1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
|
"""Compute Linearly constrained minimum variance (LCMV) beamformer.
"""
# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# Roman Goj <roman.goj@gmail.com>
#
# License: BSD (3-clause)
import warnings
import numpy as np
from scipy import linalg
from ..io.constants import FIFF
from ..io.proj import make_projector
from ..io.pick import pick_types, pick_channels_forward, pick_channels_cov
from ..forward import _subject_from_forward
from ..minimum_norm.inverse import _get_vertno, combine_xyz
from ..cov import compute_whitener, compute_covariance
from ..source_estimate import _make_stc, SourceEstimate
from ..source_space import label_src_vertno_sel
from ..utils import logger, verbose
from .. import Epochs
from ..externals import six
@verbose
def _apply_lcmv(data, info, tmin, forward, noise_cov, data_cov, reg,
label=None, picks=None, pick_ori=None, verbose=None):
""" LCMV beamformer for evoked data, single epochs, and raw data
Parameters
----------
data : array or list / iterable
Sensor space data. If data.ndim == 2 a single observation is assumed
and a single stc is returned. If data.ndim == 3 or if data is
a list / iterable, a list of stc's is returned.
info : dict
Measurement info.
tmin : float
Time of first sample.
forward : dict
Forward operator.
noise_cov : Covariance
The noise covariance.
data_cov : Covariance
The data covariance.
reg : float
The regularization for the whitened data covariance.
label : Label
Restricts the LCMV solution to a given label.
picks : array-like of int | None
Indices (in info) of data channels. If None, MEG and EEG data channels
(without bad channels) will be used.
pick_ori : None | 'normal' | 'max-power'
If 'normal', rather than pooling the orientations by taking the norm,
only the radial component is kept. If 'max-power', the source
orientation that maximizes output source power is chosen.
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
Returns
-------
stc : SourceEstimate | VolSourceEstimate (or list of thereof)
Source time courses.
"""
is_free_ori, picks, ch_names, proj, vertno, G =\
_prepare_beamformer_input(info, forward, label, picks, pick_ori)
# Handle whitening + data covariance
whitener, _ = compute_whitener(noise_cov, info, picks)
# whiten the leadfield
G = np.dot(whitener, G)
# Apply SSPs + whitener to data covariance
data_cov = pick_channels_cov(data_cov, include=ch_names)
Cm = data_cov['data']
if info['projs']:
Cm = np.dot(proj, np.dot(Cm, proj.T))
Cm = np.dot(whitener, np.dot(Cm, whitener.T))
# Calculating regularized inverse, equivalent to an inverse operation after
# the following regularization:
# Cm += reg * np.trace(Cm) / len(Cm) * np.eye(len(Cm))
Cm_inv = linalg.pinv(Cm, reg)
# Compute spatial filters
W = np.dot(G.T, Cm_inv)
n_orient = 3 if is_free_ori else 1
n_sources = G.shape[1] // n_orient
for k in range(n_sources):
Wk = W[n_orient * k: n_orient * k + n_orient]
Gk = G[:, n_orient * k: n_orient * k + n_orient]
Ck = np.dot(Wk, Gk)
# Find source orientation maximizing output source power
if pick_ori == 'max-power':
eig_vals, eig_vecs = linalg.eigh(Ck)
# Choosing the eigenvector associated with the middle eigenvalue.
# The middle and not the minimal eigenvalue is used because MEG is
# insensitive to one (radial) of the three dipole orientations and
# therefore the smallest eigenvalue reflects mostly noise.
for i in range(3):
if i != eig_vals.argmax() and i != eig_vals.argmin():
idx_middle = i
# TODO: The eigenvector associated with the smallest eigenvalue
# should probably be used when using combined EEG and MEG data
max_ori = eig_vecs[:, idx_middle]
Wk[:] = np.dot(max_ori, Wk)
Ck = np.dot(max_ori, np.dot(Ck, max_ori))
is_free_ori = False
if is_free_ori:
# Free source orientation
Wk[:] = np.dot(linalg.pinv(Ck, 0.1), Wk)
else:
# Fixed source orientation
Wk /= Ck
# Pick source orientation maximizing output source power
if pick_ori == 'max-power':
W = W[0::3]
# Preparing noise normalization
noise_norm = np.sum(W ** 2, axis=1)
if is_free_ori:
noise_norm = np.sum(np.reshape(noise_norm, (-1, 3)), axis=1)
noise_norm = np.sqrt(noise_norm)
# Pick source orientation normal to cortical surface
if pick_ori == 'normal':
W = W[2::3]
is_free_ori = False
# Applying noise normalization
if not is_free_ori:
W /= noise_norm[:, None]
if isinstance(data, np.ndarray) and data.ndim == 2:
data = [data]
return_single = True
else:
return_single = False
subject = _subject_from_forward(forward)
for i, M in enumerate(data):
if len(M) != len(picks):
raise ValueError('data and picks must have the same length')
if not return_single:
logger.info("Processing epoch : %d" % (i + 1))
# SSP and whitening
if info['projs']:
M = np.dot(proj, M)
M = np.dot(whitener, M)
# project to source space using beamformer weights
if is_free_ori:
sol = np.dot(W, M)
logger.info('combining the current components...')
