File: _lcmv.py

package info (click to toggle)
python-mne 0.8.6%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 87,892 kB
  • ctags: 6,639
  • sloc: python: 54,697; makefile: 165; sh: 15
file content (721 lines) | stat: -rw-r--r-- 26,302 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
"""Compute Linearly constrained minimum variance (LCMV) beamformer.
"""

# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
#          Roman Goj <roman.goj@gmail.com>
#
# License: BSD (3-clause)

import warnings

import numpy as np
from scipy import linalg

from ..io.constants import FIFF
from ..io.proj import make_projector
from ..io.pick import pick_types, pick_channels_forward, pick_channels_cov
from ..forward import _subject_from_forward
from ..minimum_norm.inverse import _get_vertno, combine_xyz
from ..cov import compute_whitener, compute_covariance
from ..source_estimate import _make_stc, SourceEstimate
from ..source_space import label_src_vertno_sel
from ..utils import logger, verbose
from .. import Epochs
from ..externals import six


@verbose
def _apply_lcmv(data, info, tmin, forward, noise_cov, data_cov, reg,
                label=None, picks=None, pick_ori=None, verbose=None):
    """ LCMV beamformer for evoked data, single epochs, and raw data

    Parameters
    ----------
    data : array or list / iterable
        Sensor space data. If data.ndim == 2 a single observation is assumed
        and a single stc is returned. If data.ndim == 3 or if data is
        a list / iterable, a list of stc's is returned.
    info : dict
        Measurement info.
    tmin : float
        Time of first sample.
    forward : dict
        Forward operator.
    noise_cov : Covariance
        The noise covariance.
    data_cov : Covariance
        The data covariance.
    reg : float
        The regularization for the whitened data covariance.
    label : Label
        Restricts the LCMV solution to a given label.
    picks : array-like of int | None
        Indices (in info) of data channels. If None, MEG and EEG data channels
        (without bad channels) will be used.
    pick_ori : None | 'normal' | 'max-power'
        If 'normal', rather than pooling the orientations by taking the norm,
        only the radial component is kept. If 'max-power', the source
        orientation that maximizes output source power is chosen.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see mne.verbose).

    Returns
    -------
    stc : SourceEstimate | VolSourceEstimate (or list of thereof)
        Source time courses.
    """

    is_free_ori, picks, ch_names, proj, vertno, G =\
        _prepare_beamformer_input(info, forward, label, picks, pick_ori)

    # Handle whitening + data covariance
    whitener, _ = compute_whitener(noise_cov, info, picks)

    # whiten the leadfield
    G = np.dot(whitener, G)

    # Apply SSPs + whitener to data covariance
    data_cov = pick_channels_cov(data_cov, include=ch_names)
    Cm = data_cov['data']
    if info['projs']:
        Cm = np.dot(proj, np.dot(Cm, proj.T))
    Cm = np.dot(whitener, np.dot(Cm, whitener.T))

    # Calculating regularized inverse, equivalent to an inverse operation after
    # the following regularization:
    # Cm += reg * np.trace(Cm) / len(Cm) * np.eye(len(Cm))
    Cm_inv = linalg.pinv(Cm, reg)

    # Compute spatial filters
    W = np.dot(G.T, Cm_inv)
    n_orient = 3 if is_free_ori else 1
    n_sources = G.shape[1] // n_orient
    for k in range(n_sources):
        Wk = W[n_orient * k: n_orient * k + n_orient]
        Gk = G[:, n_orient * k: n_orient * k + n_orient]
        Ck = np.dot(Wk, Gk)

        # Find source orientation maximizing output source power
        if pick_ori == 'max-power':
            eig_vals, eig_vecs = linalg.eigh(Ck)

            # Choosing the eigenvector associated with the middle eigenvalue.
            # The middle and not the minimal eigenvalue is used because MEG is
            # insensitive to one (radial) of the three dipole orientations and
            # therefore the smallest eigenvalue reflects mostly noise.
            for i in range(3):
                if i != eig_vals.argmax() and i != eig_vals.argmin():
                    idx_middle = i

