1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
|
# Authors: Mainak Jas <mainak@neuro.hut.fi>
# Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
#
# License: BSD (3-clause)
import numpy as np
from .mixin import TransformerMixin
from .. import pick_types
from ..filter import (low_pass_filter, high_pass_filter, band_pass_filter,
band_stop_filter)
from ..time_frequency import multitaper_psd
from ..externals import six
from ..utils import _check_type_picks
class Scaler(TransformerMixin):
"""Standardizes data across channels
Parameters
----------
info : dict
measurement info
with_mean : boolean, True by default
If True, center the data before scaling.
with_std : boolean, True by default
If True, scale the data to unit variance (or equivalently,
unit standard deviation).
Attributes
----------
`scale_` : dict
The mean value for each channel type
`ch_std_` : array
The standard deviation for each channel type
"""
def __init__(self, info, with_mean=True, with_std=True):
self.info = info
self.with_mean = with_mean
self.with_std = with_std
def fit(self, epochs_data, y):
"""
Parameters
----------
epochs_data : array, shape=(n_epochs, n_channels, n_times)
The data to concatenate channels.
y : array
The label for each epoch.
Returns
-------
self : instance of Scaler
Returns the modified instance.
"""
if not isinstance(epochs_data, np.ndarray):
raise ValueError("epochs_data should be of type ndarray (got %s)."
% type(epochs_data))
X = np.atleast_3d(epochs_data)
picks_list = dict()
picks_list['mag'] = pick_types(self.info, meg='mag', ref_meg=False,
exclude='bads')
picks_list['grad'] = pick_types(self.info, meg='grad', ref_meg=False,
exclude='bads')
picks_list['eeg'] = pick_types(self.info, eeg='grad', ref_meg=False,
exclude='bads')
self.picks_list_ = picks_list
self.ch_mean_, self.std_ = dict(), dict()
for key, this_pick in picks_list.items():
if self.with_mean:
ch_mean = X[:, this_pick, :].mean(axis=1)[:, None, :]
self.ch_mean_[key] = ch_mean
if self.with_std:
ch_std = X[:, this_pick, :].mean(axis=1)[:, None, :]
self.std_[key] = ch_std
return self
def transform(self, epochs_data, y=None):
"""Standardizes data across channels
Parameters
----------
epochs_data : array, shape=(n_epochs, n_channels, n_times)
The data.
Returns
-------
X : array of shape (n_epochs, n_channels * n_times)
The data concatenated over channels.
"""
if not isinstance(epochs_data, np.ndarray):
raise ValueError("epochs_data should be of type ndarray (got %s)."
% type(epochs_data))
X = np.atleast_3d(epochs_data)
for key, this_pick in six.iteritems(self.picks_list_):
if self.with_mean:
X[:, this_pick, :] -= self.ch_mean_[key]
if self.with_std:
X[:, this_pick, :] /= self.std_[key]
return X
class ConcatenateChannels(TransformerMixin):
"""Concatenates data from different channels into a single feature vector
Parameters
----------
info : dict
The measurement info.
"""
def __init__(self, info=None):
self.info = info
def fit(self, epochs_data, y):
"""Concatenates data from different channels into a single feature
vector
Parameters
----------
epochs_data : array, shape=(n_epochs, n_channels, n_times)
The data to concatenate channels.
y : array
The label for each epoch.
Returns
-------
self : instance of ConcatenateChannels
returns the modified instance
"""
if not isinstance(epochs_data, np.ndarray):
raise ValueError("epochs_data should be of type ndarray (got %s)."
% type(epochs_data))
return self
def transform(self, epochs_data, y=None):
"""Concatenates data from different channels into a single feature
vector
Parameters
----------
epochs_data : array, shape=(n_epochs, n_channels, n_times)
The data.
Returns
-------
X : array, shape (n_epochs, n_channels*n_times)
The data concatenated over channels
"""
if not isinstance(epochs_data, np.ndarray):
raise ValueError("epochs_data should be of type ndarray (got %s)."
