1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
|
# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# Matti Hamalainen <msh@nmr.mgh.harvard.edu>
# Denis Engemann <denis.engemann@gmail.com>
# Andrew Dykstra <andrew.r.dykstra@gmail.com>
#
# License: BSD (3-clause)
from copy import deepcopy
import numpy as np
import warnings
from .baseline import rescale
from .channels import ContainsMixin, PickDropChannelsMixin
from .filter import resample, detrend
from .fixes import in1d
from .utils import (_check_pandas_installed, check_fname, logger, verbose,
deprecated, object_hash)
from .viz import plot_evoked, plot_evoked_topomap, _mutable_defaults
from .viz import plot_evoked_field
from .viz import plot_evoked_image
from .externals.six import string_types
from .io.constants import FIFF
from .io.open import fiff_open
from .io.tag import read_tag
from .io.tree import dir_tree_find
from .io.pick import channel_type, pick_types
from .io.meas_info import read_meas_info, write_meas_info
from .io.proj import ProjMixin
from .io.write import (start_file, start_block, end_file, end_block,
write_int, write_string, write_float_matrix,
write_id)
aspect_dict = {'average': FIFF.FIFFV_ASPECT_AVERAGE,
'standard_error': FIFF.FIFFV_ASPECT_STD_ERR}
aspect_rev = {str(FIFF.FIFFV_ASPECT_AVERAGE): 'average',
str(FIFF.FIFFV_ASPECT_STD_ERR): 'standard_error'}
class Evoked(ProjMixin, ContainsMixin, PickDropChannelsMixin):
"""Evoked data
Parameters
----------
fname : string
Name of evoked/average FIF file to load.
If None no data is loaded.
condition : int, or str
Dataset ID number (int) or comment/name (str). Optional if there is
only one data set in file.
baseline : tuple or list of length 2, or None
The time interval to apply rescaling / baseline correction.
If None do not apply it. If baseline is (a, b)
the interval is between "a (s)" and "b (s)".
If a is None the beginning of the data is used
and if b is None then b is set to the end of the interval.
If baseline is equal ot (None, None) all the time
interval is used. If None, no correction is applied.
proj : bool, optional
Apply SSP projection vectors
kind : str
Either 'average' or 'standard_error'. The type of data to read.
Only used if 'condition' is a str.
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
Attributes
----------
info : dict
Measurement info.
ch_names : list of string
List of channels' names.
nave : int
Number of averaged epochs.
kind : str
Type of data, either average or standard_error.
first : int
First time sample.
last : int
Last time sample.
comment : string
Comment on dataset. Can be the condition.
times : array
Array of time instants in seconds.
data : array of shape (n_channels, n_times)
Evoked response.
verbose : bool, str, int, or None.
See above.
"""
@verbose
def __init__(self, fname, condition=None, baseline=None, proj=True,
kind='average', verbose=None, setno=None):
if fname is None:
raise ValueError('No evoked filename specified')
if condition is None and setno is not None:
condition = setno
msg = ("'setno' will be deprecated in 0.9. Use 'condition' "
"instead.")
warnings.warn(msg, DeprecationWarning)
self.verbose = verbose
logger.info('Reading %s ...' % fname)
fid, tree, _ = fiff_open(fname)
if not isinstance(proj, bool):
raise ValueError(r"'proj' must be 'True' or 'False'")
# Read the measurement info
info, meas = read_meas_info(fid, tree)
info['filename'] = fname
# Locate the data of interest
processed = dir_tree_find(meas, FIFF.FIFFB_PROCESSED_DATA)
if len(processed) == 0:
fid.close()
raise ValueError('Could not find processed data')
evoked_node = dir_tree_find(meas, FIFF.FIFFB_EVOKED)
if len(evoked_node) == 0:
fid.close()
raise ValueError('Could not find evoked data')
# find string-based entry
if isinstance(condition, string_types):
if not kind in aspect_dict.keys():
fid.close()
raise ValueError('kind must be "average" or '
'"standard_error"')
comments, aspect_kinds, t = _get_entries(fid, evoked_node)
goods = np.logical_and(in1d(comments, [condition]),
in1d(aspect_kinds, [aspect_dict[kind]]))
found_cond = np.where(goods)[0]
if len(found_cond) != 1:
fid.close()
raise ValueError('condition "%s" (%s) not found, out of found '
'datasets:\n %s' % (condition, kind, t))
condition = found_cond[0]
if condition >= len(evoked_node) or condition < 0:
fid.close()
raise ValueError('Data set selector out of range')
my_evoked = evoked_node[condition]
# Identify the aspects
aspects = dir_tree_find(my_evoked, FIFF.FIFFB_ASPECT)
if len(aspects) > 1:
logger.info('Multiple aspects found. Taking first one.')