            # TODO: The eigenvector associated with the smallest eigenvalue
            # should probably be used when using combined EEG and MEG data
            max_ori = eig_vecs[:, idx_middle]

            Wk[:] = np.dot(max_ori, Wk)
            Ck = np.dot(max_ori, np.dot(Ck, max_ori))
            is_free_ori = False

        if is_free_ori:
            # Free source orientation
            Wk[:] = np.dot(linalg.pinv(Ck, 0.1), Wk)
        else:
            # Fixed source orientation
            Wk /= Ck

    # Pick source orientation maximizing output source power
    if pick_ori == 'max-power':
        W = W[0::3]

    # Preparing noise normalization
    noise_norm = np.sum(W ** 2, axis=1)
    if is_free_ori:
        noise_norm = np.sum(np.reshape(noise_norm, (-1, 3)), axis=1)
    noise_norm = np.sqrt(noise_norm)

    # Pick source orientation normal to cortical surface
    if pick_ori == 'normal':
        W = W[2::3]
        is_free_ori = False

    # Applying noise normalization
    if not is_free_ori:
        W /= noise_norm[:, None]

    if isinstance(data, np.ndarray) and data.ndim == 2:
        data = [data]
        return_single = True
    else:
        return_single = False

    subject = _subject_from_forward(forward)
    for i, M in enumerate(data):
        if len(M) != len(picks):
            raise ValueError('data and picks must have the same length')

        if not return_single:
            logger.info("Processing epoch : %d" % (i + 1))

        # SSP and whitening
        if info['projs']:
            M = np.dot(proj, M)
        M = np.dot(whitener, M)

        # project to source space using beamformer weights

        if is_free_ori:
            sol = np.dot(W, M)
            logger.info('combining the current components...')
            sol = combine_xyz(sol)
            sol /= noise_norm[:, None]
        else:
            # Linear inverse: do computation here or delayed
            if M.shape[0] < W.shape[0] and pick_ori != 'max-power':
                sol = (W, M)
            else:
                sol = np.dot(W, M)
            if pick_ori == 'max-power':
                sol = np.abs(sol)

        tstep = 1.0 / info['sfreq']
        yield _make_stc(sol, vertices=vertno, tmin=tmin, tstep=tstep,
                        subject=subject)

    logger.info('[done]')


def _prepare_beamformer_input(info, forward, label, picks, pick_ori):
    """Input preparation common for all beamformer functions.

    Check input values, prepare channel list and gain matrix. For documentation
    of parameters, please refer to _apply_lcmv.
    """

    is_free_ori = forward['source_ori'] == FIFF.FIFFV_MNE_FREE_ORI

    if pick_ori in ['normal', 'max-power'] and not is_free_ori:
        raise ValueError('Normal or max-power orientation can only be picked '
                         'when a forward operator with free orientation is '
                         'used.')
    if pick_ori == 'normal' and not forward['surf_ori']:
        raise ValueError('Normal orientation can only be picked when a '
                         'forward operator oriented in surface coordinates is '
                         'used.')
    if pick_ori == 'normal' and not forward['src'][0]['type'] == 'surf':
        raise ValueError('Normal orientation can only be picked when a '
                         'forward operator with a surface-based source space '
                         'is used.')

    if picks is None:
        picks = pick_types(info, meg=True, eeg=True, ref_meg=False,
                           exclude='bads')

    ch_names = [info['ch_names'][k] for k in picks]

    # Restrict forward solution to selected channels
    forward = pick_channels_forward(forward, include=ch_names)

    # Get gain matrix (forward operator)
    if label is not None:
        vertno, src_sel = label_src_vertno_sel(label, forward['src'])

        if is_free_ori:
            src_sel = 3 * src_sel
            src_sel = np.c_[src_sel, src_sel + 1, src_sel + 2]
            src_sel = src_sel.ravel()

        G = forward['sol']['data'][:, src_sel]
    else:
        vertno = _get_vertno(forward['src'])
        G = forward['sol']['data']

    # Apply SSPs
    proj, ncomp, _ = make_projector(info['projs'], ch_names)
    if info['projs']:
        G = np.dot(proj, G)

    return is_free_ori, picks, ch_names, proj, vertno, G


@verbose
def lcmv(evoked, forward, noise_cov, data_cov, reg=0.01, label=None,
         pick_ori=None, verbose=None):
    """Linearly Constrained Minimum Variance (LCMV) beamformer.