% type(epochs_data))
epochs_data = np.atleast_3d(epochs_data)
n_epochs, n_channels, n_times = epochs_data.shape
X = epochs_data.reshape(n_epochs, n_channels * n_times)
return X
class PSDEstimator(TransformerMixin):
"""Compute power spectrum density (PSD) using a multi-taper method
Parameters
----------
sfreq : float
The sampling frequency.
fmin : float
The lower frequency of interest.
fmax : float
The upper frequency of interest.
bandwidth : float
The bandwidth of the multi taper windowing function in Hz.
adaptive : bool
Use adaptive weights to combine the tapered spectra into PSD
(slow, use n_jobs >> 1 to speed up computation).
low_bias : bool
Only use tapers with more than 90% spectral concentration within
bandwidth.
n_jobs : int
Number of parallel jobs to use (only used if adaptive=True).
normalization : str
Either "full" or "length" (default). If "full", the PSD will
be normalized by the sampling rate as well as the length of
the signal (as in nitime).
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
"""
def __init__(self, sfreq=2 * np.pi, fmin=0, fmax=np.inf, bandwidth=None,
adaptive=False, low_bias=True, n_jobs=1, normalization='length',
verbose=None):
self.sfreq = sfreq
self.fmin = fmin
self.fmax = fmax
self.bandwidth = bandwidth
self.adaptive = adaptive
self.low_bias = low_bias
self.n_jobs = n_jobs
self.verbose = verbose
self.normalization = normalization
def fit(self, epochs_data, y):
"""Compute power spectrum density (PSD) using a multi-taper method
Parameters
----------
epochs_data : array, shape=(n_epochs, n_channels, n_times)
The data.
y : array
The label for each epoch
Returns
-------
self : instance of PSDEstimator
returns the modified instance
"""
if not isinstance(epochs_data, np.ndarray):
raise ValueError("epochs_data should be of type ndarray (got %s)."
% type(epochs_data))
return self
def transform(self, epochs_data, y=None):
"""Compute power spectrum density (PSD) using a multi-taper method
Parameters
----------
epochs_data : array, shape=(n_epochs, n_channels, n_times)
The data
Returns
-------
psd : array, shape=(n_signals, len(freqs)) or (len(freqs),)
The computed PSD.
"""
if not isinstance(epochs_data, np.ndarray):
raise ValueError("epochs_data should be of type ndarray (got %s)."
% type(epochs_data))
epochs_data = np.atleast_3d(epochs_data)
n_epochs, n_channels, n_times = epochs_data.shape
X = epochs_data.reshape(n_epochs * n_channels, n_times)
psd, _ = multitaper_psd(x=X, sfreq=self.sfreq, fmin=self.fmin,
fmax=self.fmax, bandwidth=self.bandwidth,
adaptive=self.adaptive, low_bias=self.low_bias,
n_jobs=self.n_jobs,
normalization=self.normalization,
verbose=self.verbose)
_, n_freqs = psd.shape
psd = psd.reshape(n_epochs, n_channels, n_freqs)
return psd
class FilterEstimator(TransformerMixin):
"""Estimator to filter RtEpochs
Applies a zero-phase low-pass, high-pass, band-pass, or band-stop
filter to the channels selected by "picks".
l_freq and h_freq are the frequencies below which and above which,
respectively, to filter out of the data. Thus the uses are:
l_freq < h_freq: band-pass filter
l_freq > h_freq: band-stop filter
l_freq is not None, h_freq is None: low-pass filter
l_freq is None, h_freq is not None: high-pass filter
Note: If n_jobs > 1, more memory is required as "len(picks) * n_times"
additional time points need to be temporarily stored in memory.
Parameters
----------
info : dict
Measurement info.
l_freq : float | None
Low cut-off frequency in Hz. If None the data are only low-passed.
h_freq : float | None
High cut-off frequency in Hz. If None the data are only
high-passed.
picks : array-like of int | None
Indices of channels to filter. If None only the data (MEG/EEG)
channels will be filtered.
filter_length : str (Default: '10s') | int | None
Length of the filter to use. If None or "len(x) < filter_length",
the filter length used is len(x). Otherwise, if int, overlap-add
filtering with a filter of the specified length in samples) is
used (faster for long signals). If str, a human-readable time in
units of "s" or "ms" (e.g., "10s" or "5500ms") will be converted
to the shortest power-of-two length at least that duration.
l_trans_bandwidth : float
Width of the transition band at the low cut-off frequency in Hz.
h_trans_bandwidth : float
Width of the transition band at the high cut-off frequency in Hz.
n_jobs : int | str
Number of jobs to run in parallel. Can be 'cuda' if scikits.cuda
is installed properly, CUDA is initialized, and method='fft'.
method : str
'fft' will use overlap-add FIR filtering, 'iir' will use IIR
forward-backward filtering (via filtfilt).
iir_params : dict | None
Dictionary of parameters to use for IIR filtering.