my_aspect = aspects[0]
# Now find the data in the evoked block
nchan = 0
sfreq = -1
chs = []
comment = None
for k in range(my_evoked['nent']):
my_kind = my_evoked['directory'][k].kind
pos = my_evoked['directory'][k].pos
if my_kind == FIFF.FIFF_COMMENT:
tag = read_tag(fid, pos)
comment = tag.data
elif my_kind == FIFF.FIFF_FIRST_SAMPLE:
tag = read_tag(fid, pos)
first = int(tag.data)
elif my_kind == FIFF.FIFF_LAST_SAMPLE:
tag = read_tag(fid, pos)
last = int(tag.data)
elif my_kind == FIFF.FIFF_NCHAN:
tag = read_tag(fid, pos)
nchan = int(tag.data)
elif my_kind == FIFF.FIFF_SFREQ:
tag = read_tag(fid, pos)
sfreq = float(tag.data)
elif my_kind == FIFF.FIFF_CH_INFO:
tag = read_tag(fid, pos)
chs.append(tag.data)
if comment is None:
comment = 'No comment'
# Local channel information?
if nchan > 0:
if chs is None:
fid.close()
raise ValueError('Local channel information was not found '
'when it was expected.')
if len(chs) != nchan:
fid.close()
raise ValueError('Number of channels and number of '
'channel definitions are different')
info['chs'] = chs
info['nchan'] = nchan
logger.info(' Found channel information in evoked data. '
'nchan = %d' % nchan)
if sfreq > 0:
info['sfreq'] = sfreq
nsamp = last - first + 1
logger.info(' Found the data of interest:')
logger.info(' t = %10.2f ... %10.2f ms (%s)'
% (1000 * first / info['sfreq'],
1000 * last / info['sfreq'], comment))
if info['comps'] is not None:
logger.info(' %d CTF compensation matrices available'
% len(info['comps']))
# Read the data in the aspect block
nave = 1
epoch = []
for k in range(my_aspect['nent']):
kind = my_aspect['directory'][k].kind
pos = my_aspect['directory'][k].pos
if kind == FIFF.FIFF_COMMENT:
tag = read_tag(fid, pos)
comment = tag.data
elif kind == FIFF.FIFF_ASPECT_KIND:
tag = read_tag(fid, pos)
aspect_kind = int(tag.data)
elif kind == FIFF.FIFF_NAVE:
tag = read_tag(fid, pos)
nave = int(tag.data)
elif kind == FIFF.FIFF_EPOCH:
tag = read_tag(fid, pos)
epoch.append(tag)
logger.info(' nave = %d - aspect type = %d'
% (nave, aspect_kind))
nepoch = len(epoch)
if nepoch != 1 and nepoch != info['nchan']:
fid.close()
raise ValueError('Number of epoch tags is unreasonable '
'(nepoch = %d nchan = %d)'
% (nepoch, info['nchan']))
if nepoch == 1:
# Only one epoch
all_data = epoch[0].data.astype(np.float)
# May need a transpose if the number of channels is one
if all_data.shape[1] == 1 and info['nchan'] == 1:
all_data = all_data.T.astype(np.float)
else:
# Put the old style epochs together
all_data = np.concatenate([e.data[None, :] for e in epoch],
axis=0).astype(np.float)
if all_data.shape[1] != nsamp:
fid.close()
raise ValueError('Incorrect number of samples (%d instead of %d)'
% (all_data.shape[1], nsamp))
# Calibrate
cals = np.array([info['chs'][k]['cal']
* info['chs'][k].get('scale', 1.0)
for k in range(info['nchan'])])
all_data *= cals[:, np.newaxis]
times = np.arange(first, last + 1, dtype=np.float) / info['sfreq']
self.info = info
# Put the rest together all together
self.nave = nave
self._aspect_kind = aspect_kind
self.kind = aspect_rev.get(str(self._aspect_kind), 'Unknown')
self.first = first
self.last = last
self.comment = comment
self.times = times
self.data = all_data
# bind info, proj, data to self so apply_proj can be used
self.data = all_data
self.proj = False
if proj:
self.apply_proj()
# Run baseline correction
self.data = rescale(self.data, times, baseline, 'mean', copy=False)
fid.close()
def save(self, fname):
"""Save dataset to file.
Parameters
----------
fname : string
Name of the file where to save the data.
"""
write_evokeds(fname, self)
def __repr__(self):
s = "comment : '%s'" % self.comment
s += ", time : [%f, %f]" % (self.times[0], self.times[-1])
s += ", n_epochs : %d" % self.nave
s += ", n_channels x n_times : %s x %s" % self.data.shape
return "<Evoked | %s>" % s
@property
def ch_names(self):
return self.info['ch_names']
def crop(self, tmin=None, tmax=None):
"""Crop data to a given time interval
"""
times = self.times
mask = np.ones(len(times), dtype=np.bool)
if tmin is not None:
mask = mask & (times >= tmin)
if tmax is not None:
mask = mask & (times <= tmax)
self.times = times[mask]
self.first = int(self.times[0] * self.info['sfreq'])
self.last = len(self.times) + self.first - 1
self.data = self.data[:, mask]
def shift_time(self, tshift, relative=True):
"""Shift time scale in evoked data
Parameters
----------
tshift : float
The amount of time shift to be applied if relative is True
else the first time point. When relative is True, positive value
of tshift moves the data forward while negative tshift moves it
backward.
relative : bool
If true, move the time backwards or forwards by specified amount.