    Compute Linearly Constrained Minimum Variance (LCMV) beamformer
    on evoked data.

    NOTE : This implementation has not been heavily tested so please
    report any issue or suggestions.

    Parameters
    ----------
    evoked : Evoked
        Evoked data to invert
    forward : dict
        Forward operator
    noise_cov : Covariance
        The noise covariance
    data_cov : Covariance
        The data covariance
    reg : float
        The regularization for the whitened data covariance.
    label : Label
        Restricts the LCMV solution to a given label
    pick_ori : None | 'normal' | 'max-power'
        If 'normal', rather than pooling the orientations by taking the norm,
        only the radial component is kept. If 'max-power', the source
        orientation that maximizes output source power is chosen.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see mne.verbose).

    Returns
    -------
    stc : SourceEstimate | VolSourceEstimate
        Source time courses

    Notes
    -----
    The original reference is:
    Van Veen et al. Localization of brain electrical activity via linearly
    constrained minimum variance spatial filtering.
    Biomedical Engineering (1997) vol. 44 (9) pp. 867--880

    The reference for finding the max-power orientation is:
    Sekihara et al. Asymptotic SNR of scalar and vector minimum-variance
    beamformers for neuromagnetic source reconstruction.
    Biomedical Engineering (2004) vol. 51 (10) pp. 1726--34
    """

    info = evoked.info
    data = evoked.data
    tmin = evoked.times[0]

    stc = _apply_lcmv(data, info, tmin, forward, noise_cov, data_cov, reg,
                      label, pick_ori=pick_ori)

    return six.advance_iterator(stc)


@verbose
def lcmv_epochs(epochs, forward, noise_cov, data_cov, reg=0.01, label=None,
                pick_ori=None, return_generator=False, verbose=None):
    """Linearly Constrained Minimum Variance (LCMV) beamformer.

    Compute Linearly Constrained Minimum Variance (LCMV) beamformer
    on single trial data.

    NOTE : This implementation has not been heavily tested so please
    report any issue or suggestions.

    Parameters
    ----------
    epochs : Epochs
        Single trial epochs.
    forward : dict
        Forward operator.
    noise_cov : Covariance
        The noise covariance.
    data_cov : Covariance
        The data covariance.
    reg : float
        The regularization for the whitened data covariance.
    label : Label
        Restricts the LCMV solution to a given label.
    pick_ori : None | 'normal' | 'max-power'
        If 'normal', rather than pooling the orientations by taking the norm,
        only the radial component is kept. If 'max-power', the source
        orientation that maximizes output source power is chosen.
    return_generator : bool
        Return a generator object instead of a list. This allows iterating
        over the stcs without having to keep them all in memory.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see mne.verbose).

    Returns
    -------
    stc: list | generator of (SourceEstimate | VolSourceEstimate)
        The source estimates for all epochs

    Notes
    -----
    The original reference is:
    Van Veen et al. Localization of brain electrical activity via linearly
    constrained minimum variance spatial filtering.
    Biomedical Engineering (1997) vol. 44 (9) pp. 867--880

    The reference for finding the max-power orientation is:
    Sekihara et al. Asymptotic SNR of scalar and vector minimum-variance
    beamformers for neuromagnetic source reconstruction.
    Biomedical Engineering (2004) vol. 51 (10) pp. 1726--34
    """

    info = epochs.info
    tmin = epochs.times[0]

    # use only the good data channels
    picks = pick_types(info, meg=True, eeg=True, ref_meg=False,
                       exclude='bads')
    data = epochs.get_data()[:, picks, :]

    stcs = _apply_lcmv(data, info, tmin, forward, noise_cov, data_cov, reg,
                       label, pick_ori=pick_ori)

    if not return_generator:
        stcs = [s for s in stcs]

    return stcs


@verbose
def lcmv_raw(raw, forward, noise_cov, data_cov, reg=0.01, label=None,
             start=None, stop=None, picks=None, pick_ori=None, verbose=None):
    """Linearly Constrained Minimum Variance (LCMV) beamformer.