sol = combine_xyz(sol)
sol /= noise_norm[:, None]
else:
# Linear inverse: do computation here or delayed
if M.shape[0] < W.shape[0] and pick_ori != 'max-power':
sol = (W, M)
else:
sol = np.dot(W, M)
if pick_ori == 'max-power':
sol = np.abs(sol)
tstep = 1.0 / info['sfreq']
yield _make_stc(sol, vertices=vertno, tmin=tmin, tstep=tstep,
subject=subject)
logger.info('[done]')
def _prepare_beamformer_input(info, forward, label, picks, pick_ori):
"""Input preparation common for all beamformer functions.
Check input values, prepare channel list and gain matrix. For documentation
of parameters, please refer to _apply_lcmv.
"""
is_free_ori = forward['source_ori'] == FIFF.FIFFV_MNE_FREE_ORI
if pick_ori in ['normal', 'max-power'] and not is_free_ori:
raise ValueError('Normal or max-power orientation can only be picked '
'when a forward operator with free orientation is '
'used.')
if pick_ori == 'normal' and not forward['surf_ori']:
raise ValueError('Normal orientation can only be picked when a '
'forward operator oriented in surface coordinates is '
'used.')
if pick_ori == 'normal' and not forward['src'][0]['type'] == 'surf':
raise ValueError('Normal orientation can only be picked when a '
'forward operator with a surface-based source space '
'is used.')
if picks is None:
picks = pick_types(info, meg=True, eeg=True, ref_meg=False,
exclude='bads')
ch_names = [info['ch_names'][k] for k in picks]
# Restrict forward solution to selected channels
forward = pick_channels_forward(forward, include=ch_names)
# Get gain matrix (forward operator)
if label is not None:
vertno, src_sel = label_src_vertno_sel(label, forward['src'])
if is_free_ori:
src_sel = 3 * src_sel
src_sel = np.c_[src_sel, src_sel + 1, src_sel + 2]
src_sel = src_sel.ravel()
G = forward['sol']['data'][:, src_sel]
else:
vertno = _get_vertno(forward['src'])
G = forward['sol']['data']
# Apply SSPs
proj, ncomp, _ = make_projector(info['projs'], ch_names)
if info['projs']:
G = np.dot(proj, G)
return is_free_ori, picks, ch_names, proj, vertno, G
@verbose
def lcmv(evoked, forward, noise_cov, data_cov, reg=0.01, label=None,
pick_ori=None, verbose=None):
"""Linearly Constrained Minimum Variance (LCMV) beamformer.
Compute Linearly Constrained Minimum Variance (LCMV) beamformer
on evoked data.
NOTE : This implementation has not been heavily tested so please
report any issue or suggestions.
Parameters
----------
evoked : Evoked
Evoked data to invert
forward : dict
Forward operator
noise_cov : Covariance
The noise covariance
data_cov : Covariance
The data covariance
reg : float
The regularization for the whitened data covariance.
label : Label
Restricts the LCMV solution to a given label
pick_ori : None | 'normal' | 'max-power'
If 'normal', rather than pooling the orientations by taking the norm,
only the radial component is kept. If 'max-power', the source
orientation that maximizes output source power is chosen.
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
Returns
-------
stc : SourceEstimate | VolSourceEstimate
Source time courses
Notes
-----
The original reference is:
Van Veen et al. Localization of brain electrical activity via linearly
constrained minimum variance spatial filtering.
Biomedical Engineering (1997) vol. 44 (9) pp. 867--880
The reference for finding the max-power orientation is:
Sekihara et al. Asymptotic SNR of scalar and vector minimum-variance
beamformers for neuromagnetic source reconstruction.