Else, set the starting time point to the value of tshift.
Notes
-----
Maximum accuracy of time shift is 1 / evoked.info['sfreq']
"""
times = self.times
sfreq = self.info['sfreq']
offset = self.first if relative else 0
self.first = int(tshift * sfreq) + offset
self.last = self.first + len(times) - 1
self.times = np.arange(self.first, self.last + 1,
dtype=np.float) / sfreq
def plot(self, picks=None, exclude='bads', unit=True, show=True, ylim=None,
proj=False, xlim='tight', hline=None, units=None, scalings=None,
titles=None, axes=None):
"""Plot evoked data as butterfly plots
Note: If bad channels are not excluded they are shown in red.
Parameters
----------
picks : array-like of int | None
The indices of channels to plot. If None show all.
exclude : list of str | 'bads'
Channels names to exclude from being shown. If 'bads', the
bad channels are excluded.
unit : bool
Scale plot with channel (SI) unit.
show : bool
Call pyplot.show() at the end or not.
ylim : dict
ylim for plots. e.g. ylim = dict(eeg=[-200e-6, 200e6])
Valid keys are eeg, mag, grad
xlim : 'tight' | tuple | None
xlim for plots.
proj : bool | 'interactive'
If true SSP projections are applied before display. If
'interactive', a check box for reversible selection of SSP
projection vectors will be shown.
hline : list of floats | None
The values at which show an horizontal line.
units : dict | None
The units of the channel types used for axes lables. If None,
defaults to `dict(eeg='uV', grad='fT/cm', mag='fT')`.
scalings : dict | None
The scalings of the channel types to be applied for plotting.
If None, defaults to `dict(eeg=1e6, grad=1e13, mag=1e15)`.
titles : dict | None
The titles associated with the channels. If None, defaults to
`dict(eeg='EEG', grad='Gradiometers', mag='Magnetometers')`.
axes : instance of Axes | list | None
The axes to plot to. If list, the list must be a list of Axes of
the same length as the number of channel types. If instance of
Axes, there must be only one channel type plotted.
"""
return plot_evoked(self, picks=picks, exclude=exclude, unit=unit,
show=show, ylim=ylim, proj=proj, xlim=xlim,
hline=hline, units=units, scalings=scalings,
titles=titles, axes=axes)
def plot_image(self, picks=None, exclude='bads', unit=True, show=True,
clim=None, proj=False, xlim='tight', units=None,
scalings=None, titles=None, axes=None, cmap='RdBu_r'):
"""Plot evoked data as images
Parameters
----------
picks : array-like of int | None
The indices of channels to plot. If None show all.
exclude : list of str | 'bads'
Channels names to exclude from being shown. If 'bads', the
bad channels are excluded.
unit : bool
Scale plot with channel (SI) unit.
show : bool
Call pyplot.show() at the end or not.
clim : dict
clim for images. e.g. clim = dict(eeg=[-200e-6, 200e6])
Valid keys are eeg, mag, grad
xlim : 'tight' | tuple | None
xlim for plots.
proj : bool | 'interactive'
If true SSP projections are applied before display. If
'interactive', a check box for reversible selection of SSP
projection vectors will be shown.
units : dict | None
The units of the channel types used for axes lables. If None,
defaults to `dict(eeg='uV', grad='fT/cm', mag='fT')`.
scalings : dict | None
The scalings of the channel types to be applied for plotting.
If None, defaults to `dict(eeg=1e6, grad=1e13, mag=1e15)`.
titles : dict | None
The titles associated with the channels. If None, defaults to
`dict(eeg='EEG', grad='Gradiometers', mag='Magnetometers')`.
axes : instance of Axes | list | None
The axes to plot to. If list, the list must be a list of Axes of
the same length as the number of channel types. If instance of
Axes, there must be only one channel type plotted.
cmap : matplotlib colormap
Colormap.
"""
return plot_evoked_image(self, picks=picks, exclude=exclude, unit=unit,
show=show, clim=clim, proj=proj, xlim=xlim,
units=units, scalings=scalings,
titles=titles, axes=axes, cmap=cmap)
def plot_topomap(self, times=None, ch_type='mag', layout=None, vmin=None,
vmax=None, cmap='RdBu_r', sensors='k,', colorbar=True,
scale=None, scale_time=1e3, unit=None, res=64, size=1,
format="%3.1f", time_format='%01d ms', proj=False,
show=True, show_names=False, title=None, mask=None,
mask_params=None, outlines='head', contours=6,
image_interp='bilinear'):
"""Plot topographic maps of specific time points
Parameters
----------
times : float | array of floats | None.