    Compute Linearly Constrained Minimum Variance (LCMV) beamformer
    on raw data.

    NOTE : This implementation has not been heavily tested so please
    report any issue or suggestions.

    Parameters
    ----------
    raw : mne.io.Raw
        Raw data to invert.
    forward : dict
        Forward operator.
    noise_cov : Covariance
        The noise covariance.
    data_cov : Covariance
        The data covariance.
    reg : float
        The regularization for the whitened data covariance.
    label : Label
        Restricts the LCMV solution to a given label.
    start : int
        Index of first time sample (index not time is seconds).
    stop : int
        Index of first time sample not to include (index not time is seconds).
    picks : array-like of int
        Channel indices in raw to use for beamforming (if None all channels
        are used except bad channels).
    pick_ori : None | 'normal' | 'max-power'
        If 'normal', rather than pooling the orientations by taking the norm,
        only the radial component is kept. If 'max-power', the source
        orientation that maximizes output source power is chosen.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see mne.verbose).

    Returns
    -------
    stc : SourceEstimate | VolSourceEstimate
        Source time courses

    Notes
    -----
    The original reference is:
    Van Veen et al. Localization of brain electrical activity via linearly
    constrained minimum variance spatial filtering.
    Biomedical Engineering (1997) vol. 44 (9) pp. 867--880

    The reference for finding the max-power orientation is:
    Sekihara et al. Asymptotic SNR of scalar and vector minimum-variance
    beamformers for neuromagnetic source reconstruction.
    Biomedical Engineering (2004) vol. 51 (10) pp. 1726--34
    """

    info = raw.info

    if picks is None:
        picks = pick_types(info, meg=True, eeg=True, ref_meg=False,
                           exclude='bads')

    data, times = raw[picks, start:stop]
    tmin = times[0]

    stc = _apply_lcmv(data, info, tmin, forward, noise_cov, data_cov, reg,
                      label, picks, pick_ori)

    return six.advance_iterator(stc)


@verbose
def _lcmv_source_power(info, forward, noise_cov, data_cov, reg=0.01,
                       label=None, picks=None, pick_ori=None, verbose=None):
    """Linearly Constrained Minimum Variance (LCMV) beamformer.

    Calculate source power in a time window based on the provided data
    covariance. Noise covariance is used to whiten the data covariance making
    the output equivalent to the neural activity index as defined by
    Van Veen et al. 1997.

    NOTE : This implementation has not been heavily tested so please
    report any issues or suggestions.

    Parameters
    ----------
    info : dict
        Measurement info, e.g. epochs.info.
    forward : dict
        Forward operator.
    noise_cov : Covariance
        The noise covariance.
    data_cov : Covariance
        The data covariance.
    reg : float
        The regularization for the whitened data covariance.
    label : Label | None
        Restricts the solution to a given label.
    picks : array-like of int | None
        Indices (in info) of data channels. If None, MEG and EEG data channels
        (without bad channels) will be used.
    pick_ori : None | 'normal'
        If 'normal', rather than pooling the orientations by taking the norm,
        only the radial component is kept.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see mne.verbose).

    Returns
    -------
    stc : SourceEstimate
        Source power with a single time point representing the entire time
        window for which data covariance was calculated.

    Notes
    -----
    The original reference is:
    Van Veen et al. Localization of brain electrical activity via linearly
    constrained minimum variance spatial filtering.
    Biomedical Engineering (1997) vol. 44 (9) pp. 867--880
    """

    is_free_ori, picks, ch_names, proj, vertno, G =\
        _prepare_beamformer_input(info, forward, label, picks, pick_ori)

    # Handle whitening
    whitener, _ = compute_whitener(noise_cov, info, picks)

    # whiten the leadfield
    G = np.dot(whitener, G)

    # Apply SSPs + whitener to data covariance
    data_cov = pick_channels_cov(data_cov, include=ch_names)
    Cm = data_cov['data']
    if info['projs']:
        Cm = np.dot(proj, np.dot(Cm, proj.T))
    Cm = np.dot(whitener, np.dot(Cm, whitener.T))