Biomedical Engineering (2004) vol. 51 (10) pp. 1726--34
"""
info = evoked.info
data = evoked.data
tmin = evoked.times[0]
stc = _apply_lcmv(data, info, tmin, forward, noise_cov, data_cov, reg,
label, pick_ori=pick_ori)
return six.advance_iterator(stc)
@verbose
def lcmv_epochs(epochs, forward, noise_cov, data_cov, reg=0.01, label=None,
pick_ori=None, return_generator=False, verbose=None):
"""Linearly Constrained Minimum Variance (LCMV) beamformer.
Compute Linearly Constrained Minimum Variance (LCMV) beamformer
on single trial data.
NOTE : This implementation has not been heavily tested so please
report any issue or suggestions.
Parameters
----------
epochs : Epochs
Single trial epochs.
forward : dict
Forward operator.
noise_cov : Covariance
The noise covariance.
data_cov : Covariance
The data covariance.
reg : float
The regularization for the whitened data covariance.
label : Label
Restricts the LCMV solution to a given label.
pick_ori : None | 'normal' | 'max-power'
If 'normal', rather than pooling the orientations by taking the norm,
only the radial component is kept. If 'max-power', the source
orientation that maximizes output source power is chosen.
return_generator : bool
Return a generator object instead of a list. This allows iterating
over the stcs without having to keep them all in memory.
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
Returns
-------
stc: list | generator of (SourceEstimate | VolSourceEstimate)
The source estimates for all epochs
Notes
-----
The original reference is:
Van Veen et al. Localization of brain electrical activity via linearly
constrained minimum variance spatial filtering.
Biomedical Engineering (1997) vol. 44 (9) pp. 867--880
The reference for finding the max-power orientation is:
Sekihara et al. Asymptotic SNR of scalar and vector minimum-variance
beamformers for neuromagnetic source reconstruction.
Biomedical Engineering (2004) vol. 51 (10) pp. 1726--34
"""
info = epochs.info
tmin = epochs.times[0]
# use only the good data channels
picks = pick_types(info, meg=True, eeg=True, ref_meg=False,
exclude='bads')
data = epochs.get_data()[:, picks, :]
stcs = _apply_lcmv(data, info, tmin, forward, noise_cov, data_cov, reg,
label, pick_ori=pick_ori)
if not return_generator:
stcs = [s for s in stcs]
return stcs
@verbose
def lcmv_raw(raw, forward, noise_cov, data_cov, reg=0.01, label=None,
start=None, stop=None, picks=None, pick_ori=None, verbose=None):
"""Linearly Constrained Minimum Variance (LCMV) beamformer.
Compute Linearly Constrained Minimum Variance (LCMV) beamformer
on raw data.
NOTE : This implementation has not been heavily tested so please
report any issue or suggestions.
Parameters
----------
raw : mne.io.Raw
Raw data to invert.
forward : dict
Forward operator.
noise_cov : Covariance
The noise covariance.
data_cov : Covariance
The data covariance.
reg : float
The regularization for the whitened data covariance.
label : Label
Restricts the LCMV solution to a given label.
start : int
Index of first time sample (index not time is seconds).
stop : int
Index of first time sample not to include (index not time is seconds).
picks : array-like of int
Channel indices in raw to use for beamforming (if None all channels
are used except bad channels).
pick_ori : None | 'normal' | 'max-power'
If 'normal', rather than pooling the orientations by taking the norm,
only the radial component is kept. If 'max-power', the source
orientation that maximizes output source power is chosen.
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
Returns
-------
stc : SourceEstimate | VolSourceEstimate
Source time courses
Notes
-----
The original reference is:
Van Veen et al. Localization of brain electrical activity via linearly
constrained minimum variance spatial filtering.
Biomedical Engineering (1997) vol. 44 (9) pp. 867--880
The reference for finding the max-power orientation is:
Sekihara et al. Asymptotic SNR of scalar and vector minimum-variance
beamformers for neuromagnetic source reconstruction.
Biomedical Engineering (2004) vol. 51 (10) pp. 1726--34
"""
info = raw.info
if picks is None:
picks = pick_types(info, meg=True, eeg=True, ref_meg=False,
exclude='bads')
data, times = raw[picks, start:stop]
tmin = times[0]
stc = _apply_lcmv(data, info, tmin, forward, noise_cov, data_cov, reg,
label, picks, pick_ori)
return six.advance_iterator(stc)
@verbose
def _lcmv_source_power(info, forward, noise_cov, data_cov, reg=0.01,
label=None, picks=None, pick_ori=None, verbose=None):
"""Linearly Constrained Minimum Variance (LCMV) beamformer.
Calculate source power in a time window based on the provided data
covariance. Noise covariance is used to whiten the data covariance making
the output equivalent to the neural activity index as defined by
Van Veen et al. 1997.
