs.equalize_event_counts(event_id, copy=False)

###############################################################################
# Transform to source space

fname_inv = data_path + '/MEG/sample/sample_audvis-meg-oct-6-meg-inv.fif'
snr = 3.0
lambda2 = 1.0 / snr ** 2
method = "dSPM"  # use dSPM method (could also be MNE or sLORETA)
inverse_operator = read_inverse_operator(fname_inv)

# we'll only use one hemisphere to speed up this example
# instead of a second vertex array we'll pass an empty array
sample_vertices = [inverse_operator['src'][0]['vertno'], np.array([])]

#    Let's average and compute inverse, then resample to speed things up
conditions = []
for cond in ['l_aud', 'r_aud', 'l_vis', 'r_vis']:  # order is important
    evoked = epochs[cond].average()
    evoked.resample(50)
    condition = apply_inverse(evoked, inverse_operator, lambda2, method)
    #    Let's only deal with t > 0, cropping to reduce multiple comparisons
    condition.crop(0, None)
    conditions.append(condition)

tmin = conditions[0].tmin
tstep = conditions[0].tstep

###############################################################################
# Transform to common cortical space

#    Normally you would read in estimates across several subjects and morph
#    them to the same cortical space (e.g. fsaverage). For example purposes,
#    we will simulate this by just having each "subject" have the same
#    response (just noisy in source space) here.

# we'll only consider the left hemisphere in this example.
n_vertices_sample, n_times = conditions[0].lh_data.shape
n_subjects = 7
print('Simulating data for %d subjects.' % n_subjects)

#    Let's make sure our results replicate, so set the seed.
np.random.seed(0)
X = randn(n_vertices_sample, n_times, n_subjects, 4) * 10
for ii, condition in enumerate(conditions):
    X[:, :, :, ii] += condition.lh_data[:, :, np.newaxis]

#    It's a good idea to spatially smooth the data, and for visualization
#    purposes, let's morph these to fsaverage, which is a grade 5 source space
#    with vertices 0:10242 for each hemisphere. Usually you'd have to morph
#    each subject's data separately (and you might want to use morph_data
#    instead), but here since all estimates are on 'sample' we can use one
#    morph matrix for all the heavy lifting.
fsave_vertices = [np.arange(10242), np.array([])]  # right hemisphere is empty
morph_mat = compute_morph_matrix('sample', 'fsaverage', sample_vertices,
                                 fsave_vertices, 20, subjects_dir)
n_vertices_fsave = morph_mat.shape[0]

#    We have to change the shape for the dot() to work properly
X = X.reshape(n_vertices_sample, n_times * n_subjects * 4)
print('Morphing data.')
X = morph_mat.dot(X)  # morph_mat is a sparse matrix
X = X.reshape(n_vertices_fsave, n_times, n_subjects, 4)

#    Now we need to prepare the group matrix for the ANOVA statistic.
#    To make the clustering function work correctly with the
#    ANOVA function X needs to be a list of multi-dimensional arrays
#    (one per condition) of shape: samples (subjects) x time x space

X = np.transpose(X, [2, 1, 0, 3])  # First we permute dimensions
# finally we split the array into a list a list of conditions
# and discard the empty dimension resulting from the split using numpy squeeze
X = [np.squeeze(x) for x in np.split(X, 4, axis=-1)]

###############################################################################
# Prepare function for arbitrary contrast

# As our ANOVA function is a multi-purpose tool we need to apply a few
# modifications to integrate it with the clustering function. This
# includes reshaping data, setting default arguments and processing
# the return values. For this reason we'll write a tiny dummy function.

# We will tell the ANOVA how to interpret the data matrix in terms of
# factors. This is done via the factor levels argument which is a list
# of the number factor levels for each factor.
factor_levels = [2, 2]

# Finally we will pick the interaction effect by passing 'A:B'.
# (this notation is borrowed from the R formula language)
effects = 'A:B'  # Without this also the main effects will be returned.
# Tell the ANOVA not to compute p-values which we don't need for clustering
return_pvals = False

# a few more convenient bindings
n_times = X[0].shape[1]
n_conditions = 4


# A stat_fun must deal with a variable number of input arguments.
def stat_fun(*args):
    # Inside the clustering function each condition will be passed as
    # flattened array, necessitated by the clustering procedure.
    # The ANOVA however expects an input array of dimensions:
    # subjects X conditions X observations (optional).
    # The following expression catches the list input, swaps the first and the
    # second dimension and puts the remaining observations in the third
    # dimension.
    data = np.squeeze(np.swapaxes(np.array(args), 1, 0))
    data = data.reshape(n_subjects, n_conditions,  # generalized if buffer used
                        data.size / (n_subjects * n_conditions))
    return f_twoway_rm(data, factor_levels=factor_levels, effects=effects,
                       return_pvals=return_pvals)[0]
                       #  drop p-values (empty array).
    # Note. for further details on this ANOVA function consider the
    # corresponding time frequency example.