    # Calculating regularized inverse, equivalent to an inverse operation after
    # the following regularization:
    # Cm += reg * np.trace(Cm) / len(Cm) * np.eye(len(Cm))
    Cm_inv = linalg.pinv(Cm, reg)

    # Compute spatial filters
    W = np.dot(G.T, Cm_inv)
    n_orient = 3 if is_free_ori else 1
    n_sources = G.shape[1] // n_orient
    source_power = np.zeros((n_sources, 1))
    for k in range(n_sources):
        Wk = W[n_orient * k: n_orient * k + n_orient]
        Gk = G[:, n_orient * k: n_orient * k + n_orient]
        Ck = np.dot(Wk, Gk)

        if is_free_ori:
            # Free source orientation
            Wk[:] = np.dot(linalg.pinv(Ck, 0.1), Wk)
        else:
            # Fixed source orientation
            Wk /= Ck

        # Noise normalization
        noise_norm = np.dot(Wk, Wk.T)
        noise_norm = noise_norm.trace()

        # Calculating source power
        sp_temp = np.dot(np.dot(Wk, Cm), Wk.T)
        sp_temp /= max(noise_norm, 1e-40)  # Avoid division by 0

        if pick_ori == 'normal':
            source_power[k, 0] = sp_temp[2, 2]
        else:
            source_power[k, 0] = sp_temp.trace()

    logger.info('[done]')

    subject = _subject_from_forward(forward)
    return SourceEstimate(source_power, vertices=vertno, tmin=1,
                          tstep=1, subject=subject)


@verbose
def tf_lcmv(epochs, forward, noise_covs, tmin, tmax, tstep, win_lengths,
            freq_bins, subtract_evoked=False, reg=0.01, label=None,
            pick_ori=None, n_jobs=1, verbose=None):
    """5D time-frequency beamforming based on LCMV.

    Calculate source power in time-frequency windows using a spatial filter
    based on the Linearly Constrained Minimum Variance (LCMV) beamforming
    approach. Band-pass filtered epochs are divided into time windows from
    which covariance is computed and used to create a beamformer spatial
    filter.

    NOTE : This implementation has not been heavily tested so please
    report any issues or suggestions.

    Parameters
    ----------
    epochs : Epochs
        Single trial epochs.
    forward : dict
        Forward operator.
    noise_covs : list of instances of Covariance
        Noise covariance for each frequency bin.
    tmin : float
        Minimum time instant to consider.
    tmax : float
        Maximum time instant to consider.
    tstep : float
        Spacing between consecutive time windows, should be smaller than or
        equal to the shortest time window length.
    win_lengths : list of float
        Time window lengths in seconds. One time window length should be
        provided for each frequency bin.
    freq_bins : list of tuples of float
        Start and end point of frequency bins of interest.
    subtract_evoked : bool
        If True, subtract the averaged evoked response prior to computing the
        tf source grid.
    reg : float
        The regularization for the whitened data covariance.
    label : Label | None
        Restricts the solution to a given label.
    pick_ori : None | 'normal'
        If 'normal', rather than pooling the orientations by taking the norm,
        only the radial component is kept.
    n_jobs : int | str
        Number of jobs to run in parallel. Can be 'cuda' if scikits.cuda
        is installed properly and CUDA is initialized.
    verbose : bool, str, int, or None
        If not None, override default verbose level (see mne.verbose).

    Returns
    -------
    stcs : list of SourceEstimate
        Source power at each time window. One SourceEstimate object is returned
        for each frequency bin.