See mne.filter.construct_iir_filter for details. If iir_params
is None and method="iir", 4th order Butterworth will be used.
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
Defaults to self.verbose.
"""
def __init__(self, info, l_freq, h_freq, picks=None, filter_length='10s',
l_trans_bandwidth=0.5, h_trans_bandwidth=0.5, n_jobs=1,
method='fft', iir_params=None):
self.info = info
self.l_freq = l_freq
self.h_freq = h_freq
self.picks = _check_type_picks(picks)
self.filter_length = filter_length
self.l_trans_bandwidth = l_trans_bandwidth
self.h_trans_bandwidth = h_trans_bandwidth
self.n_jobs = n_jobs
self.method = method
self.iir_params = iir_params
def fit(self, epochs_data, y):
"""Filters data
Parameters
----------
epochs_data : array, shape=(n_epochs, n_channels, n_times)
The data.
Returns
-------
self : instance of FilterEstimator
Returns the modified instance
"""
if not isinstance(epochs_data, np.ndarray):
raise ValueError("epochs_data should be of type ndarray (got %s)."
% type(epochs_data))
if self.picks is None:
self.picks = pick_types(self.info, meg=True, eeg=True,
ref_meg=False, exclude=[])
if self.l_freq == 0:
self.l_freq = None
if self.h_freq > (self.info['sfreq'] / 2.):
self.h_freq = None
if self.h_freq is not None and \
(self.l_freq is None or self.l_freq < self.h_freq) and \
self.h_freq < self.info['lowpass']:
self.info['lowpass'] = self.h_freq
if self.l_freq is not None and \
(self.h_freq is None or self.l_freq < self.h_freq) and \
self.l_freq > self.info['highpass']:
self.info['highpass'] = self.l_freq
return self
def transform(self, epochs_data, y=None):
"""Filters data
Parameters
----------
epochs_data : array, shape=(n_epochs, n_channels, n_times)
The data.
Returns
-------
X : array, shape=(n_epochs, n_channels, n_times)
The data after filtering
"""
if not isinstance(epochs_data, np.ndarray):
raise ValueError("epochs_data should be of type ndarray (got %s)."
% type(epochs_data))
epochs_data = np.atleast_3d(epochs_data)
if self.l_freq is None and self.h_freq is not None:
epochs_data = \
low_pass_filter(epochs_data, self.fs, self.h_freq,
filter_length=self.filter_length,
trans_bandwidth=self.l_trans_bandwidth,
method=self.method, iir_params=self.iir_params,
picks=self.picks, n_jobs=self.n_jobs,
copy=False, verbose=False)
if self.l_freq is not None and self.h_freq is None:
epochs_data = \
high_pass_filter(epochs_data, self.info['sfreq'], self.l_freq,
filter_length=self.filter_length,
trans_bandwidth=self.h_trans_bandwidth,
method=self.method,
iir_params=self.iir_params,
picks=self.picks, n_jobs=self.n_jobs,
copy=False, verbose=False)
if self.l_freq is not None and self.h_freq is not None:
if self.l_freq < self.h_freq:
epochs_data = \
band_pass_filter(epochs_data, self.info['sfreq'],
self.l_freq, self.h_freq,
filter_length=self.filter_length,
l_trans_bandwidth=self.l_trans_bandwidth,
h_trans_bandwidth=self.h_trans_bandwidth,
method=self.method,
iir_params=self.iir_params,
picks=self.picks, n_jobs=self.n_jobs,
copy=False, verbose=False)
else:
epochs_data = \
band_stop_filter(epochs_data, self.info['sfreq'],
self.h_freq, self.l_freq,
filter_length=self.filter_length,
l_trans_bandwidth=self.h_trans_bandwidth,
h_trans_bandwidth=self.l_trans_bandwidth,
method=self.method,
iir_params=self.iir_params,
picks=self.picks, n_jobs=self.n_jobs,
copy=False, verbose=False)
return epochs_data
|