The time point(s) to plot. If None, 10 topographies will be shown
will a regular time spacing between the first and last time
instant.
ch_type : 'mag' | 'grad' | 'planar1' | 'planar2' | 'eeg'
The channel type to plot. For 'grad', the gradiometers are collec-
ted in pairs and the RMS for each pair is plotted.
layout : None | Layout
Layout instance specifying sensor positions (does not need to
be specified for Neuromag data). If possible, the correct
layout file is inferred from the data; if no appropriate layout
file was found, the layout is automatically generated from the
sensor locations.
vmin : float | callable
The value specfying the lower bound of the color range.
If None, and vmax is None, -vmax is used. Else np.min(data).
If callable, the output equals vmin(data).
vmax : float | callable
The value specfying the upper bound of the color range.
If None, the maximum absolute value is used. If vmin is None,
but vmax is not, defaults to np.min(data).
If callable, the output equals vmax(data).
cmap : matplotlib colormap
Colormap. Defaults to 'RdBu_r'
sensors : bool | str
Add markers for sensor locations to the plot. Accepts matplotlib
plot format string (e.g., 'r+' for red plusses).
colorbar : bool
Plot a colorbar.
scale : float | None
Scale the data for plotting. If None, defaults to 1e6 for eeg, 1e13
for grad and 1e15 for mag.
scale_time : float | None
Scale the time labels. Defaults to 1e3 (ms).
units : str | None
The units of the channel types used for colorbar lables. If
scale == None the unit is automatically determined.
res : int
The resolution of the topomap image (n pixels along each side).
size : scalar
Side length of the topomaps in inches (only applies when plotting
multiple topomaps at a time).
format : str
String format for colorbar values.
time_format : str
String format for topomap values. Defaults to "%01d ms"
proj : bool | 'interactive'
If true SSP projections are applied before display. If
'interactive', a check box for reversible selection of SSP
projection vectors will be shown.
show : bool
Call pyplot.show() at the end.
show_names : bool | callable
If True, show channel names on top of the map. If a callable is
passed, channel names will be formatted using the callable; e.g.,
to delete the prefix 'MEG ' from all channel names, pass the
function
lambda x: x.replace('MEG ', ''). If `mask` is not None, only
significant sensors will be shown.
title : str | None
Title. If None (default), no title is displayed.
mask : ndarray of bool, shape (n_channels, n_times) | None
The channels to be marked as significant at a given time point.
Indicies set to `True` will be considered. Defaults to None.
mask_params : dict | None
Additional plotting parameters for plotting significant sensors.
Default (None) equals:
dict(marker='o', markerfacecolor='w', markeredgecolor='k',
linewidth=0, markersize=4)
outlines : 'head' | dict | None
The outlines to be drawn. If 'head', a head scheme will be drawn.
If dict, each key refers to a tuple of x and y positions. The
values in 'mask_pos' will serve as image mask. If None,
nothing will be drawn. Defaults to 'head'.
image_interp : str
The image interpolation to be used. All matplotlib options are
accepted.
"""
return plot_evoked_topomap(self, times=times, ch_type=ch_type,
layout=layout, vmin=vmin,
vmax=vmax, cmap=cmap, sensors=sensors,
colorbar=colorbar, scale=scale,
scale_time=scale_time,
unit=unit, res=res, proj=proj, size=size,
format=format, time_format=time_format,
show=show, show_names=show_names,
title=title, mask=mask,
mask_params=mask_params,
outlines=outlines, contours=contours,
image_interp=image_interp)
def plot_field(self, surf_maps, time=None, time_label='t = %0.0f ms',
n_jobs=1):
"""Plot MEG/EEG fields on head surface and helmet in 3D
Parameters
----------
surf_maps : list
The surface mapping information obtained with make_field_map.
time : float | None
The time point at which the field map shall be displayed. If None,
the average peak latency (across sensor types) is used.
time_label : str
How to print info about the time instant visualized.
n_jobs : int
Number of jobs to run in parallel.
Returns
-------
fig : instance of mlab.Figure
The mayavi figure.
"""
return plot_evoked_field(self, surf_maps, time=time,
time_label=time_label, n_jobs=n_jobs)
def to_nitime(self, picks=None):
"""Export Evoked object to NiTime
Parameters
----------
picks : array-like of int | None
Indices of channels to apply. If None, all channels will be
exported.
Returns
-------
evoked_ts : instance of nitime.TimeSeries
The TimeSeries instance
"""
try:
from nitime import TimeSeries # to avoid strong dependency
except ImportError:
raise Exception('the nitime package is missing')
evoked_ts = TimeSeries(self.data if picks is None
else self.data[picks],
sampling_rate=self.info['sfreq'])
return evoked_ts
def as_data_frame(self, picks=None, scale_time=1e3, scalings=None,
use_time_index=True, copy=True):
"""Get the Evoked object as a Pandas DataFrame
Export data in tabular structure: each row corresponds to a time point,
and each column to a channel.