    Notes
    -----
    The original reference is:
    Dalal et al. Five-dimensional neuroimaging: Localization of the
    time-frequency dynamics of cortical activity.
    NeuroImage (2008) vol. 40 (4) pp. 1686-1700
    """

    if pick_ori not in [None, 'normal']:
        raise ValueError('Unrecognized orientation option in pick_ori, '
                         'available choices are None and normal')
    if len(noise_covs) != len(freq_bins):
        raise ValueError('One noise covariance object expected per frequency '
                         'bin')
    if len(win_lengths) != len(freq_bins):
        raise ValueError('One time window length expected per frequency bin')
    if any(win_length < tstep for win_length in win_lengths):
        raise ValueError('Time step should not be larger than any of the '
                         'window lengths')

    # Extract raw object from the epochs object
    raw = epochs.raw
    if raw is None:
        raise ValueError('The provided epochs object does not contain the '
                         'underlying raw object. Please use preload=False '
                         'when constructing the epochs object')
    # Use picks from epochs for picking channels in the raw object
    raw_picks = [raw.ch_names.index(c) for c in epochs.ch_names]

    # Make sure epochs.events contains only good events:
    epochs.drop_bad_epochs()

    # Multiplying by 1e3 to avoid numerical issues, e.g. 0.3 // 0.05 == 5
    n_time_steps = int(((tmax - tmin) * 1e3) // (tstep * 1e3))

    sol_final = []
    for (l_freq, h_freq), win_length, noise_cov in \
            zip(freq_bins, win_lengths, noise_covs):
        n_overlap = int((win_length * 1e3) // (tstep * 1e3))

        raw_band = raw.copy()
        raw_band.filter(l_freq, h_freq, picks=raw_picks, method='iir',
                        n_jobs=n_jobs)
        raw_band.info['highpass'] = l_freq
        raw_band.info['lowpass'] = h_freq
        epochs_band = Epochs(raw_band, epochs.events, epochs.event_id,
                             tmin=epochs.tmin, tmax=epochs.tmax, baseline=None,
                             picks=raw_picks, proj=epochs.proj, preload=True)
        del raw_band

        if subtract_evoked:
            epochs_band.subtract_evoked()

        sol_single = []
        sol_overlap = []
        for i_time in range(n_time_steps):
            win_tmin = tmin + i_time * tstep
            win_tmax = win_tmin + win_length

            # If in the last step the last time point was not covered in
            # previous steps and will not be covered now, a solution needs to
            # be calculated for an additional time window
            if i_time == n_time_steps - 1 and win_tmax - tstep < tmax and\
               win_tmax >= tmax + (epochs.times[-1] - epochs.times[-2]):
                warnings.warn('Adding a time window to cover last time points')
                win_tmin = tmax - win_length
                win_tmax = tmax

            if win_tmax < tmax + (epochs.times[-1] - epochs.times[-2]):
                logger.info('Computing time-frequency LCMV beamformer for '
                            'time window %d to %d ms, in frequency range '
                            '%d to %d Hz' % (win_tmin * 1e3, win_tmax * 1e3,
                                             l_freq, h_freq))

                # Counteracts unsafe floating point arithmetic ensuring all
                # relevant samples will be taken into account when selecting
                # data in time windows
                win_tmin = win_tmin - 1e-10
                win_tmax = win_tmax + 1e-10

                # Calculating data covariance from filtered epochs in current
                # time window
                data_cov = compute_covariance(epochs_band, tmin=win_tmin,
                                              tmax=win_tmax)

                stc = _lcmv_source_power(epochs_band.info, forward, noise_cov,
                                         data_cov, reg=reg, label=label,
                                         pick_ori=pick_ori, verbose=verbose)
                sol_single.append(stc.data[:, 0])

            # Average over all time windows that contain the current time
            # point, which is the current time window along with
            # n_overlap - 1 previous ones
            if i_time - n_overlap < 0:
                curr_sol = np.mean(sol_single[0:i_time + 1], axis=0)
            else:
                curr_sol = np.mean(sol_single[i_time - n_overlap + 1:
                                              i_time + 1], axis=0)

            # The final result for the current time point in the current
            # frequency bin
            sol_overlap.append(curr_sol)

        # Gathering solutions for all time points for current frequency bin
        sol_final.append(sol_overlap)

    sol_final = np.array(sol_final)

    # Creating stc objects containing all time points for each frequency bin
    stcs = []
    for i_freq, _ in enumerate(freq_bins):
        stc = SourceEstimate(sol_final[i_freq, :, :].T, vertices=stc.vertno,
                             tmin=tmin, tstep=tstep, subject=stc.subject)
        stcs.append(stc)

    return stcs