1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
|
# Author: Martin Billinger <martin.billinger@tugraz.at>
# License: BSD Style.
import os
from os import path as op
from ...externals.six import string_types
from ...utils import _fetch_file, get_config, set_config, _url_to_local_path
if 'raw_input' not in __builtins__:
raw_input = input
EEGMI_URL = 'http://www.physionet.org/physiobank/database/eegmmidb/'
def data_path(url, path=None, force_update=False, update_path=None):
"""Get path to local copy of EEGMMI dataset URL
This is a low-level function useful for getting a local copy of a
remote EEGBCI dataet.
Parameters
----------
url : str
The dataset to use.
path : None | str
Location of where to look for the EEGBCI data storing location.
If None, the environment variable or config parameter
MNE_DATASETS_EEGBCI_PATH is used. If it doesn't exist, the
"mne-python/examples" directory is used. If the EEGBCI dataset
is not found under the given path (e.g., as
"mne-python/examples/MNE-eegbci-data"), the data
will be automatically downloaded to the specified folder.
force_update : bool
Force update of the dataset even if a local copy exists.
update_path : bool | None
If True, set the MNE_DATASETS_EEGBCI_PATH in mne-python
config to the given path. If None, the user is prompted.
Returns
-------
path : list of str
Local path to the given data file. This path is contained inside a list
of length one, for compatibility.
Notes
-----
For example, one could do:
>>> from mne.datasets import eegbci
>>> url = 'http://www.physionet.org/physiobank/database/eegmmidb/'
>>> eegbci.data_path(url, os.getenv('HOME') + '/datasets') # doctest:+SKIP
This would download the given EEGBCI data file to the 'datasets' folder,
and prompt the user to save the 'datasets' path to the mne-python config,
if it isn't there already.
The EEGBCI dataset is documented in the following publication:
Schalk, G., McFarland, D.J., Hinterberger, T., Birbaumer, N.,
Wolpaw, J.R. (2004) BCI2000: A General-Purpose Brain-Computer Interface
(BCI) System. IEEE TBME 51(6):1034-1043
The data set is available at PhysioNet:
Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PCh, Mark RG,
Mietus JE, Moody GB, Peng C-K, Stanley HE. (2000) PhysioBank,
PhysioToolkit, and PhysioNet: Components of a New Research Resource for
Complex Physiologic Signals. Circulation 101(23):e215-e220
"""
if path is None:
# use an intelligent guess if it's not defined
def_path = op.realpath(op.join(op.dirname(__file__), '..', '..',
'..', 'examples'))
key = 'MNE_DATASETS_EEGBCI_PATH'
# backward compatibility
if get_config(key) is None:
key = 'MNE_DATA'
path = get_config(key, def_path)
# use the same for all datasets
if not op.exists(path) or not os.access(path, os.W_OK):
try:
os.mkdir(path)
except OSError:
try:
logger.info("Checking for EEGBCI data in '~/mne_data'...")
path = op.join(op.expanduser("~"), "mne_data")
if not op.exists(path):
logger.info("Trying to create "
"'~/mne_data' in home directory")
os.mkdir(path)
except OSError:
raise OSError("User does not have write permissions "
"at '%s', try giving the path as an argument "
"to data_path() where user has write "
"permissions, for ex:data_path"
"('/home/xyz/me2/')" % (path))
if not isinstance(path, string_types):
raise ValueError('path must be a string or None')
destination = _url_to_local_path(url, op.join(path, 'MNE-eegbci-data'))
destinations = [destination]
# Fetch the file
if not op.isfile(destination) or force_update:
if op.isfile(destination):
os.remove(destination)
if not op.isdir(op.dirname(destination)):
os.makedirs(op.dirname(destination))
_fetch_file(url, destination, print_destination=False)
# Offer to update the path
path = op.abspath(path)
if update_path is None:
if get_config(key, '') != path:
update_path = True
msg = ('Do you want to set the path:\n %s\nas the default '
'EEGBCI dataset path in the mne-python config ([y]/n)? '
% path)
answer = raw_input(msg)
if answer.lower() == 'n':
update_path = False
else:
update_path = False
if update_path is True:
set_config(key, path)
return destinations
def load_data(subject, runs, path=None, force_update=False, update_path=None,
base_url=EEGMI_URL):
"""Get paths to local copy of EEGBCI dataset files
Parameters
----------
subject : int
The subject to use. Can be in the range of 1-109 (inclusive).
runs : int | list of ints
The runs to use. Can be a list or a single number. The runs correspond
to the following tasks:
run | task
----------+-----------------------------------------
1 | Baseline, eyes open
2 | Baseline, eyes closed
3, 7, 11 | Motor execution: left vs right hand
4, 8, 12 | Motor imagery: left vs right hand
5, 9, 13 | Motor execution: hands vs feet
6, 10, 14 | Motor imagery: hands vs feet
path : None | str
Location of where to look for the EEGBCI data storing location.
If None, the environment variable or config parameter
MNE_DATASETS_EEGBCI_PATH is used. If it doesn't exist, the
"mne-python/examples" directory is used. If the EEGBCI dataset
is not found under the given path (e.g., as
"mne-python/examples/MEGSIM"), the data
will be automatically downloaded to the specified folder.
force_update : bool
Force update of the dataset even if a local copy exists.
update_path : bool | None
If True, set the MNE_DATASETS_EEGBCI_PATH in mne-python
config to the given path. If None, the user is prompted.
Returns
-------
paths : list
List of local data paths of the given type.
Notes
-----
For example, one could do:
>>> from mne.datasets import eegbci
>>> eegbci.load_data(1, [4, 10, 14],\
os.getenv('HOME') + '/datasets') # doctest:+SKIP
This would download runs 4, 10, and 14 (hand/foot motor imagery) runs from
subject 1 in the EEGBCI dataset to the 'datasets' folder, and prompt the
user to save the 'datasets' path to the mne-python config, if it isn't
there already.
The EEGBCI dataset is documented in the following publication:
Schalk, G., McFarland, D.J., Hinterberger, T., Birbaumer, N.,
Wolpaw, J.R. (2004) BCI2000: A General-Purpose Brain-Computer Interface
(BCI) System. IEEE TBME 51(6):1034-1043
The data set is available at PhysioNet:
Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PCh, Mark RG,
Mietus JE, Moody GB, Peng C-K, Stanley HE. (2000) PhysioBank,
PhysioToolkit, and PhysioNet: Components of a New Research Resource for
Complex Physiologic Signals. Circulation 101(23):e215-e220
"""
if not hasattr(runs, '__iter__'):
runs = [runs]
data_paths = []
for r in runs:
url = '{u}S{s:03d}/S{s:03d}R{r:02d}.edf'.format(u=base_url,
s=subject, r=r)
data_paths.extend(data_path(url, path, force_update, update_path))
return data_paths
|