Parameters
----------
picks : array-like of int | None
If None all channels are kept, otherwise the channels indices in
picks are kept.
scale_time : float
Scaling to be applied to time units.
scalings : dict | None
Scaling to be applied to the channels picked. If None, defaults to
``scalings=dict(eeg=1e6, grad=1e13, mag=1e15, misc=1.0)`.
use_time_index : bool
If False, times will be included as in the data table, else it will
be used as index object.
copy : bool
If true, evoked will be copied. Else data may be modified in place.
Returns
-------
df : instance of pandas.core.DataFrame
Evoked data exported into tabular data structure.
"""
pd = _check_pandas_installed()
if picks is None:
picks = list(range(self.info['nchan']))
else:
if not in1d(picks, np.arange(len(self.ch_names))).all():
raise ValueError('At least one picked channel is not present '
'in this Evoked instance.')
data, times = self.data, self.times
if copy is True:
data = data.copy()
types = [channel_type(self.info, idx) for idx in picks]
n_channel_types = 0
ch_types_used = []
scalings = _mutable_defaults(('scalings', scalings))[0]
for t in scalings.keys():
if t in types:
n_channel_types += 1
ch_types_used.append(t)
for t in ch_types_used:
scaling = scalings[t]
idx = [picks[i] for i in range(len(picks)) if types[i] == t]
if len(idx) > 0:
data[idx] *= scaling
assert times.shape[0] == data.shape[1]
col_names = [self.ch_names[k] for k in picks]
df = pd.DataFrame(data.T, columns=col_names)
df.insert(0, 'time', times * scale_time)
if use_time_index is True:
if 'time' in df:
df['time'] = df['time'].astype(np.int64)
with warnings.catch_warnings(record=True):
df.set_index('time', inplace=True)
return df
def resample(self, sfreq, npad=100, window='boxcar'):
"""Resample data
This function operates in-place.
Parameters
----------
sfreq : float
New sample rate to use
npad : int
Amount to pad the start and end of the data.
window : string or tuple
Window to use in resampling. See scipy.signal.resample.
"""
o_sfreq = self.info['sfreq']
self.data = resample(self.data, sfreq, o_sfreq, npad, -1, window)
# adjust indirectly affected variables
self.info['sfreq'] = sfreq
self.times = (np.arange(self.data.shape[1], dtype=np.float) / sfreq
+ self.times[0])
self.first = int(self.times[0] * self.info['sfreq'])
self.last = len(self.times) + self.first - 1
def detrend(self, order=1, picks=None):
"""Detrend data
This function operates in-place.
Parameters
----------
order : int
Either 0 or 1, the order of the detrending. 0 is a constant
(DC) detrend, 1 is a linear detrend.
picks : array-like of int | None
If None only MEG and EEG channels are detrended.
"""
if picks is None:
picks = pick_types(self.info, meg=True, eeg=True, ref_meg=False,
stim=False, eog=False, ecg=False, emg=False,
exclude='bads')
self.data[picks] = detrend(self.data[picks], order, axis=-1)
def copy(self):
"""Copy the instance of evoked
Returns
-------
evoked : instance of Evoked
"""
evoked = deepcopy(self)
return evoked
def __add__(self, evoked):
"""Add evoked taking into account number of epochs"""
out = merge_evoked([self, evoked])
out.comment = self.comment + " + " + evoked.comment
return out
def __sub__(self, evoked):
"""Add evoked taking into account number of epochs"""
this_evoked = deepcopy(evoked)
this_evoked.data *= -1.
out = merge_evoked([self, this_evoked])
out.comment = self.comment + " - " + this_evoked.comment
return out
def __hash__(self):
return object_hash(dict(info=self.info, data=self.data))
def get_peak(self, ch_type=None, tmin=None, tmax=None, mode='abs',
time_as_index=False):
"""Get location and latency of peak amplitude
Parameters
----------
ch_type : {'mag', 'grad', 'eeg', 'misc', None}
The channel type to use. Defaults to None. If more than one sensor
Type is present in the data the channel type has to be explicitly
set.
tmin : float | None
The minimum point in time to be considered for peak getting.
tmax : float | None
The maximum point in time to be considered for peak getting.
mode : {'pos', 'neg', 'abs'}
How to deal with the sign of the data. If 'pos' only positive
values will be considered. If 'neg' only negative values will
be considered. If 'abs' absolute values will be considered.
Defaults to 'abs'.
time_as_index : bool
Whether to return the time index instead of the latency in seconds.
Returns
-------
ch_name : str
The channel exhibiting the maximum response.
latency : float | int
The time point of the maximum response, either latency in seconds
or index.
"""
supported = ('mag', 'grad', 'eeg', 'misc', 'None')
data_picks = pick_types(self.info, meg=True, eeg=True, ref_meg=False)
types_used = set([channel_type(self.info, idx) for idx in data_picks])
if str(ch_type) not in supported:
raise ValueError('Channel type must be `{supported}`. You gave me '
'`{ch_type}` instead.'
.format(ch_type=ch_type,
supported='` or `'.join(supported)))
elif ch_type is not None and ch_type not in types_used:
raise ValueError('Channel type `{ch_type}` not found in this '
'evoked object.'
