1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
|
# Author: Eric Larson <larson.eric.d@gmail.com>
# License: BSD Style.
import numpy as np
valid_data_types = ['experimental', 'simulation']
valid_data_formats = ['single-trial', 'evoked', 'raw']
valid_conditions = ['visual', 'auditory', 'somatosensory']
url_root = 'http://cobre.mrn.org/megsim'
urls = ['/empdata/neuromag/visual/subject1_day1_vis_raw.fif',
'/empdata/neuromag/visual/subject1_day2_vis_raw.fif',
'/empdata/neuromag/visual/subject3_day1_vis_raw.fif',
'/empdata/neuromag/visual/subject3_day2_vis_raw.fif',
'/empdata/neuromag/aud/subject1_day1_aud_raw.fif',
'/empdata/neuromag/aud/subject1_day2_aud_raw.fif',
'/empdata/neuromag/aud/subject3_day1_aud_raw.fif',
'/empdata/neuromag/aud/subject3_day2_aud_raw.fif',
'/empdata/neuromag/somato/subject1_day1_median_raw.fif',
'/empdata/neuromag/somato/subject1_day2_median_raw.fif',
'/empdata/neuromag/somato/subject3_day1_median_raw.fif',
'/empdata/neuromag/somato/subject3_day2_median_raw.fif',
'/simdata/neuromag/visual/M87174545_vis_sim1A_4mm_30na_neuro_rn.fif',
'/simdata/neuromag/visual/M87174545_vis_sim1B_20mm_50na_neuro_rn.fif',
'/simdata/neuromag/visual/M87174545_vis_sim2_4mm_30na_neuro_rn.fif',
'/simdata/neuromag/visual/M87174545_vis_sim3A_4mm_30na_neuro_rn.fif',
'/simdata/neuromag/visual/M87174545_vis_sim3B_20mm_50na_neuro_rn.fif',
'/simdata/neuromag/visual/M87174545_vis_sim4_4mm_30na_neuro_rn.fif',
'/simdata/neuromag/visual/M87174545_vis_sim5_4mm_30na_neuro_rn.fif',
'/simdata_singleTrials/subject1_singleTrials_VisWorkingMem_fif.zip',
'/simdata_singleTrials/subject1_singleTrials_VisWorkingMem_withOsc_fif.zip',
'/simdata_singleTrials/4545_sim_oscOnly_v1_IPS_ILOG_30hzAdded.fif']
data_formats = ['raw',
'raw',
'raw',
'raw',
'raw',
'raw',
'raw',
'raw',
'raw',
'raw',
'raw',
'raw',
'evoked',
'evoked',
'evoked',
'evoked',
'evoked',
'evoked',
'evoked',
'single-trial',
'single-trial',
'single-trial',
]
subjects = ['subject_1',
'subject_1',
'subject_3',
'subject_3',
'subject_1',
'subject_1',
'subject_3',
'subject_3',
'subject_1',
'subject_1',
'subject_3',
'subject_3',
'subject_1',
'subject_1',
'subject_1',
'subject_1',
'subject_1',
'subject_1',
'subject_1',
'subject_1',
'subject_1',
'subject_1']
data_types = ['experimental',
'experimental',
'experimental',
'experimental',
'experimental',
'experimental',
'experimental',
'experimental',
'experimental',
'experimental',
'experimental',
'experimental',
'simulation',
'simulation',
'simulation',
'simulation',
'simulation',
'simulation',
'simulation',
'simulation',
'simulation',
'simulation']
conditions = ['visual',
'visual',
'visual',
'visual',
'auditory',
'auditory',
'auditory',
'auditory',
'somatosensory',
'somatosensory',
'somatosensory',
'somatosensory',
'visual',
'visual',
'visual',
'visual',
'visual',
'visual',
'visual',
'visual',
'visual',
'visual']
# turn them into arrays for ease of use
urls = np.atleast_1d(urls)
data_formats = np.atleast_1d(data_formats)
subjects = np.atleast_1d(subjects)
data_types = np.atleast_1d(data_types)
conditions = np.atleast_1d(conditions)
# Useful for testing
#assert len(conditions) == len(data_types) == len(subjects) \
# == len(data_formats) == len(urls)
def url_match(condition, data_format, data_type):
"""Function to match MEGSIM data files"""
inds = np.logical_and(conditions == condition, data_formats == data_format)
inds = np.logical_and(inds, data_types == data_type)
inds = np.logical_and(inds, data_formats == data_format)
good_urls = list(urls[inds])
for gi, g in enumerate(good_urls):
good_urls[gi] = url_root + g
if len(good_urls) == 0:
raise ValueError('No MEGSIM dataset found with condition="%s",\n'
'data_format="%s", data_type="%s"'
% (condition, data_format, data_type))
return good_urls
|