1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
|
"""
=========================================================================
Non-parametric between conditions cluster statistic on single trial power
=========================================================================
This script shows how to compare clusters in time-frequency
power estimates between conditions. It uses a non-parametric
statistical procedure based on permutations and cluster
level statistics.
The procedure consists in:
- extracting epochs for 2 conditions
- compute single trial power estimates
- baseline line correct the power estimates (power ratios)
- compute stats to see if the power estimates are significantly different
between conditions.
"""
# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
#
# License: BSD (3-clause)
print(__doc__)
import numpy as np
import mne
from mne import io
from mne.time_frequency import single_trial_power
from mne.stats import permutation_cluster_test
from mne.datasets import sample
###############################################################################
# Set parameters
data_path = sample.data_path()
raw_fname = data_path + '/MEG/sample/sample_audvis_raw.fif'
event_fname = data_path + '/MEG/sample/sample_audvis_raw-eve.fif'
event_id = 1
tmin = -0.2
tmax = 0.5
# Setup for reading the raw data
raw = io.Raw(raw_fname)
events = mne.read_events(event_fname)
include = []
raw.info['bads'] += ['MEG 2443', 'EEG 053'] # bads + 2 more
# picks MEG gradiometers
picks = mne.pick_types(raw.info, meg='grad', eeg=False, eog=True,
stim=False, include=include, exclude='bads')
ch_name = raw.info['ch_names'][picks[0]]
# Load condition 1
reject = dict(grad=4000e-13, eog=150e-6)
event_id = 1
epochs_condition_1 = mne.Epochs(raw, events, event_id, tmin, tmax,
picks=picks, baseline=(None, 0),
reject=reject)
data_condition_1 = epochs_condition_1.get_data() # as 3D matrix
data_condition_1 *= 1e13 # change unit to fT / cm
# Load condition 2
event_id = 2
epochs_condition_2 = mne.Epochs(raw, events, event_id, tmin, tmax,
picks=picks, baseline=(None, 0),
reject=reject)
data_condition_2 = epochs_condition_2.get_data() # as 3D matrix
data_condition_2 *= 1e13 # change unit to fT / cm
# Take only one channel
data_condition_1 = data_condition_1[:, 97:98, :]
data_condition_2 = data_condition_2[:, 97:98, :]
# Time vector
times = 1e3 * epochs_condition_1.times # change unit to ms
# Factor to downsample the temporal dimension of the PSD computed by
# single_trial_power. Decimation occurs after frequency decomposition and can
# be used to reduce memory usage (and possibly comptuational time of downstream
# operations such as nonparametric statistics) if you don't need high
# spectrotemporal resolution.
decim = 2
frequencies = np.arange(7, 30, 3) # define frequencies of interest
Fs = raw.info['sfreq'] # sampling in Hz
n_cycles = 1.5
epochs_power_1 = single_trial_power(data_condition_1, Fs=Fs,
frequencies=frequencies,
n_cycles=n_cycles, use_fft=False,
decim=decim)
epochs_power_2 = single_trial_power(data_condition_2, Fs=Fs,
frequencies=frequencies,
n_cycles=n_cycles, use_fft=False,
decim=decim)
epochs_power_1 = epochs_power_1[:, 0, :, :] # only 1 channel to get 3D matrix
epochs_power_2 = epochs_power_2[:, 0, :, :] # only 1 channel to get 3D matrix
# Compute ratio with baseline power (be sure to correct time vector with
# decimation factor)
baseline_mask = times[::decim] < 0
epochs_baseline_1 = np.mean(epochs_power_1[:, :, baseline_mask], axis=2)
epochs_power_1 /= epochs_baseline_1[..., np.newaxis]
epochs_baseline_2 = np.mean(epochs_power_2[:, :, baseline_mask], axis=2)
epochs_power_2 /= epochs_baseline_2[..., np.newaxis]
###############################################################################
# Compute statistic
threshold = 6.0
T_obs, clusters, cluster_p_values, H0 = \
permutation_cluster_test([epochs_power_1, epochs_power_2],
n_permutations=100, threshold=threshold, tail=0)
###############################################################################
# View time-frequency plots
import matplotlib.pyplot as plt
plt.clf()
plt.subplots_adjust(0.12, 0.08, 0.96, 0.94, 0.2, 0.43)
plt.subplot(2, 1, 1)
evoked_contrast = np.mean(data_condition_1, 0) - np.mean(data_condition_2, 0)
plt.plot(times, evoked_contrast.T)
plt.title('Contrast of evoked response (%s)' % ch_name)
plt.xlabel('time (ms)')
plt.ylabel('Magnetic Field (fT/cm)')
plt.xlim(times[0], times[-1])
plt.ylim(-100, 200)
plt.subplot(2, 1, 2)
# Create new stats image with only significant clusters
T_obs_plot = np.nan * np.ones_like(T_obs)
for c, p_val in zip(clusters, cluster_p_values):
if p_val <= 0.05:
T_obs_plot[c] = T_obs[c]
plt.imshow(T_obs, cmap=plt.cm.gray,
extent=[times[0], times[-1], frequencies[0], frequencies[-1]],
aspect='auto', origin='lower')
plt.imshow(T_obs_plot, cmap=plt.cm.jet,
extent=[times[0], times[-1], frequencies[0], frequencies[-1]],
aspect='auto', origin='lower')
plt.xlabel('time (ms)')
plt.ylabel('Frequency (Hz)')
plt.title('Induced power (%s)' % ch_name)
plt.show()
|