.format(ch_type=ch_type))
elif len(types_used) > 1 and ch_type is None:
raise RuntimeError('More than one sensor type found. `ch_type` '
'must not be `None`, pass a sensor type '
'value instead')
meg, eeg, misc, picks = False, False, False, None
if ch_type == 'mag':
meg = ch_type
elif ch_type == 'grad':
meg = ch_type
elif ch_type == 'eeg':
eeg = True
elif ch_type == 'misc':
misc = True
if ch_type is not None:
picks = pick_types(self.info, meg=meg, eeg=eeg, misc=misc,
ref_meg=False)
data = self.data if picks is None else self.data[picks]
ch_idx, time_idx = _get_peak(data, self.times, tmin,
tmax, mode)
return (self.ch_names[ch_idx],
time_idx if time_as_index else self.times[time_idx])
class EvokedArray(Evoked):
"""Evoked object from numpy array
Parameters
----------
data : array of shape (n_channels, n_times)
The channels' evoked response.
info : instance of Info
Info dictionary. Consider using ``create_info`` to populate
this structure.
tmin : float
Start time before event.
comment : string
Comment on dataset. Can be the condition. Defaults to ''.
nave : int
Number of averaged epochs. Defaults to 1.
kind : str
Type of data, either average or standard_error. Defaults to 'average'.
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
Defaults to raw.verbose.
"""
@verbose
def __init__(self, data, info, tmin, comment='', nave=1, kind='average',
verbose=None):
dtype = np.complex128 if np.any(np.iscomplex(data)) else np.float64
data = np.asanyarray(data, dtype=dtype)
if data.ndim != 2:
raise ValueError('Data must be a 2D array of shape (n_channels, '
'n_samples)')
if len(info['ch_names']) != np.shape(data)[0]:
raise ValueError('Info and data must have same number of '
'channels.')
self.data = data
# XXX: this should use round and be tested
self.first = int(tmin * info['sfreq'])
self.last = self.first + np.shape(data)[-1] - 1
self.times = np.arange(self.first, self.last + 1, dtype=np.float)
self.times /= info['sfreq']
self.info = info
self.nave = nave
self.kind = kind
self.comment = comment
self.proj = None
self.picks = None
self.verbose = verbose
self._projector = None
if self.kind == 'average':
self._aspect_kind = aspect_dict['average']
else:
self._aspect_kind = aspect_dict['standard_error']
def _get_entries(fid, evoked_node):
"""Helper to get all evoked entries"""
comments = list()
aspect_kinds = list()
for ev in evoked_node:
for k in range(ev['nent']):
my_kind = ev['directory'][k].kind
pos = ev['directory'][k].pos
if my_kind == FIFF.FIFF_COMMENT:
tag = read_tag(fid, pos)
comments.append(tag.data)
my_aspect = dir_tree_find(ev, FIFF.FIFFB_ASPECT)[0]
for k in range(my_aspect['nent']):
my_kind = my_aspect['directory'][k].kind
pos = my_aspect['directory'][k].pos
if my_kind == FIFF.FIFF_ASPECT_KIND:
tag = read_tag(fid, pos)
aspect_kinds.append(int(tag.data))
comments = np.atleast_1d(comments)
aspect_kinds = np.atleast_1d(aspect_kinds)
if len(comments) != len(aspect_kinds) or len(comments) == 0:
fid.close()
raise ValueError('Dataset names in FIF file '
'could not be found.')
t = [aspect_rev.get(str(a), 'Unknown') for a in aspect_kinds]
t = ['"' + c + '" (' + tt + ')' for tt, c in zip(t, comments)]
t = ' ' + '\n '.join(t)
return comments, aspect_kinds, t
def _get_evoked_node(fname):
"""Helper to get info in evoked file"""
f, tree, _ = fiff_open(fname)
with f as fid:
_, meas = read_meas_info(fid, tree)
evoked_node = dir_tree_find(meas, FIFF.FIFFB_EVOKED)
return evoked_node
def merge_evoked(all_evoked):
"""Merge/concat evoked data
Data should have the same channels and the same time instants.
Parameters
----------
all_evoked : list of Evoked
The evoked datasets
Returns
-------
evoked : Evoked
The merged evoked data
"""
evoked = deepcopy(all_evoked[0])
ch_names = evoked.ch_names
for e in all_evoked[1:]:
assert e.ch_names == ch_names, ValueError("%s and %s do not contain "
"the same channels"
% (evoked, e))
assert np.max(np.abs(e.times - evoked.times)) < 1e-7, \
ValueError("%s and %s do not contain the same time "
"instants" % (evoked, e))
# use union of bad channels
bads = list(set(evoked.info['bads']).union(*(ev.info['bads']
for ev in all_evoked[1:])))
evoked.info['bads'] = bads
all_nave = sum(e.nave for e in all_evoked)
evoked.data = sum(e.nave * e.data for e in all_evoked) / all_nave
evoked.nave = all_nave
return evoked
@deprecated("'read_evoked' will be removed in v0.9. Use 'read_evokeds.'")
def read_evoked(fname, setno=None, baseline=None, kind='average', proj=True):
"""Read an evoked dataset
Parameters
----------
fname : string
The file name.
setno : int or str | list of int or str | None
The index or list of indices of the evoked dataset to read. FIF files
can contain multiple datasets. If None and there is only one dataset in
the file, this dataset is loaded.
baseline : None (default) or tuple of length 2
The time interval to apply baseline correction. If None do not apply it.
