File: urls.py

package info (click to toggle)
python-mne 0.8.6%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 87,892 kB
  • ctags: 6,639
  • sloc: python: 54,697; makefile: 165; sh: 15
file content (160 lines) | stat: -rw-r--r-- 5,162 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# Author: Eric Larson <larson.eric.d@gmail.com>
# License: BSD Style.

import numpy as np

valid_data_types = ['experimental', 'simulation']
valid_data_formats = ['single-trial', 'evoked', 'raw']
valid_conditions = ['visual', 'auditory', 'somatosensory']

url_root = 'http://cobre.mrn.org/megsim'

urls = ['/empdata/neuromag/visual/subject1_day1_vis_raw.fif',
        '/empdata/neuromag/visual/subject1_day2_vis_raw.fif',
        '/empdata/neuromag/visual/subject3_day1_vis_raw.fif',
        '/empdata/neuromag/visual/subject3_day2_vis_raw.fif',
        '/empdata/neuromag/aud/subject1_day1_aud_raw.fif',
        '/empdata/neuromag/aud/subject1_day2_aud_raw.fif',
        '/empdata/neuromag/aud/subject3_day1_aud_raw.fif',
        '/empdata/neuromag/aud/subject3_day2_aud_raw.fif',
        '/empdata/neuromag/somato/subject1_day1_median_raw.fif',
        '/empdata/neuromag/somato/subject1_day2_median_raw.fif',
        '/empdata/neuromag/somato/subject3_day1_median_raw.fif',
        '/empdata/neuromag/somato/subject3_day2_median_raw.fif',

        '/simdata/neuromag/visual/M87174545_vis_sim1A_4mm_30na_neuro_rn.fif',
        '/simdata/neuromag/visual/M87174545_vis_sim1B_20mm_50na_neuro_rn.fif',
        '/simdata/neuromag/visual/M87174545_vis_sim2_4mm_30na_neuro_rn.fif',
        '/simdata/neuromag/visual/M87174545_vis_sim3A_4mm_30na_neuro_rn.fif',
        '/simdata/neuromag/visual/M87174545_vis_sim3B_20mm_50na_neuro_rn.fif',
        '/simdata/neuromag/visual/M87174545_vis_sim4_4mm_30na_neuro_rn.fif',
        '/simdata/neuromag/visual/M87174545_vis_sim5_4mm_30na_neuro_rn.fif',

        '/simdata_singleTrials/subject1_singleTrials_VisWorkingMem_fif.zip',
        '/simdata_singleTrials/subject1_singleTrials_VisWorkingMem_withOsc_fif.zip',
        '/simdata_singleTrials/4545_sim_oscOnly_v1_IPS_ILOG_30hzAdded.fif']

data_formats = ['raw',
                'raw',
                'raw',
                'raw',
                'raw',
                'raw',
                'raw',
                'raw',
                'raw',
                'raw',
                'raw',
                'raw',

                'evoked',
                'evoked',
                'evoked',
                'evoked',
                'evoked',
                'evoked',
                'evoked',

                'single-trial',
                'single-trial',
                'single-trial',
                ]
subjects = ['subject_1',
            'subject_1',
            'subject_3',
            'subject_3',
            'subject_1',
            'subject_1',
            'subject_3',
            'subject_3',
            'subject_1',
            'subject_1',
            'subject_3',
            'subject_3',

            'subject_1',
            'subject_1',
            'subject_1',
            'subject_1',
            'subject_1',
            'subject_1',
            'subject_1',

            'subject_1',
            'subject_1',
            'subject_1']

data_types = ['experimental',
              'experimental',
              'experimental',
              'experimental',
              'experimental',
              'experimental',
              'experimental',
              'experimental',
              'experimental',
              'experimental',
              'experimental',
              'experimental',

              'simulation',
              'simulation',
              'simulation',
              'simulation',
              'simulation',
              'simulation',
              'simulation',

              'simulation',
              'simulation',
              'simulation']

conditions = ['visual',
              'visual',
              'visual',
              'visual',
              'auditory',
              'auditory',
              'auditory',
              'auditory',
              'somatosensory',
              'somatosensory',
              'somatosensory',
              'somatosensory',

              'visual',
              'visual',
              'visual',
              'visual',
              'visual',
              'visual',
              'visual',

              'visual',
              'visual',
              'visual']

# turn them into arrays for ease of use
urls = np.atleast_1d(urls)
data_formats = np.atleast_1d(data_formats)
subjects = np.atleast_1d(subjects)
data_types = np.atleast_1d(data_types)
conditions = np.atleast_1d(conditions)

# Useful for testing
#assert len(conditions) == len(data_types) == len(subjects) \
#    == len(data_formats) == len(urls)

def url_match(condition, data_format, data_type):
    """Function to match MEGSIM data files"""
    inds = np.logical_and(conditions == condition, data_formats == data_format)
    inds = np.logical_and(inds, data_types == data_type)
    inds = np.logical_and(inds, data_formats == data_format)
    good_urls = list(urls[inds])
    for gi, g in enumerate(good_urls):
        good_urls[gi] = url_root + g
    if len(good_urls) == 0:
        raise ValueError('No MEGSIM dataset found with condition="%s",\n'
                         'data_format="%s", data_type="%s"'
                         % (condition, data_format, data_type))
    return good_urls