NOTE : This implementation has not been heavily tested so please
report any issues or suggestions.
Parameters
----------
info : dict
Measurement info, e.g. epochs.info.
forward : dict
Forward operator.
noise_cov : Covariance
The noise covariance.
data_cov : Covariance
The data covariance.
reg : float
The regularization for the whitened data covariance.
label : Label | None
Restricts the solution to a given label.
picks : array-like of int | None
Indices (in info) of data channels. If None, MEG and EEG data channels
(without bad channels) will be used.
pick_ori : None | 'normal'
If 'normal', rather than pooling the orientations by taking the norm,
only the radial component is kept.
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
Returns
-------
stc : SourceEstimate
Source power with a single time point representing the entire time
window for which data covariance was calculated.
Notes
-----
The original reference is:
Van Veen et al. Localization of brain electrical activity via linearly
constrained minimum variance spatial filtering.
Biomedical Engineering (1997) vol. 44 (9) pp. 867--880
"""
is_free_ori, picks, ch_names, proj, vertno, G =\
_prepare_beamformer_input(info, forward, label, picks, pick_ori)
# Handle whitening
whitener, _ = compute_whitener(noise_cov, info, picks)
# whiten the leadfield
G = np.dot(whitener, G)
# Apply SSPs + whitener to data covariance
data_cov = pick_channels_cov(data_cov, include=ch_names)
Cm = data_cov['data']
if info['projs']:
Cm = np.dot(proj, np.dot(Cm, proj.T))
Cm = np.dot(whitener, np.dot(Cm, whitener.T))
# Calculating regularized inverse, equivalent to an inverse operation after
# the following regularization:
# Cm += reg * np.trace(Cm) / len(Cm) * np.eye(len(Cm))
Cm_inv = linalg.pinv(Cm, reg)
# Compute spatial filters
W = np.dot(G.T, Cm_inv)
n_orient = 3 if is_free_ori else 1
n_sources = G.shape[1] // n_orient
source_power = np.zeros((n_sources, 1))
for k in range(n_sources):
Wk = W[n_orient * k: n_orient * k + n_orient]
Gk = G[:, n_orient * k: n_orient * k + n_orient]
Ck = np.dot(Wk, Gk)
if is_free_ori:
# Free source orientation
Wk[:] = np.dot(linalg.pinv(Ck, 0.1), Wk)
else:
# Fixed source orientation
Wk /= Ck
# Noise normalization
noise_norm = np.dot(Wk, Wk.T)
noise_norm = noise_norm.trace()
# Calculating source power
sp_temp = np.dot(np.dot(Wk, Cm), Wk.T)
sp_temp /= max(noise_norm, 1e-40) # Avoid division by 0
if pick_ori == 'normal':
source_power[k, 0] = sp_temp[2, 2]
else:
source_power[k, 0] = sp_temp.trace()
logger.info('[done]')
subject = _subject_from_forward(forward)
return SourceEstimate(source_power, vertices=vertno, tmin=1,
tstep=1, subject=subject)
@verbose
def tf_lcmv(epochs, forward, noise_covs, tmin, tmax, tstep, win_lengths,
freq_bins, subtract_evoked=False, reg=0.01, label=None,
pick_ori=None, n_jobs=1, verbose=None):
"""5D time-frequency beamforming based on LCMV.
Calculate source power in time-frequency windows using a spatial filter
based on the Linearly Constrained Minimum Variance (LCMV) beamforming
approach. Band-pass filtered epochs are divided into time windows from
which covariance is computed and used to create a beamformer spatial
filter.
NOTE : This implementation has not been heavily tested so please
report any issues or suggestions.
Parameters
----------
epochs : Epochs
Single trial epochs.
forward : dict
Forward operator.
noise_covs : list of instances of Covariance
Noise covariance for each frequency bin.
tmin : float
Minimum time instant to consider.
tmax : float
Maximum time instant to consider.
tstep : float
Spacing between consecutive time windows, should be smaller than or
equal to the shortest time window length.
win_lengths : list of float
Time window lengths in seconds. One time window length should be
provided for each frequency bin.
freq_bins : list of tuples of float
Start and end point of frequency bins of interest.
subtract_evoked : bool
If True, subtract the averaged evoked response prior to computing the
tf source grid.
reg : float
The regularization for the whitened data covariance.
label : Label | None
Restricts the solution to a given label.
pick_ori : None | 'normal'
If 'normal', rather than pooling the orientations by taking the norm,
only the radial component is kept.
n_jobs : int | str
Number of jobs to run in parallel. Can be 'cuda' if scikits.cuda
is installed properly and CUDA is initialized.