If baseline is (a, b) the interval is between "a (s)" and "b (s)". If a
is None the beginning of the data is used and if b is None then b is set
to the end of the interval. If baseline is equal ot (None, None) all the
time interval is used.
kind : str
Either 'average' or 'standard_error', the type of data to read.
proj : bool
If False, available projectors won't be applied to the data.
Returns
-------
evoked : instance of Evoked or list of Evoked
The evoked datasets.
"""
evoked_node = _get_evoked_node(fname)
if setno is None and len(evoked_node) > 1:
fid, _, _ = fiff_open(fname)
try:
_, _, t = _get_entries(fid, evoked_node)
except:
t = 'None found, must use integer'
else:
fid.close()
raise ValueError('%d datasets present, setno parameter must be set.'
'Candidate setno names:\n%s' % (len(evoked_node), t))
elif isinstance(setno, list):
return [Evoked(fname, s, baseline=baseline, kind=kind, proj=proj)
for s in setno]
else:
if setno is None:
setno = 0
return Evoked(fname, setno, baseline=baseline, kind=kind, proj=proj)
@verbose
def read_evokeds(fname, condition=None, baseline=None, kind='average',
proj=True, verbose=None):
"""Read evoked dataset(s)
Parameters
----------
fname : string
The file name, which should end with -ave.fif or -ave.fif.gz.
condition : int or str | list of int or str | None
The index or list of indices of the evoked dataset to read. FIF files
can contain multiple datasets. If None, all datasets are returned as a
list.
baseline : None (default) or tuple of length 2
The time interval to apply baseline correction. If None do not apply it.
If baseline is (a, b) the interval is between "a (s)" and "b (s)". If a
is None the beginning of the data is used and if b is None then b is set
to the end of the interval. If baseline is equal ot (None, None) all the
time interval is used.
kind : str
Either 'average' or 'standard_error', the type of data to read.
proj : bool
If False, available projectors won't be applied to the data.
verbose : bool, str, int, or None
If not None, override default verbose level (see mne.verbose).
Returns
-------
evoked : Evoked (if condition is int or str) or list of Evoked (if
condition is None or list)
The evoked dataset(s).
"""
check_fname(fname, 'evoked', ('-ave.fif', '-ave.fif.gz'))
return_list = True
if condition is None:
evoked_node = _get_evoked_node(fname)
condition = range(len(evoked_node))
elif not isinstance(condition, list):
condition = [condition]
return_list = False
out = [Evoked(fname, c, baseline=baseline, kind=kind, proj=proj,
verbose=verbose) for c in condition]
return out if return_list else out[0]
@deprecated("'write_evoked' will be removed in v0.9. Use 'write_evokeds.'")
def write_evoked(fname, evoked):
"""Write an evoked dataset to a file
Parameters
----------
fname : string
The file name.
evoked : instance of Evoked, or list of Evoked
The evoked dataset to save, or a list of evoked datasets to save in one
file. Note that the measurement info from the first evoked instance is
used, so be sure that information matches.
"""
if not isinstance(evoked, list):
evoked = [evoked]
# Create the file and save the essentials
fid = start_file(fname)
start_block(fid, FIFF.FIFFB_MEAS)
write_id(fid, FIFF.FIFF_BLOCK_ID)
if evoked[0].info['meas_id'] is not None:
write_id(fid, FIFF.FIFF_PARENT_BLOCK_ID, evoked[0].info['meas_id'])
# Write measurement info
write_meas_info(fid, evoked[0].info)
# One or more evoked data sets
start_block(fid, FIFF.FIFFB_PROCESSED_DATA)
for e in evoked:
start_block(fid, FIFF.FIFFB_EVOKED)
# Comment is optional
if e.comment is not None and len(e.comment) > 0:
write_string(fid, FIFF.FIFF_COMMENT, e.comment)
# First and last sample
write_int(fid, FIFF.FIFF_FIRST_SAMPLE, e.first)
write_int(fid, FIFF.FIFF_LAST_SAMPLE, e.last)
# The epoch itself
start_block(fid, FIFF.FIFFB_ASPECT)
write_int(fid, FIFF.FIFF_ASPECT_KIND, e._aspect_kind)
write_int(fid, FIFF.FIFF_NAVE, e.nave)
decal = np.zeros((e.info['nchan'], 1))
for k in range(e.info['nchan']):
decal[k] = 1.0 / (e.info['chs'][k]['cal']
* e.info['chs'][k].get('scale', 1.0))
write_float_matrix(fid, FIFF.FIFF_EPOCH, decal * e.data)
end_block(fid, FIFF.FIFFB_ASPECT)
end_block(fid, FIFF.FIFFB_EVOKED)
end_block(fid, FIFF.FIFFB_PROCESSED_DATA)
end_block(fid, FIFF.FIFFB_MEAS)
end_file(fid)
def write_evokeds(fname, evoked):
"""Write an evoked dataset to a file
Parameters
----------
fname : string
The file name, which should end with -ave.fif or -ave.fif.gz.
evoked : Evoked instance, or list of Evoked instances
The evoked dataset, or list of evoked datasets, to save in one file.