###############################################################################
# Compute clustering statistic

#    To use an algorithm optimized for spatio-temporal clustering, we
#    just pass the spatial connectivity matrix (instead of spatio-temporal)

source_space = grade_to_tris(5)
# as we only have one hemisphere we need only need half the connectivity
lh_source_space = source_space[source_space[:, 0] < 10242]
print('Computing connectivity.')
connectivity = spatial_tris_connectivity(lh_source_space)

#    Now let's actually do the clustering. Please relax, on a small
#    notebook and one single thread only this will take a couple of minutes ...
pthresh = 0.0005
f_thresh = f_threshold_twoway_rm(n_subjects, factor_levels, effects, pthresh)

#    To speed things up a bit we will ...
n_permutations = 100  # ... run fewer permutations (reduces sensitivity)

print('Clustering.')
T_obs, clusters, cluster_p_values, H0 = clu = \
    spatio_temporal_cluster_test(X, connectivity=connectivity, n_jobs=1,
                                 threshold=f_thresh, stat_fun=stat_fun,
                                 n_permutations=n_permutations,
                                 buffer_size=None)
#    Now select the clusters that are sig. at p < 0.05 (note that this value
#    is multiple-comparisons corrected).
good_cluster_inds = np.where(cluster_p_values < 0.05)[0]

###############################################################################
# Visualize the clusters

print('Visualizing clusters.')

#    Now let's build a convenient representation of each cluster, where each
#    cluster becomes a "time point" in the SourceEstimate
stc_all_cluster_vis = summarize_clusters_stc(clu, tstep=tstep,
                                             vertno=fsave_vertices,
                                             subject='fsaverage')

#    Let's actually plot the first "time point" in the SourceEstimate, which
#    shows all the clusters, weighted by duration

subjects_dir = op.join(data_path, 'subjects')
# The brighter the color, the stronger the interaction between
# stimulus modality and stimulus location

brain = stc_all_cluster_vis.plot('fsaverage', 'inflated', 'lh',
                                 subjects_dir=subjects_dir,
                                 time_label='Duration significant (ms)')

brain.set_data_time_index(0)
brain.scale_data_colormap(fmin=5, fmid=10, fmax=30, transparent=True)
brain.show_view('lateral')
brain.save_image('cluster-lh.png')
brain.show_view('medial')

###############################################################################
# Finally, let's investigate interaction effect by reconstructing the time
# courses

import matplotlib.pyplot as plt
inds_t, inds_v = [(clusters[cluster_ind]) for ii, cluster_ind in
                  enumerate(good_cluster_inds)][0]  # first cluster

times = np.arange(X[0].shape[1]) * tstep * 1e3

plt.clf()
colors = ['y', 'b', 'g', 'purple']
event_ids = ['l_aud', 'r_aud', 'l_vis', 'r_vis']

for ii, (condition, color, eve_id) in enumerate(zip(X, colors, event_ids)):
    # extract time course at cluster vertices
    condition = condition[:, :, inds_v]
    # normally we would normalize values across subjects but
    # here we use data from the same subject so we're good to just
    # create average time series across subjects and vertices.
    mean_tc = condition.mean(axis=2).mean(axis=0)
    std_tc = condition.std(axis=2).std(axis=0)
    plt.plot(times, mean_tc.T, color=color, label=eve_id)
    plt.fill_between(times, mean_tc + std_tc, mean_tc - std_tc, color='gray',
                     alpha=0.5, label='')

ymin, ymax = mean_tc.min() -5, mean_tc.max() + 5 
plt.xlabel('Time (ms)')
plt.ylabel('Activation (F-values)')
plt.xlim(times[[0, -1]])
plt.ylim(ymin, ymax)
plt.fill_betweenx(np.arange(ymin, ymax), times[inds_t[0]],
                  times[inds_t[-1]], color='orange', alpha=0.3)
plt.legend()
plt.title('Interaction between stimulus-modality and location.')
plt.show()