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
Returns
-------
stcs : list of SourceEstimate
Source power at each time window. One SourceEstimate object is returned
for each frequency bin.
Notes
-----
The original reference is:
Dalal et al. Five-dimensional neuroimaging: Localization of the
time-frequency dynamics of cortical activity.
NeuroImage (2008) vol. 40 (4) pp. 1686-1700
"""
if pick_ori not in [None, 'normal']:
raise ValueError('Unrecognized orientation option in pick_ori, '
'available choices are None and normal')
if len(noise_covs) != len(freq_bins):
raise ValueError('One noise covariance object expected per frequency '
'bin')
if len(win_lengths) != len(freq_bins):
raise ValueError('One time window length expected per frequency bin')
if any(win_length < tstep for win_length in win_lengths):
raise ValueError('Time step should not be larger than any of the '
'window lengths')
# Extract raw object from the epochs object
raw = epochs.raw
if raw is None:
raise ValueError('The provided epochs object does not contain the '
'underlying raw object. Please use preload=False '
'when constructing the epochs object')
# Use picks from epochs for picking channels in the raw object
raw_picks = [raw.ch_names.index(c) for c in epochs.ch_names]
# Make sure epochs.events contains only good events:
epochs.drop_bad_epochs()
# Multiplying by 1e3 to avoid numerical issues, e.g. 0.3 // 0.05 == 5
n_time_steps = int(((tmax - tmin) * 1e3) // (tstep * 1e3))
sol_final = []
for (l_freq, h_freq), win_length, noise_cov in \
zip(freq_bins, win_lengths, noise_covs):
n_overlap = int((win_length * 1e3) // (tstep * 1e3))
raw_band = raw.copy()
raw_band.filter(l_freq, h_freq, picks=raw_picks, method='iir',
n_jobs=n_jobs)
raw_band.info['highpass'] = l_freq
raw_band.info['lowpass'] = h_freq
epochs_band = Epochs(raw_band, epochs.events, epochs.event_id,
tmin=epochs.tmin, tmax=epochs.tmax, baseline=None,
picks=raw_picks, proj=epochs.proj, preload=True)
del raw_band
if subtract_evoked:
epochs_band.subtract_evoked()
sol_single = []
sol_overlap = []
for i_time in range(n_time_steps):
win_tmin = tmin + i_time * tstep
win_tmax = win_tmin + win_length
# If in the last step the last time point was not covered in
# previous steps and will not be covered now, a solution needs to
# be calculated for an additional time window
if i_time == n_time_steps - 1 and win_tmax - tstep < tmax and\
win_tmax >= tmax + (epochs.times[-1] - epochs.times[-2]):
warnings.warn('Adding a time window to cover last time points')
win_tmin = tmax - win_length
win_tmax = tmax
if win_tmax < tmax + (epochs.times[-1] - epochs.times[-2]):
logger.info('Computing time-frequency LCMV beamformer for '
'time window %d to %d ms, in frequency range '
'%d to %d Hz' % (win_tmin * 1e3, win_tmax * 1e3,
l_freq, h_freq))
# Counteracts unsafe floating point arithmetic ensuring all
# relevant samples will be taken into account when selecting
# data in time windows
win_tmin = win_tmin - 1e-10
win_tmax = win_tmax + 1e-10
# Calculating data covariance from filtered epochs in current
# time window
data_cov = compute_covariance(epochs_band, tmin=win_tmin,
tmax=win_tmax)
stc = _lcmv_source_power(epochs_band.info, forward, noise_cov,
data_cov, reg=reg, label=label,
pick_ori=pick_ori, verbose=verbose)
sol_single.append(stc.data[:, 0])
# Average over all time windows that contain the current time
# point, which is the current time window along with
# n_overlap - 1 previous ones
if i_time - n_overlap < 0:
curr_sol = np.mean(sol_single[0:i_time + 1], axis=0)
else:
curr_sol = np.mean(sol_single[i_time - n_overlap + 1:
i_time + 1], axis=0)
# The final result for the current time point in the current
# frequency bin
sol_overlap.append(curr_sol)
# Gathering solutions for all time points for current frequency bin
sol_final.append(sol_overlap)
sol_final = np.array(sol_final)
# Creating stc objects containing all time points for each frequency bin
stcs = []
for i_freq, _ in enumerate(freq_bins):
stc = SourceEstimate(sol_final[i_freq, :, :].T, vertices=stc.vertno,
tmin=tmin, tstep=tstep, subject=stc.subject)
stcs.append(stc)
return stcs
|