Note that the measurement info from the first evoked instance is used,
so be sure that information matches.
"""
check_fname(fname, 'evoked', ('-ave.fif', '-ave.fif.gz'))
if not isinstance(evoked, list):
evoked = [evoked]
# Create the file and save the essentials
with start_file(fname) as fid:
start_block(fid, FIFF.FIFFB_MEAS)
write_id(fid, FIFF.FIFF_BLOCK_ID)
if evoked[0].info['meas_id'] is not None:
write_id(fid, FIFF.FIFF_PARENT_BLOCK_ID, evoked[0].info['meas_id'])
# Write measurement info
write_meas_info(fid, evoked[0].info)
# One or more evoked data sets
start_block(fid, FIFF.FIFFB_PROCESSED_DATA)
for e in evoked:
start_block(fid, FIFF.FIFFB_EVOKED)
# Comment is optional
if e.comment is not None and len(e.comment) > 0:
write_string(fid, FIFF.FIFF_COMMENT, e.comment)
# First and last sample
write_int(fid, FIFF.FIFF_FIRST_SAMPLE, e.first)
write_int(fid, FIFF.FIFF_LAST_SAMPLE, e.last)
# The epoch itself
start_block(fid, FIFF.FIFFB_ASPECT)
write_int(fid, FIFF.FIFF_ASPECT_KIND, e._aspect_kind)
write_int(fid, FIFF.FIFF_NAVE, e.nave)
decal = np.zeros((e.info['nchan'], 1))
for k in range(e.info['nchan']):
decal[k] = 1.0 / (e.info['chs'][k]['cal']
* e.info['chs'][k].get('scale', 1.0))
write_float_matrix(fid, FIFF.FIFF_EPOCH, decal * e.data)
end_block(fid, FIFF.FIFFB_ASPECT)
end_block(fid, FIFF.FIFFB_EVOKED)
end_block(fid, FIFF.FIFFB_PROCESSED_DATA)
end_block(fid, FIFF.FIFFB_MEAS)
end_file(fid)
def _get_peak(data, times, tmin=None, tmax=None, mode='abs'):
"""Get feature-index and time of maximum signal from 2D array
Note. This is a 'getter', not a 'finder'. For non-evoked type
data and continuous signals, please use proper peak detection algorithms.
Parameters
----------
data : instance of numpy.ndarray (n_locations, n_times)
The data, either evoked in sensor or source space.
times : instance of numpy.ndarray (n_times)
The times in seconds.
tmin : float | None
The minimum point in time to be considered for peak getting.
tmax : float | None
The maximum point in time to be considered for peak getting.
mode : {'pos', 'neg', 'abs'}
How to deal with the sign of the data. If 'pos' only positive
values will be considered. If 'neg' only negative values will
be considered. If 'abs' absolute values will be considered.
Defaults to 'abs'.
Returns
-------
max_loc : int
The index of the feature with the maximum value.
max_time : int
The time point of the maximum response, index.
"""
modes = ('abs', 'neg', 'pos')
if mode not in modes:
raise ValueError('The `mode` parameter must be `{modes}`. You gave '
'me `{mode}`'.format(modes='` or `'.join(modes),
mode=mode))
if tmin is None:
tmin = times[0]
if tmax is None:
tmax = times[-1]
if tmin < times.min():
raise ValueError('The tmin value is out of bounds. It must be '
'within {0} and {1}'.format(times.min(), times.max()))
if tmax > times.max():
raise ValueError('The tmin value is out of bounds. It must be '
'within {0} and {1}'.format(times.min(), times.max()))
if tmin >= tmax:
raise ValueError('The tmin must be smaller than tmax')
time_win = (times >= tmin) & (times <= tmax)
mask = np.ones_like(data).astype(np.bool)
mask[:, time_win] = False
maxfun = np.argmax
if mode == 'pos':
if not np.any(data > 0):
raise ValueError('No positive values encountered. Cannot '
'operate in pos mode.')
elif mode == 'neg':
if not np.any(data < 0):
raise ValueError('No negative values encountered. Cannot '
'operate in neg mode.')
maxfun = np.argmin
masked_index = np.ma.array(np.abs(data) if mode == 'abs' else data,
mask=mask)
max_loc, max_time = np.unravel_index(maxfun(masked_index), data.shape)
return max_loc, max_time
|