File: eegbci.py

package info (click to toggle)
python-mne 0.8.6%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 87,892 kB
  • ctags: 6,639
  • sloc: python: 54,697; makefile: 165; sh: 15
file content (203 lines) | stat: -rw-r--r-- 8,066 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# Author: Martin Billinger <martin.billinger@tugraz.at>
# License: BSD Style.

import os
from os import path as op
from ...externals.six import string_types
from ...utils import _fetch_file, get_config, set_config, _url_to_local_path

if 'raw_input' not in __builtins__:
    raw_input = input


EEGMI_URL = 'http://www.physionet.org/physiobank/database/eegmmidb/'


def data_path(url, path=None, force_update=False, update_path=None):
    """Get path to local copy of EEGMMI dataset URL

    This is a low-level function useful for getting a local copy of a
    remote EEGBCI dataet.

    Parameters
    ----------
    url : str
        The dataset to use.
    path : None | str
        Location of where to look for the EEGBCI data storing location.
        If None, the environment variable or config parameter
        MNE_DATASETS_EEGBCI_PATH is used. If it doesn't exist, the
        "mne-python/examples" directory is used. If the EEGBCI dataset
        is not found under the given path (e.g., as
        "mne-python/examples/MNE-eegbci-data"), the data
        will be automatically downloaded to the specified folder.
    force_update : bool
        Force update of the dataset even if a local copy exists.
    update_path : bool | None
        If True, set the MNE_DATASETS_EEGBCI_PATH in mne-python
        config to the given path. If None, the user is prompted.

    Returns
    -------
    path : list of str
        Local path to the given data file. This path is contained inside a list
        of length one, for compatibility.

    Notes
    -----
    For example, one could do:

        >>> from mne.datasets import eegbci
        >>> url = 'http://www.physionet.org/physiobank/database/eegmmidb/'
        >>> eegbci.data_path(url, os.getenv('HOME') + '/datasets') # doctest:+SKIP

    This would download the given EEGBCI data file to the 'datasets' folder,
    and prompt the user to save the 'datasets' path to the mne-python config,
    if it isn't there already.

    The EEGBCI dataset is documented in the following publication:
        Schalk, G., McFarland, D.J., Hinterberger, T., Birbaumer, N.,
        Wolpaw, J.R. (2004) BCI2000: A General-Purpose Brain-Computer Interface
        (BCI) System. IEEE TBME 51(6):1034-1043
    The data set is available at PhysioNet:
        Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PCh, Mark RG,
        Mietus JE, Moody GB, Peng C-K, Stanley HE. (2000) PhysioBank,
        PhysioToolkit, and PhysioNet: Components of a New Research Resource for
        Complex Physiologic Signals. Circulation 101(23):e215-e220
    """

    if path is None:
        # use an intelligent guess if it's not defined
        def_path = op.realpath(op.join(op.dirname(__file__), '..', '..',
                                       '..', 'examples'))

        key = 'MNE_DATASETS_EEGBCI_PATH'
        # backward compatibility
        if get_config(key) is None:
            key = 'MNE_DATA'

        path = get_config(key, def_path)

        # use the same for all datasets
        if not op.exists(path) or not os.access(path, os.W_OK):
            try:
                os.mkdir(path)
            except OSError:
                try:
                    logger.info("Checking for EEGBCI data in '~/mne_data'...")
                    path = op.join(op.expanduser("~"), "mne_data")
                    if not op.exists(path):
                        logger.info("Trying to create "
                                    "'~/mne_data' in home directory")
                        os.mkdir(path)
                except OSError:
                    raise OSError("User does not have write permissions "
                                  "at '%s', try giving the path as an argument "
                                  "to data_path() where user has write "
                                  "permissions, for ex:data_path"
                                  "('/home/xyz/me2/')" % (path))

    if not isinstance(path, string_types):
        raise ValueError('path must be a string or None')

    destination = _url_to_local_path(url, op.join(path, 'MNE-eegbci-data'))
    destinations = [destination]

    # Fetch the file
    if not op.isfile(destination) or force_update:
        if op.isfile(destination):
            os.remove(destination)
        if not op.isdir(op.dirname(destination)):
            os.makedirs(op.dirname(destination))
        _fetch_file(url, destination, print_destination=False)

    # Offer to update the path
    path = op.abspath(path)
    if update_path is None:
        if get_config(key, '') != path:
            update_path = True
            msg = ('Do you want to set the path:\n    %s\nas the default '
                   'EEGBCI dataset path in the mne-python config ([y]/n)? '
                   % path)
            answer = raw_input(msg)
            if answer.lower() == 'n':
                update_path = False
        else:
            update_path = False
    if update_path is True:
        set_config(key, path)

    return destinations


def load_data(subject, runs, path=None, force_update=False, update_path=None,
              base_url=EEGMI_URL):
    """Get paths to local copy of EEGBCI dataset files

    Parameters
    ----------
    subject : int
        The subject to use. Can be in the range of 1-109 (inclusive).
    runs : int | list of ints
        The runs to use. Can be a list or a single number. The runs correspond
        to the following tasks:
              run | task
        ----------+-----------------------------------------
                1 | Baseline, eyes open
                2 | Baseline, eyes closed
         3, 7, 11 | Motor execution: left vs right hand
         4, 8, 12 | Motor imagery: left vs right hand
         5, 9, 13 | Motor execution: hands vs feet
        6, 10, 14 | Motor imagery: hands vs feet
    path : None | str
        Location of where to look for the EEGBCI data storing location.
        If None, the environment variable or config parameter
        MNE_DATASETS_EEGBCI_PATH is used. If it doesn't exist, the
        "mne-python/examples" directory is used. If the EEGBCI dataset
        is not found under the given path (e.g., as
        "mne-python/examples/MEGSIM"), the data
        will be automatically downloaded to the specified folder.
    force_update : bool
        Force update of the dataset even if a local copy exists.
    update_path : bool | None
        If True, set the MNE_DATASETS_EEGBCI_PATH in mne-python
        config to the given path. If None, the user is prompted.

    Returns
    -------
    paths : list
        List of local data paths of the given type.

    Notes
    -----
    For example, one could do:

        >>> from mne.datasets import eegbci
        >>> eegbci.load_data(1, [4, 10, 14],\
                             os.getenv('HOME') + '/datasets') # doctest:+SKIP

    This would download runs 4, 10, and 14 (hand/foot motor imagery) runs from
    subject 1 in the EEGBCI dataset to the 'datasets' folder, and prompt the
    user to save the 'datasets' path to the  mne-python config, if it isn't
    there already.

    The EEGBCI dataset is documented in the following publication:
        Schalk, G., McFarland, D.J., Hinterberger, T., Birbaumer, N.,
        Wolpaw, J.R. (2004) BCI2000: A General-Purpose Brain-Computer Interface
        (BCI) System. IEEE TBME 51(6):1034-1043
    The data set is available at PhysioNet:
        Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PCh, Mark RG,
        Mietus JE, Moody GB, Peng C-K, Stanley HE. (2000) PhysioBank,
        PhysioToolkit, and PhysioNet: Components of a New Research Resource for
        Complex Physiologic Signals. Circulation 101(23):e215-e220
    """
    if not hasattr(runs, '__iter__'):
        runs = [runs]

    data_paths = []
    for r in runs:
        url = '{u}S{s:03d}/S{s:03d}R{r:02d}.edf'.format(u=base_url,
                                                        s=subject, r=r)
        data_paths.extend(data_path(url, path, force_update, update_path))

    return data_paths